
DrRacket Plugins
Version 9.0.0.11

Robert Bruce Findler

January 4, 2026

(require drracket/tool-lib) package: drracket-core-lib
(require drracket/tool)
(require drscheme/tool-lib)
(require drscheme/tool)

This manual describes DrRacket’s plugins interface. It assumes familiarity with Racket, as
described in the The Racket Guide, and the The Racket Reference, DrRacket, as described in
DrRacket: The Racket Programming Environment and the GUI library, as described in The
Racket Graphical Interface Toolkit. The Framework, as described in Framework: Racket
GUI Application Framework, may also come in handy.

The drscheme/tool-lib and drscheme/tool libraries are for backward compatibility;
they export all of the bindings of their drracket counterpart.

1

https://pkgs.racket-lang.org/package/drracket-core-lib

Contents

1 Tool support for #lang-based Languages 6

1.1 Syntax Coloring . 7

1.2 Indentation . 8

1.3 Comments . 9

1.4 Keystrokes . 11

1.5 Filename Extensions . 12

1.6 REPL Submit Predicate . 12

1.7 Show Big “Definitions” and “Interactions” Labels 13

1.8 Toolbar Buttons . 13

1.8.1 Opting Out of Standard Toolbar Buttons 13

1.8.2 Opting In to Language-Specific Toolbar Buttons 13

1.8.3 Adding New Toolbar Buttons . 14

1.9 Definition Popup-Menu Navigation . 14

1.10 Documentation Language Family . 16

1.11 Definitions Text Surrogate . 16

2 Implementing DrRacket Plugins 17

3 Adding Languages to DrRacket 22

3.1 Adding Module-based Languages to DrRacket 22

3.2 Adding Arbitrary Languages to DrRacket 23

3.3 Language Extensions . 24

4 Creating New Kinds of DrRacket Frames 26

5 Extending the Existing DrRacket Classes 27

2

6 Expanding the User’s Program Text and Breaking 28

7 Editor Modes 29

7.1 Color Schemes . 29

7.2 General-purpose Modes . 29

8 Plugin Capabilities 30

9 Check Syntax 31

9.1 Check Syntax Button . 31

9.2 Syntax Properties that Check Syntax Looks For 31

10 Cooperating with Background Check Syntax 38

11 Teaching Languages 39

12 Signatures 40

13 drracket:get/extend 41

14 drracket:unit 45

15 drracket:language 64

16 drracket:language-configuration 93

17 drracket:debug 96

18 drracket:rep 103

19 drracket:frame 112

20 drracket:help-desk 117

3

21 drracket:eval 118

22 drracket:modes 123

23 drracket:module-language-tools 125

24 drracket:module-language 129

25 drracket:tracing 131

26 drracket:init 132

27 Backwards Compatibility 133

Index 161

Index 161

4

Thanks

Thanks to PLT and the early adopters of the tools interface for their feedback and help.

A special thanks to Eli Barzilay, John Clements, Matthias Felleisen, Cormac Flanagan,
Matthew Flatt, Max Hailperin, Philippe Meunier, and Christian Queinnec for their help being
early clients for DrRacket plugins.

5

1 Tool support for #lang-based Languages

A variety of tools can use extra information specified by a language. These tools include
DrRacket, expeditor, and more.

The simplest and best way to extend tools to support a new language is to implement the
language via #lang (see §17.3 “Defining new #lang Languages” for more details). Tools
will then use read-language to find code and values that it uses to customize itself to the
language.

If the call to read-language raises an error, DrRacket logs the error at the debug level to
a logger with the name 'drracket-language (see §15.5 “Logging” for more about how to
follow specific loggers).

With the exception of the 'definitions-text-surrogate, if there is an error during a
use of one of these extensions, DrRacket notices the error and removes all of the extensions
for the language. It also shows the error at the bottom of the DrRacket frame (prefixed by
#lang). Note that this applies only to errors that occur during the dynamic extent of a use
of one of these extensions. If an extension were to, for example, create a new thread that
(eventually) caused an error, DrRacket would not notice that error and would not remove the
extensions.

When experimenting with changes to these extensions, use the Racket|Reload #lang Exten-
sions menu item to cause DrRacket to remove the extensions and reload the implementations
from the files on disk.

DrRacket calls the language’s read-language’s get-info procedure with the following
key arguments. Other tools may use only a subset.

• color-lexer

• drracket:indentation

• drracket:range-indentation

• drracket:paren-matches

• drracket:quote-matches

• drracket:comment-delimiters

• drracket:grouping-position

• drracket:default-filters

• drracket:default-extension

• drracket:keystrokes

6

• drracket:show-big-defs/ints-labels

• drracket:opt-out-toolbar-buttons

• drracket:opt-in-toolbar-buttons

• drracket:submit-predicate

• drracket:toolbar-buttons

• drracket:define-popup

• documentation-language-family

• definitions-text-surrogate

1.1 Syntax Coloring

When a language’s get-info procedure responds to 'color-lexer, it is expected to return
a procedure suitable to pass as the get-token argument to start-colorer.

The recognized token styles (specified implicitly via start-colorer’s token-sym-
>style argument) are:

• 'symbol

• 'keyword

• 'comment

• 'string

• 'constant

• 'parenthesis

• 'error

• 'other

The precise colors for these identifiers are controlled by the preferences dialog in DrRacket,
and by other customization mechanisms in other tools.

7

1.2 Indentation

When a language’s get-info procedure responds to 'drracket:indentation, it is ex-
pected to return a function with this contract:

(-> (is-a?/c color-textoid<%>)
exact-nonnegative-integer?
(or/c #f exact-nonnegative-integer?))

Although DrRacket
might supply an
object that
implements
racket:text<%>,
if your language
can limit itself to
the smaller number
of methods in the
color-textoid<%>
interface then it will
work with more
tools.

The function is used to indent lines. It is called with the position containing the line to be
indented. It is expected to return the number of spaces that should appear at the beginning
of the line or #f. If #f is returned, the tool uses the standard s-expression indentation rules.

Added in version 1.3 of package drracket-core-lib.

When a language’s get-info procedure responds to 'drracket:range-indentation, it
is expected to return a function with this contract:

(-> (is-a?/c color-textoid<%>)
exact-nonnegative-integer?
exact-nonnegative-integer?
(or/c #f (listof (list/c exact-nonnegative-

integer? string?))))
Although DrRacket
might supply an
object that
implements
racket:text<%>,
if your language
can limit itself to
the smaller number
of methods in the
color-textoid<%>
interface then it will
work with more
tools.

The function is used to indent a range that potentially spans multiple lines. It is called with
the start and ending position of the range. The function is expected to return either #f or a
list with an item for each line in the range. Returning #f falls back to iterating indentation
over every line in the range (using 'drracket:indentation, if available). Returning a list
indicates an update for each corresponding line, where a line update takes the form (list
delete-amount insert-string): first delete delete-amount items from the start of
the line, and then insert insert-string at the start of the line. If the returned list has
fewer items then the range of lines to indent, the list is effectively padded with (list 0
"") no-op items. If the list has more items than the range of lines to indent, the extra items
are ignored. Note that returning an empty list causes no lines to be updated, as opposed to
returning #f to trigger a different indentation mechanism.

When both 'drracket:indentation and 'drracket:range-indentation are avail-
able, the function for 'drracket:range-indentation is called first—except in
the case of an implicit indentation from creating a newline, in which case only
'drracket:indentation is used.

Added in version 1.10 of package drracket-core-lib.

When a language’s get-info procedure responds to 'drracket:range-
indentation/reverse-choices, it is expected to return a procedure like one for
'drracket:range-indentation, but if there are multiple indentation choices to cycle

8

through, then cycling should go through the choices in reverse order. When this function
returns #f, then a non-reversed indentation is tried.

Added in version 1.16 of package drracket-core-lib.

When a language’s get-info procedure responds to 'drracket:paren-matches, it is
expected to return a list of opening and closing parentheses, matching this contract:

(listof (list/c symbol? symbol?))

Each element of the outer list corresponds to a pair of parentheses, opening first and closing
second.

These are used with the framework library’s color:text<%> object; they are supplied as
the pairs argument to the start-colorer method. The default value is

'((|(| |)|)
(|[| |]|)
(|{| |}|))

They are also used to introduce keybindings that match the parentheses, via racket:map-
pairs-keybinding-functions.

Added in version 1.12 of package drracket-core-lib.

When a language’s get-info procedure responds to 'drracket:quote-matches, it is
expected to return a list of characters that are self-matching, e.g. " in racket, matching this
contract:

(listof char?)

These characters are used to introduce keybindings via racket:map-pairs-keybinding-
functions, where the open and close arguments are both the character.

The default value is (list #\" #\|).

Added in version 1.13 of package drracket-core-lib.

1.3 Comments

When a language’s get-info procedure responds to 'drracket:comment-delimiters,
it is expected to return a value with this contract:

(listof

9

(or/c (list/c 'line
(and/c string? (not/c #rx"[\r\n]"))
(and/c string? (not/c #rx"[\r\n]")))

(list/c 'region
(and/c string? (not/c #rx"[\r\n]"))
(and/c string? (not/c #rx"[\r\n]"))
(and/c string? (not/c #rx"[\r\n]"))
(and/c string? (not/c #rx"[\r\n]")))))

The value is a list of comment styles. Each comment style is expressed as one of:

• (list 'line start padding), where start plus padding starts a comment that
is teriminated by the end of a line.

Lisp example: '(line ";;" " ").

C++ example: '(line "//" " ").

• (list 'region start continue end padding), where:

– start then padding opens a comment
– continue then padding is added to the beginning of each line except the first

one when a comment spans multiple lines
– padding then end closes a comment

Racket example: '(region "#|" " " "|#" " ").

C++ example: '(region "/*" " *" "*/" " ").

When not specified by a lang, the default value is suitable for Racket s-expression langs:

'((line ";;" " ")
(region "#|" " " "|#" " "))

An intended use for these values is by (un)comment commands, which vary among tools.
Some tools (un)comment entire lines, whereas others may handle portions of a line. Gen-
erally this is orthogonal to using a lang’s line vs. region style: A tool can wrap entire lines
using region comments. A tool can insert line breaks to make it possible to use line com-
ments on a portion of a line. The point of 'drracket:comment-delimiters is to enable
a lang to tell a tool about its comment delimiters — not to say exactly how the (un)comment
commands could or should work, exactly.

When the list has multiple styles: Some tools may present the styles for the user to pick
one. Other tools may default to using the first style in the list (allowing the user to configure
another preference by other means). Therefore when a language supports multiple comment
styles, it should list the most popular or preferred style first.

Added in version 1.15 of package drracket-core-lib.

10

1.4 Keystrokes

When a language’s get-info procedure responds to 'drracket:keystrokes, it is ex-
pected to return a list of keybindings and callbacks matching this contract:

(listof (list/c string?
(-> (is-a?/c text%)

(is-a?/c event%)
any)))

Each element of the list is a different keybinding, where the string indicates the keystroke
(see the documentation for map-function for the precise contents of the string and how it
maps to particular keystrokes) and the procedure is called when the user types that keystroke
in the definitions window.

The procedure’s first argument will be the definitions text, the second will be the event object
supplied from the GUI system and the result of the procedure is ignored.

When a language’s get-info procedure responds to 'drracket:grouping-position,
it is expected to return a function that determines where positions relevant to the nesting
structure of the program appear. This function is used for a number of motion and selection
operations in the editor, as well as determining where to flash to for closing parentheses.

Specifically the result must be a function matching this contract:

(-> (is-a?/c color-textoid<%>)
natural?
natural?
(or/c 'up 'down 'backward 'forward)
(or/c #f #t natural?))

Although DrRacket
might supply an
object that
implements
racket:text<%>,
if your language
can limit itself to
the smaller number
of methods in the
color-textoid<%>
interface then it will
work with more
tools.

Consider first the first and third argument. The first argument indicates a position in the editor
to start from and the third argument is a direction to look. The result return the position for
the corresponding direction, where the nesting structure of the program is viewed as a tree.
That is, if the third argument is 'up, the function should return the position that goes up one
layer in the tree from the given position to the parent. Similarly 'down should return the
position going on layer deeper into that tree, going down to the first child. The 'backward
and 'forward arguments correspond to position where we stay at the same level in the tree,
moving between siblings. The result should be #f when there is no corresponding position
to move to, e.g., when the current position has no children, no parents, or no siblings in the
corresponding direction.

The second argument is a limit. Positions smaller than the limit should be ignored, so if the
corresponding position appears to be before the limit, return #f.

Finally, return #t to get the default behavior, namely motion in Racket-style s-expressions.

11

Added in version 1.11 of package drracket-core-lib.

1.5 Filename Extensions

When a language’s get-info procedure responds to 'drracket:default-filters, it is
expected to return (listof (list/c string? string?)).

These results are added as a prefix to finder:default-filters, extending the default
that DrRacket normally uses, namely:

`(["Racket Sources" "*.rkt;*.scrbl;*.rktl;*.rktd;*.ss;*.scm"]
["Any" "*.*"])

Added in version 1.2 of package drracket-core-lib.

When a language’s get-info procedure responds to 'drracket:default-extension,
it is expected to return (and/c string? (not/c #rx"[.]")); the result is used as the
default extension when saving files by setting finder:default-extension.

Added in version 1.2 of package drracket-core-lib.

1.6 REPL Submit Predicate

When using the language declared in the source, DrRacket queries that language via
read-language to determine if an expression in the interactions window is ready to be
submitted to the evaluator (when the user types return). The info procedure is passed
'drracket:submit-predicate and should return a function matching this contract:

(-> input-port?
boolean?
boolean?)

This function’s first argument is a port that contains the interactions window’s data, starting
just after the prompt and continuing to the end of the editor. The second argument is a
boolean indicating if the insertion point is followed only by whitespace. The results should
be a boolean indicating if the expression should be evaluated.

For backwards compatibility reasons, DrRacket also queries the result of module-
>language-info for 'drracket:submit-predicate. It does this during the evaluation
of the definitions (so the Racket|Reload #lang extensions menu item does not trigger a
re-load). If the submit predicate is specified both ways, then the predicate supplied via
read-language takes precedence.

12

Changed in version 1.5 of package drracket-core-lib: Look for drracket:submit-predicate via
read-language.

1.7 Show Big “Definitions” and “Interactions” Labels

If the read-language predicate returns #t for 'drracket:show-big-defs/ints-
labels, then DrRacket shows the words “Definitions” and “Interactions” in a large font
in the corresponding windows. This is intended as a help for students who are reading in-
structions about where to type their programs but might not have internalized this particular
bit of DrRacket terminology.

1.8 Toolbar Buttons

1.8.1 Opting Out of Standard Toolbar Buttons

Some of the built-in buttons in the DrRacket button bar at the top of the window can be
disabled on a per-language basis. DrRacket will invoke the get-info proc returned by
read-language with 'drracket:opt-out-toolbar-buttons (and 'drscheme:opt-
out-toolbar-buttons for backwards compatibility).

If the result is a list of symbols, the listed symbols are opted out. If the result is #f, all
buttons are opted out. The default is the empty list, meaning that all opt-out buttons appear.

The Check Syntax button uses the symbol 'drracket:syncheck; the debugger uses the
symbol 'debug-tool and the macro stepper uses 'macro-stepper.

Plugins may add more opt-out buttons via drracket:module-language-tools:add-
opt-out-toolbar-button.

1.8.2 Opting In to Language-Specific Toolbar Buttons

Like drracket:opt-out-toolbar-buttons, but for languages to opt in to buttons that
are not enabled by default.

Plugins may add more opt-out buttons via drracket:module-language-tools:add-
opt-in-toolbar-button.

Added in version 1.6 of package drracket-core-lib.

13

1.8.3 Adding New Toolbar Buttons

DrRacket queries the result of read-language to determine if there are any new toolbar
buttons to be used when editing files in this language.

Specifically, DrRacket will pass 'drracket:toolbar-buttons to the function and expect
back a value matching this contract:

(or/c (listof (list/c string?
(is-a?/c bitmap%)
(-> (is-a?/c drracket:unit:frame<%>) any)
(or/c real? #f)))

#f)

which is then used to create new toolbar buttons, one for each element in the result list.
The string is the label on the button; the bitmap is the icon (it should be 16x16 pixels); the
function is called when the button is clicked; and the number is passed as the #:number
argument to register-toolbar-button.

If the result is #f, then no toolbar buttons are created.

To implement functionality similar to the Run button, call the execute-callback method.
You may also want to use the drracket:rep:after-expression parameter.

If 'drracket:toolbar-buttons is not recognized, DrRacket will also pass
'drscheme:toolbar-buttons; this is for backwards compatibility and new code
should not use it. Similarly, if the fourth element from the list (the argument to #:number)
is not present, then it is treated as #f.

1.9 Definition Popup-Menu Navigation

A popup menu in the DrRacket button bar jumps to definitions based on a heuristic search
of the program text. DrRacket will invoke the get-info proc returned by read-language
with 'drracket:define-popup to obtain a configuration for the menu.

The value must satisfy the contract

(non-empty-listof (or/c (list/c string? string? string?)
(list/c string? string? string?

(or/c #f
(-> (is-a/c text%)

string?
exact-integer?
(->* ((is-a/c text%)

string?

14

exact-integer?)
(#:case-

sensitive? any/c
#:delimited? any/c)

(or/c exact-
integer? #f))

(or/c exact-
integer? #f)))

(or/c #f
(-> (is-a/c text%)

exact-integer?
(-> (is-a/c text%)

exact-integer?
string?)

string?)))))

where the first string in each nested list is literal text to search for (outside of comments
and literal strings), the second string is a label to describe the category of matches, and the
third string is a short form of the label. The labels from the first nested list are used for the
definition-popup button itself, while all labels are used for the user to select which categories
are enabled.

When a nested list contains fourth and fifth elements, they can supply replacements (when
not #f) for the default functions that find a prefix and extract the subsequent name:

• The prefix-finding function receives a text-editor object for the content to search, the
prefix string to find, a position to start the search, and a default prefix-finding function.
The result is a position in the text editor for the start of a found prefix, or #f if the prefix
is not found.

The provided default finding function accepts two optional keyword arguments: a true
value for #:case-sensitive? requires case-insensitive matching, and a true value
for #:delimited? indicates that the matched text’s edges must coincide with forward
and backward expression navigation.

• The name-extracting function receives a text-editor object for the content to extract, a
position after a found prefix string, and a default name-extracting function. The result
must be a string for the extracted defined name.

Plugins can provide a default popup-menu configuration via
drracket:language:register-capability using 'drscheme:define-popup.

Added in version 1.14 of package drracket-core-lib.

15

1.10 Documentation Language Family

When a language’s get-info procedure (accessed via read-language) responds to the
'documentation-language-family key, the result is a string that names a language fam-
ily. The language family should be defined as language-family in some collection’s
"info.rkt" file, and that definition configures a documentation entry point, a navigation
configuration, and search precedence.

DrRacket uses the contents of this hash in three ways:

• When typing f1 (or right clicking) to search for documentation in DrRacket, DrRacket
calls perform-search or send-language-family-page to summon browser-
based documentation, and it passes along the language family.

• DrRacket uses the name in the first menu item in the Help menu item, replacing the
word “Racket” with the string in the hash.

• When selecting that menu item, DrRacket visits the documentation page the language
family by passing it along to send-language-family-page.

1.11 Definitions Text Surrogate

Using a #lang-specific definitions text surrogate is a very powerful way to flexibly control
DrRacket’s behavior when a new language is installed. It is also easy to cause DrRacket
to completely misbehave with this form of extension. It is here only when one of the other
forms of extension listed above are not sufficient for the kind of extension your language
requires. And even in that case, it is preferable to add something to this list that is more
easily controlled in the case of errors, using the definitions text surrogate only until that
more easily controlled extension has been added to DrRacket.

DrRacket calls read-language’s get-info procedure with 'definitions-text-
surrogate and expects it to return a value matching the contract (or/c #f module-
path?), which is then passed to dynamic-require together with 'surrogate%. The result
is expected to be a class implementing the interface racket:text-mode<%> (presumably
derived from racket:text-mode%. That mode is installed into the definitions text, where
it can change its behavior by changing how is responds to any of the methods in the mode.

One consequence of this power is that errors that happen during the dynamic extent of calls
into the mode are not trapped (much as errors that occur on newly created threads are not
trapped, as described in the introduction to this section).

16

2 Implementing DrRacket Plugins

Plugins are designed for major extensions in DrRacket’s functionality. To extend the appear-
ance or the functionality the DrRacket window (say, to annotate programs in certain ways or
to add buttons to the DrRacket frame) use a tool. The Macro Stepper, the Syntax Checker,
the Stepper, and the teaching languages are all implemented as tools.

When DrRacket starts up, it looks for tools by reading fields in the info.rkt file of each
collection and the newest version of each PLaneT package installed on the system. (Techni-
cally, DrRacket looks in a cache of the "info.rkt" files contents created by raco setup.
Be sure to re-run raco setup if you change the contents of the info.rkt files). DrRacket
checks for these fields:

• drracket-tools: (listof (listof string [subcollection-name]))

• drracket-tool-names: (listof (or/c #f string))

• drracket-tool-icons:

(listof (or/c #f
string[relative-pathname]
(cons string[filename]

(listof string[collection-name]))))

• drracket-tool-urls: (listof (or/c #f string [url]))

The drracket-tools field names a list of tools in this collection. Each tool is specified as
a collection path, relative to the collection where the info.rkt file resides. As an example,
if there is only one tool named tool.rkt, this suffices:

(define drracket-tools (list (list "tool.rkt")))

If the drracket-tool-icons or drracket-tool-names fields are present, they must be
the same length as drracket-tools. The drracket-tool-icons field specifies the path
to an icon for each tool and the name of each tool. If it is #f, no tool is shown. If it is a
relative pathname, it must refer to a bitmap and if it is a list of strings, it is treated the same
as the arguments to lib, inside require.

This bitmap and the name show up in the about box, the bug report form, and the splash
screen as the tool is loaded at DrRacket’s startup.

Each of the drracket-tools files must contain a module that provides tool@, which
must be bound to a unit. The unit must import the drracket:tool^ signature, which
is provided by the drracket/tool library. The drracket:tool^ signature contains all

17

of the names listed in this manual. The unit must export the drracket:tool-exports^
signature.

If the tool raises an error as it is loaded, invoked, or as the phase1 or phase2 thunks are
called, DrRacket catches the error and displays a message box. Then, DrRacket continues to
start up, without the tool.

For example, if the info.rkt file in a collection contains:

#lang info
(define drracket-tool-names (list "Tool Name"))
(define drracket-tools (list (list "tool.rkt")))

then the same collection would be expected to contain a tool.rkt file. It might contain
something like this:

#lang racket/gui
(require drracket/tool)

(provide tool@)

(define tool@
(unit

(import drracket:tool^)
(export drracket:tool-exports^)
(define (phase1) (message-box "tool example" "phase1"))
(define (phase2) (message-box "tool example" "phase2"))
(message-box "tool example" "unit invoked")))

This tool just opens a few windows to indicate that it has been loaded and that the phase1
and phase2 functions have been called.

Finally, here is a more involved example. This module defines a plugin that adds a button
to the DrRacket frame that, when clicked, reverses the contents of the definitions window.
It also adds an easter egg. Whenever the definitions text is modified, it checks to see if the
definitions text contains the text “egg”. If so, it adds “easter ” just before.

#lang racket/base
(require drracket/tool

racket/class
racket/gui/base
racket/unit
mrlib/switchable-button)

(provide tool@)

(define secret-key "egg")

18

(define to-insert "easter ")

(define tool@
(unit

(import drracket:tool^)
(export drracket:tool-exports^)

(define easter-egg-mixin
(mixin ((class->interface text%)) ()

(inherit begin-edit-sequence
end-edit-sequence
insert
get-text)

(define/augment (on-insert start len)
(begin-edit-sequence))

(define/augment (after-insert start len)
(check-range (max 0 (- start (string-length secret-

key)))
(+ start len))

(end-edit-sequence))

(define/augment (on-delete start len)
(begin-edit-sequence))

(define/augment (after-delete start len)
(check-range (max 0 (- start (string-length secret-

key)))
start)

(end-edit-sequence))

(define/private (check-range start stop)
(let/ec k

(for ((x (in-range start stop)))
(define after-x

(get-text x (+ x (string-length secret-key))))
(when (string=? after-x secret-key)

(define before-x
(get-text (max 0 (- x (string-length to-

insert))) x))
(unless (string=? before-x to-insert)

(insert to-insert x x)
(k (void)))))))

(super-new)))

19

(define reverse-button-mixin
(mixin (drracket:unit:frame<%>) ()

(super-new)
(inherit get-button-panel

get-definitions-text)
(inherit register-toolbar-button)

(let ((btn
(new switchable-button%

(label "Reverse Definitions")
(callback (𝜆 (button)

(reverse-content
(get-definitions-text))))

(parent (get-button-panel))
(bitmap reverse-content-bitmap))))

(register-toolbar-button btn #:number 11)
(send (get-button-panel) change-children

(𝜆 (l)
(cons btn (remq btn l)))))))

(define reverse-content-bitmap
(let* ((bmp (make-bitmap 16 16))

(bdc (make-object bitmap-dc% bmp)))
(send bdc erase)
(send bdc set-smoothing 'smoothed)
(send bdc set-pen "black" 1 'transparent)
(send bdc set-brush "blue" 'solid)
(send bdc draw-ellipse 2 2 8 8)
(send bdc set-brush "red" 'solid)
(send bdc draw-ellipse 6 6 8 8)
(send bdc set-bitmap #f)
bmp))

(define (reverse-content text)
(for ((x (in-range 1 (send text last-position))))

(send text split-snip x))
(define snips

(let loop ((snip (send text find-first-snip)))
(if snip

(cons snip (loop (send snip next)))
'())))

(define released-snips
(for/list ((snip (in-list snips))

#:when (send snip release-from-owner))
snip))

(for ((x (in-list released-snips)))

20

(send text insert x 0 0)))

(define (phase1) (void))
(define (phase2) (void))

(drracket:get/extend:extend-definitions-text easter-egg-mixin)
(drracket:get/extend:extend-unit-frame reverse-button-mixin)))

21

3 Adding Languages to DrRacket

3.1 Adding Module-based Languages to DrRacket

For backwards compatibility, DrRacket also supports and info.rkt file-based method for
specifying such languages. Include these definitions:

• drscheme-language-modules: This must be bound to a list of collection path spec-
ifications or strings, one for each language in the collection. Each collection path
specification is the quoted form of what might appear as an argument to require,
using the lib argument (but without the lib). The strings represent relative paths
starting at the directory containing the info.rkt file. They are interpreted like string
arguments to require.

• drscheme-language-positions: This must be bound to a list of language posi-
tions. Each language position corresponds to the position of the language in language
dialog. Each language position is a list of strings whose length must be at least two.

If the first string is the same as (string-constant teaching-languages), then
it is put into the “Teaching Languages” section of the dialog. Otherwise, it goes into
the “Other Languages” section of the dialog.

• get-drscheme-language-positions: This must be bound to a list that contains
a module path followed by a symbol. The module path and symbol are combined
with dynamic-require to obtain a list that is appended to the one from drscheme-
language-positions, which allows access to string-constants to specify lan-
guage positions.

• drscheme-language-numbers: This is optional. If present, it must be a list of a
list of numbers. Each list corresponds to a single language from this collection. Each
number indicates a sorting order in the language dialog for the corresponding string in
drscheme-language-positions. If absent, it defaults to a list of zeros that has the
same length as drscheme-language-positions. This will rarely be correct.

• drscheme-language-one-line-summaries: This is optional. If present, it must
be a list of strings. Each string is displayed at the bottom of the language dialog when
the corresponding language is selected.

• drscheme-language-urls: This is optional. If present, it must be a list whose
elements are either strings or #f. Clicking the corresponding language’s name in the
interactions window opens a web browser to the url.

• drscheme-language-readers: This is optional. If present, it must be bound to
a quoted list of module specifications (that is, a quoted version of the argument to
require). Each specification must be a module that exports a function named read-
syntax. Each of these read-syntax functions must match Racket’s read-syntax
primitive’s contract, but may read different concrete syntax.

22

If the module specification is a plain string, it represents a relative path starting at the
directory containing the info.rkt file. It is interpreted like the string arguments to
require.

The lists must have the same length.

As an example, the Essentials of Programming Languages language specification’s
info.rkt used to look like this:

#lang info
(require string-constants)
(define name "EoPL Support")
(define drscheme-language-modules

(list "eopl-lang.rkt"))
(define drscheme-language-positions

(list (list (string-constant teaching-languages)
"Essentials of Programming Languages")))

This info.rkt file indicates that there is a single language in this collection. The mod-
ule that implements the language is the eopl-lang.rkt file in the same directory as
the info.rkt file. Additionally, the language dialog will contain Essentials of Pro-
gramming Languages as a potential language. The use of the string constant teaching-
languages ensures that EoPL’s language is placed properly in foreign language versions of
DrRacket.

For collections that define multiple (related) languages, if the language-positions contain
multiple strings, the languages whose leading strings match are grouped together. That is, if
two languages have strings:

'("My Text" "First Language")

and

'("My Text" "Second Language")

the two languages will be grouped together in the language dialog.

3.2 Adding Arbitrary Languages to DrRacket

With some additional work, any language that can be compiled to Racket is supported by the
tools interface, not just those that use standard configurations and module.

Each language is a class that implement the drracket:language:language<%> interface.
DrRacket also provides two simpler interfaces: drracket:language:module-based-
language<%> and drracket:language:simple-module-based-language<%>, and

23

mixins drracket:language:simple-module-based-language->module-based-
language-mixin and drracket:language:module-based-language->language-
mixin that build implementations of drracket:language:language<%>s from these
simpler interfaces.

Once you have an implementation of the drracket:language:language<%> interface,
call drracket:language-configuration:add-language to add the language to Dr-
Racket.

Each language comes with its own type, called settings. This can be any type the lan-
guage designer chooses, but to aid documentation, we call it settings here. The settings
type is expected to contain parameters of the language, such as case sensitivity, etc. The
implementor of the language provides a GUI so the user can configure the settings and all of
the language’s operations accept a setting. DrRacket maintains the current settings for each
language.

3.3 Language Extensions

Some tools may require additional functionality from the
drracket:language:language<%> interface. The drracket:language:extend-
language-interface function and the drracket:language:get-default-mixin
mixin make this possible.

For example, the MrFlow tool expands a program, analyzes it and then displays sets of
values for each program point. These sets of values should be rendered in the syntax
of the language that MrFlow analyzes. Since MrFlow doesn’t know which languages are
available, it can call drracket:language:extend-language-interface to extend the
drracket:language:language<%> interface with a method for rendering sets of values
and provide a default implementation of that method. Tools that know about MrFlow can
then override the value rendering method to provide a language-specific implementation of
value rendering. Additionally, since the drracket:language:get-default-mixin adds
the default implementation for the value-set rendering method, all languages at least have
some form of value-set rendering.

In some cases, it is important for one tool to avoid depending on another in the manner
above. For example, if a tool that provides a new language provides an implementation for
the MrFlow-specific method, that tool may fail to load if MrFlow is not present (Indeed, with
the tool manager, this can happen to any tool that depends on another in this manner.)

To avoid this problem, consider writing your tool to first check to see if the base method
is available before extending it. For example, if the MrFlow tool provides the render-
value<%> interface, then a tool that overrides that method can first test to see if the super-
class implements that method before overriding it:

(define (my-language-mixin %)

24

(if (implementation? % mrflow:render-value<%>)
(class %

(define/override ...)
(super-new))

%))

To help test your tool, use the PLTONLYTOOL environment variable to load it in isolation.

25

4 Creating New Kinds of DrRacket Frames

Each frame in DrRacket has certain menus and functionality, most of which is achieved by
using the framework. Additionally, there is one mixin that DrRacket provides to augment
that. It is drracket:frame:basics-mixin. Be sure to mix it into any new frame class
that you add to DrRacket.

26

5 Extending the Existing DrRacket Classes

Each of the names:

• drracket:get/extend:extend-interactions-text

• drracket:get/extend:extend-definitions-text

• drracket:get/extend:extend-interactions-canvas

• drracket:get/extend:extend-definitions-canvas

• drracket:get/extend:extend-unit-frame

• drracket:get/extend:extend-tab

is bound to an extender function. In order to change the behavior of DrRacket, you can
derive new classes from the standard classes for the frame, texts, canvases. Each extender
accepts a function as input. The function it accepts must take a class as its argument and
return a classes derived from that class as its result. For example:

(drracket:get/extend:extend-interactions-text
(lambda (super%)

(class super%
(define/public (method1 x) ...)
(super-new))))

extends the interactions text class with a method named method1.

27

6 Expanding the User’s Program Text and Breaking

Macro-expanding a program may involve arbitrary computation and requires the setup of the
correct language. To aid this, DrRacket’s tool interface provides drracket:eval:expand-
program to help. Use this method to extract the fully expanded program text in a particular
language.

Because expanding the user’s program may require DrRacket to evaluate arbitrary code that
the user wrote, tools that expand the user’s program should also allow the user to break
the expansion. To help with this, the tools interfaces provides these methods: enable-
evaluation and disable-evaluation. Since your tool will be expanding the program
text, you should be both overriding enable-evaluation and disable-evaluation to
disable your tool and calling them to ensure that only one expansion is happening at a time.

Finally, DrRacket provides the set-breakables method. This method controls what be-
havior the Break button has.

28

7 Editor Modes

7.1 Color Schemes

DrRacket uses the framework’s color schemes to colorize source text and other aspects of
itself. See color-prefs:register-info-based-color-schemes for details on how to
add new color schemes via "info.rkt" files.

7.2 General-purpose Modes

Plugins can register modes via drracket:modes:add-mode. Each mode is visible in the
Modes submenu of the Edit menu. Initially, DrRacket only supports two modes: Racket
mode and text mode. (The Racket mode consults the language in the #lang line; see §1.11
“Definitions Text Surrogate” for more details.)

DrRacket automatically selects a mode for each open file based on the file’s extension (and
the language chosen as described above). If the file ends with .txt, DrRacket uses text
mode. Otherwise, DrRacket uses Racket mode.

29

8 Plugin Capabilities

DrRacket’s capability interface provides a mechanism for tools to allow languages to hide
their GUI interface, if the tool does not apply to the language. Tools register capabilities
keyed with symbols via. drracket:language:register-capability. Once registered,
a tool can query a language, via the capability-value method. The result from this
method controls whether or not the tool shows this part of the GUI for DrRacket.

See drracket:language:register-capability for a list of the capabilities registered
by default.

30

9 Check Syntax

Check Syntax is a part of the DrRacket collection, but is implemented via the plugin API.
See also drracket/check-syntax.

9.1 Check Syntax Button

(require drracket/syncheck-drracket-button)
package: drracket-core-lib

syncheck-drracket-button : (list/c
string?
(is-a?/c bitmap%)
(-> (is-a?/c

top-level-window<%>)
any))

This is meant to be used with the 'drracket:toolbar-buttons argument to the info proc
returned from read-language.

syncheck:button-callback

This is defined with define-local-member-name and is bound to a method of no argu-
ments of the DrRacket frame that runs Check Syntax.

syncheck-bitmap : (is-a?/c bitmap%)

The bitmap in the Check Syntax button on the DrRacket frame.

9.2 Syntax Properties that Check Syntax Looks For

Check Syntax collects the values of the syntax-propertys named 'disappeared-use,
'disappeared-binding, 'original-for-check-syntax, 'identifiers-as-
disappeared-uses?, 'identifier-as-keyword, 'sub-range-binders, 'sub-
range-binding, and 'mouse-over-tooltips and uses them to add control which arrows
are added to the program text. These properties are intended for use when a macro discards
or manufactures identifiers that, from the programmers perspective, should be binding
each other, or when there are identifiers that are intended to be used more in the spirit of
keywords, and thus should be ignored.

• Check Syntax draws arrows only between identifiers that are free-identifier=?.
They must be syntax-original? or have the syntax-property 'original-for-
check-syntax set to #t. See also current-recorded-disappeared-uses.

31

https://pkgs.racket-lang.org/package/drracket-core-lib

• The properties 'disappeared-use, 'disappeared-binding, and allow macro au-
thors to inform Check Syntax that an identifier (or what appears to be an identifier
to the programmer) does not appear in the output of the macro, but should still have
binding arrows.

For example, here is program with a macro that discards its arguments, but adds prop-
erties to the result syntax object so that the two occurrences of a are treated as a
binding/bound pair by Check Syntax.

(define-syntax (m stx)
(syntax-case stx ()

[(_ id1 id2)
(and (identifier? #'id1) (identifier? #'id2))
(syntax-property
(syntax-property
#'1
'disappeared-use (list (syntax-local-

introduce #'id1)))
'disappeared-binding (list (syntax-local-

introduce #'id2)))]))

(m a a)

Another approach for situations where identifiers are discarded by a macro is to in-
troduce a let expression that doesn’t contribute to the result of the computation, but
does signal to Check Syntax that there are some arrows to draw. For example, Check
Syntax is unable to draw the arrows between the introductions and uses of a, b, and c
for this code:

#lang racket
(require (for-syntax syntax/parse))

(define-syntax (depths stx)
(syntax-parse stx

[(_ id expr)
(define table (make-hash))
(let loop ([stx #'expr] [depth 0])

(cond
[(syntax->list stx)
=>
(𝜆 (lst)

(for ([ele (in-list lst)])
(loop ele (+ depth 1))))]

[(identifier? stx)
(hash-set! table (syntax-e stx) depth)]))

#`(define-syntax id #,table)]))

32

(define-syntax (depth-of stx)
(syntax-parse stx

[(_ id1 id2)
(datum->syntax
#'here
(hash-ref (syntax-local-value #'id1)

(syntax-e #'id2)))]))

(depths my-sexp ((a) b (((((((c)))))))))

(depth-of my-sexp a)
(depth-of my-sexp b)
(depth-of my-sexp c)

Extending these macro to cooperate with Check syntax requires more information to
be collected on the definition side and then used at the use side:

#lang racket
(require (for-syntax syntax/parse))

(define-syntax (depths stx)
(syntax-parse stx

[(_ id expr)
(define table (make-hash))
(let loop ([stx #'expr] [depth 0])

(cond
[(syntax->list stx)
=>
(𝜆 (lst)

(for ([ele (in-list lst)])
(loop ele (+ depth 1))))]

[(identifier? stx)
(hash-set! table (syntax-e stx)

(cons (vector (syntax-source stx)
(syntax-line stx)
(syntax-column stx)
(syntax-position stx)
(syntax-span stx))

depth))]))
#`(define-syntax id #,table)]))

(define-syntax (depth-of stx)
(syntax-parse stx

[(_ id1 id2)
(define pr

(hash-ref (syntax-local-value #'id1)

33

(syntax-e #'id2)))
(define fake-binder

(datum->syntax #'id2 (syntax-e #'id2) (car pr) #'id2))
#`(begin

(void (let ([#,fake-binder 1]) id2))
#,(cdr pr))]))

(depths my-sexp ((a) b (((((((c)))))))))

(depth-of my-sexp a)
(depth-of my-sexp b)
(depth-of my-sexp c)

• For each syntax object that appears in the fully expanded program, DrRacket traverses
it looking for identifiers and connecting them to likely binding occurrences. When it
finds such identifiers it draws an arrow with a large question mark near the head of the
arrow. But, if the syntax object has the property 'identifiers-as-disappeared-
uses?, then the arrows are the normal arrow color.

• The value of the 'sub-range-binders property is expected to be a tree of cons
pairs (in any configuration) whose leaves are either ignored or are vectors with either
of these shapes:

(or/c (vector/c identifier? natural? natural?
identifier? natural? natural?)

(vector/c identifier?
natural? natural?
(real-in 0 1) (real-in 0 1)

identifier?
natural? natural?
(real-in 0 1) (real-in 0 1)))

Each vector is interpreted as a single arrow. The first identifier in the vector is the start
of the arrow and the second identifier in the vector is the destination of the arrow. The
two natural numbers that follow each identifier adjust the precise starting and ending
ranges for the arrows, however. They are interpreted as offsets into the position of
each corresponding identifier, making the arrows start and end on just a portion of the
identifier, instead of the entire identifier.

If the vector has 8 elements, then the two real numbers are treated as the precise
location where the arrow starts and ends, inside the rectangle that corresponds to the
start and end of the identifier. The first real number is for the x direction and the second
one is for the y direction. For example, if some identifier has a position and span of
100 and 10, and the offset are 1 and 5, then the rectangle that bounds the corresponding
end of the arrow would be from position 101 to 105. This entire range gets highlighted

34

when the mouse moves over it. The arrow itself, however, will start from some specific
point inside that editor range, normally in the center and corresponds to the situation
where the two real numbers are both 0.5. If, however the two reals are both 1/3, then
the arrow will start one third of the way from the top to the bottom and one third of
the way from the left to the right.

The property is looked for in expression positions and on binding identifiers.

Here’s an example:

#lang racket/base
(require (for-syntax racket/base))
(define-syntax (define/hyphen stx)

(syntax-case stx ()
[(_ id1 id2 rhs-expr)
(let ()

(define first-part (symbol->string (syntax-e #'id1)))
(define second-part (symbol->string (syntax-e #'id2)))
(define first-len (string-length first-part))
(define second-len (string-length second-part))
(define hyphenated-id

(datum->syntax
#'id1
(string->symbol (string-append first-part "-

" second-part))))
(syntax-property
#`(define #,hyphenated-id rhs-expr)
'sub-range-binders
(list
(vector (syntax-local-introduce hyphenated-id)

0 first-len 0.5 0.5
(syntax-local-introduce #'id1)
0 first-len 0.5 0.5)

(vector (syntax-local-introduce hyphenated-id)
(+ first-len 1) second-len 0.5 0
(syntax-local-introduce #'id2)
0 second-len 0.5 1))))]))

(define/hyphen big generator
11)

(+ big-generator big-generator)

After putting this code in the DrRacket window, mouse over the words “big” and
“generator” to see arrows pointing to the individual pieces of the identifier big-
generator . The four 0.5s in the first vector put the arrows on big in the center
of the identifiers; the 0.5 0 and the 0.5 1 in the second vector put the arrows at the
top and bottom center for generator .

35

• The 'sub-range-binding property is expected to match the contract

(or/c (vector/c natural? natural?)
(vector/c natural? natural?

(real-in 0 1) (real-in 0 1)))

and, if it is attached to an identifier then Check Syntax will draw only one of the arrows
that 'sub-range-binding would otherwise indicate should be drawn. Specifically,
if the identifier matches the subrange binder (e.g, it is big-generator in the previous
example) and the 'sub-range-binding property were attached with the vector con-
taining the number 4 (for the start) and 9 (for the span) then Check Syntax will draw
only an arrow to the generator portion of the identifier. Additionally, the arrow will
go to the first 9 characters of the reference, according to its source location.

• The value of the 'mouse-over-tooltips property is expected to be to be a tree of
cons pairs (in any configuration) whose leaves are either ignored or are vectors of the
shape

(vector/c syntax?
exact-nonnegative-integer?
exact-nonnegative-integer?
(or/c string? (-> string?)))

Each vector’s content indicates where to show a tooltip. The first three components are
a syntax object whose syntax-source field indicates which file the tooltip goes in,
the start and end position in the editor where mouseovers will show the tooltip, and the
content of the tooltip. Note that editor positions count from zero, while syntax object
positions count from one, so use sub1 to convert between them. If the tooltip content
is a procedure, this procedure is called by Check Syntax to compute the string used
for the tooltip, as Check Syntax traverses the syntax objects looking for properties.

For example, here’s a macro that shows the span of itself in a tooltip on mouseover:

#lang racket
(define-syntax (char-span stx)

(syntax-case stx ()
[(_ a)
(syntax-property
#'a
'mouse-over-tooltips
(vector
stx
(sub1 (syntax-position stx))
(sub1 (+ (syntax-position stx)

(syntax-span stx)))
(format "this expression\nspans ~a chars"

(syntax-span stx))))]))

(char-span (+ 1 2))

36

• If the syntax property 'identifier-as-keyword is any value except #f and appears
on an identifier, then Check Syntax ignores the identifier, not drawing any arrows to
it.

Changed in version 1.3 of package drracket-core-lib: Looks for 'sub-range-binders on binding identifiers
(not just in expression positions).
Changed in version 1.5: Looks for 'identifier-as-keyword on identifiers.

37

10 Cooperating with Background Check Syntax

DrRacket’s continuous, background check syntax runs each time an edit to the definitions
text happens. In some cases, that expansion process fails, but there is still a well-formed
syntax object that check syntax can use to display information to the user. In order to com-
municate that syntax object to check syntax, send a log message with the name 'online-
check-syntax, e.g.

(define-logger online-check-syntax)
(log-message online-check-syntax-logger

'info
"ignored message"
list-of-syntax-objects)

The fourth argument to log-message should be a list of syntax objects; these are processed
as if they were the result of expansion.

The syntax objects whose syntax-source field does not match the source of the file that is
currently being expanded are ignored. That is, sometimes a macro may log a syntax object to
be used by DrRacket in this fashion, but the macro may not be from the file that DrRacket’s
expanding, but one from one that is required by it; hence this check is in place to skip them.

Note: the identifiers in these objects should be syntax-original? or else they will be
ignored by check syntax.

38

11 Teaching Languages

The teaching language are implemented via the tools interface and thus not part of DrRacket
proper, but one helper library is documented here.

(require lang/htdp-langs-save-file-prefix)
package: htdp-lib

htdp-save-file-prefix : (listof string?)

These strings are used as the prefix in a file saved while using the teaching languages. Each
string is on a separate line in the saved file.

(htdp-file-prefix? ip) Ñ boolean?
ip : input-port?

Determines if the contents of ip is one of the possible prefixes that DrRacket saves at the
beginning of a teaching language file.

In the case that this function returns #t, it consumes the entire prefix from ip (and discards
it). In the case that this function returns #f, it does not consume anything from ip .

39

https://pkgs.racket-lang.org/package/htdp-lib

12 Signatures

drracket:tool^ : signature

This signature includes all of the names in this manual that begin with
drracket: (except these two signatures).

drracket:tool-exports^ : signature

The drracket:tool-exports^ signature contains two names: phase1 and
phase2. After all of the tools are loaded, all of the phase1 functions are called
and then all of the phase2 functions are called. Certain primitives can only be
called during the dynamic extent of those calls.

This mechanism is designed to support DrRacket’s
drracket:language:language<%> extension capabilities. That is, this
mechanism enables two tools to cooperate via new capabilities of languages.
The first phase is used for adding functionality that each language must support
and the second is used for creating instances of languages. As an example,
a tool may require certain specialized language-specific information. It uses
phase1 to extend the drracket:language:language<%> interface and sup-
ply a default implementation of the interface extension. Then, other languages
that are aware of the extension can supply non-default implementations of the
additional functionality.

(phase1) Ñ void?

These functions can be called only in the dynamic extent of a call to phase1
(see above for details).

• drracket:language:extend-language-interface

• drracket:unit:add-to-program-editor-mixin

(phase2) Ñ void?

These functions can be called only in the dynamic extent of a call to phase2
(see above for details).

• drracket:language-configuration:add-language

• drracket:language:get-default-mixin

• drracket:language:get-language-extensions

40

13 drracket:get/extend

(drracket:get/extend:extend-unit-frame
mixin

[before
#:name-for-changes name-for-changes])

Ñ void?
mixin : (make-mixin-contract drracket:unit:frame%)
before : boolean? = #t
name-for-changes : (or/c #f symbol?) = #f

Extends the class that is used for the frame that implements the main DrRacket window.

The before argument controls if the mixin is applied before or after already installed mix-
ins.

If name-for-changes is a symbol and drracket:get/extend:allow-re-extension!
has been called (without a subsequent call to drracket:get/extend:disallow-re-
extension!) then calling this function replaces any earlier mixins that have been added
that have the same name. Otherwise, calling this with the same name twice is an error and
calling it once drracket:get/extend:get-frame has been called is an error.

(drracket:get/extend:get-unit-frame)
Ñ (subclass?/c drracket:unit:frame%)

Returns a class whose objects are used for the DrRacket frames.

Once this function is called, drracket:get/extend:extend-unit-frame raises an error,
disallowing any more extensions.

See also drracket:get/extend:allow-re-extension!.

(drracket:get/extend:extend-tab
mixin

[before
#:name-for-changes name-for-changes])

Ñ void?
mixin : (make-mixin-contract drracket:unit:tab<%>)
before : boolean? = #t
name-for-changes : (or/c #f symbol?) = #f

Like drracket:get/extend:extend-unit-frame, except it extends the class that imple-
ments the tabs in DrRacket. One is created for each tab in a frame (each frame always has
at least one tab, even if the tab bar is not shown).

41

(drracket:get/extend:get-tab)
Ñ (implementation?/c drracket:unit:tab<%>)

Like drracket:get/extend:get-unit-frame, except it returns the class used for tabs.

(drracket:get/extend:extend-definitions-text
mixin

[before
#:name-for-changes name-for-changes])

Ñ void?
mixin : (make-mixin-contract drracket:unit:definitions-text<%>

editor:standard-style-list<%>
editor:info<%>
racket:text<%>
text:all-string-snips<%>
text:file<%>
text:info<%>
text:wide-snip<%>)

before : boolean? = #t
name-for-changes : (or/c #f symbol?) = #f

Like drracket:get/extend:extend-unit-frame, except this text is used in the top win-
dow of DrRacket frames.

(drracket:get/extend:get-definitions-text)
Ñ (and/c (implementation?/c drracket:unit:definitions-text<%>)

(implementation?/c editor:standard-style-list<%>)
(implementation?/c editor:info<%>)
(implementation?/c racket:text<%>)
(implementation?/c text:all-string-snips<%>)
(implementation?/c text:file<%>)
(implementation?/c text:info<%>)
(implementation?/c text:wide-snip<%>))

Like drracket:get/extend:get-unit-frame, except for the text that is used in the top
window of DrRacket frames.

(drracket:get/extend:extend-interactions-text
mixin

[before
#:name-for-changes name-for-changes])

Ñ void?

42

mixin : (make-mixin-contract drracket:rep:text<%>)
before : boolean? = #t
name-for-changes : (or/c #f symbol?) = #f

Like drracket:get/extend:extend-unit-frame, except it extends the class that imple-
ments the the editor in the interactions window.

(drracket:get/extend:get-interactions-text)
Ñ (implementation?/c drracket:rep:text<%>)

Like drracket:get/extend:get-unit-frame except it returns the class that implements
the editor in the interactions window.

(drracket:get/extend:extend-definitions-canvas
mixin

[before
#:name-for-changes name-for-changes])

Ñ void?
mixin : (make-mixin-contract drracket:unit:definitions-canvas%)
before : boolean? = #t
name-for-changes : (or/c #f symbol?) = #f

Like drracket:get/extend:extend-unit-frame, except it extends the class that imple-
ments the definitions window’s editor-canvas%.

(drracket:get/extend:get-definitions-canvas)
Ñ (subclass?/c drracket:unit:definitions-canvas%)

Like drracket:get/extend:get-unit-frame except it returns the class that implements
the definitions window’s editor-canvas%.

(drracket:get/extend:extend-interactions-canvas
mixin

[before
#:name-for-changes name-for-changes])

Ñ void?
mixin : (make-mixin-contract drracket:unit:interactions-canvas%)
before : boolean? = #t
name-for-changes : (or/c #f symbol?) = #f

Like drracket:get/extend:extend-unit-frame, except it extends the class that imple-
ments the interactions window’s editor-canvas%.

43

(drracket:get/extend:get-interactions-canvas)
Ñ (subclass?/c drracket:unit:interactions-canvas%)

Like drracket:get/extend:get-unit-frame except it returns the class that implements
the definitions window’s editor-canvas%.

(drracket:get/extend:disallow-re-extension!) Ñ void?

Once this is called, re-extension of the mixins described in this section is not al-
lowed. This is the default state of mixin extension, but it can be changed by
drracket:get/extend:allow-re-extension!.

(drracket:get/extend:allow-re-extension!) Ñ void?

Once this is called, re-extension of the mixins described in this section are now allowed (see
drracket:get/extend:extend-unit-frame for details of how to effect a re-extension).

This mode is intended to support a faster development cycle, not for production code. Specif-
ically, the issue is that replacing mixins in this manner does not affect any objects that have
already been create and thus there can, in general, be a mixture of old and new objects in a
single DrRacket. If some kind of systematic change to the classes is wanted, consider instead
using the racket/surrogate library.

Once an extension happens, newly created objects will use the new mixins. Mostly, however,
creating a new frame will create a new set of all of the objects that are extended in this
section, so that can be used to experiment more quickly with changes.

44

14 drracket:unit

drracket:unit:tab<%> : interface?
implements: drracket:rep:context<%>

(send a-drracket:unit:tab break-callback) Ñ void?

Specification: This method is called when the break button is clicked and this
tab is the active tab.

Default implementation: By default, breaks any evaluation that may be happen-
ing at this point.

(send a-drracket:unit:tab can-close?) Ñ boolean?

Refine this method with augment.

Specification: This method is called to determine if it is okay to close this tab.

Default implementation: Calls the definitions text’s and interactions text’s can-
close? method.

(send a-drracket:unit:tab disable-evaluation) Ñ void?

Overrides disable-evaluation in drracket:rep:context<%>.

Disables the Run button, and the Run menu item and locks the interactions
window, and the definitions window.

(send a-drracket:unit:tab enable-evaluation) Ñ void?

Overrides enable-evaluation in drracket:rep:context<%>.

Enables the Run button, and the Run menu item and unlocks (via the lock
method) the interactions window and the definitions window.

(send a-drracket:unit:tab get-breakables)
Ñ (or/c thread? false/c)

(or/c custodian? false/c)

Overrides get-breakables in drracket:rep:context<%>.

(send a-drracket:unit:tab get-defs)
Ñ (is-a?/c drracket:unit:definitions-text<%>)

This text is initially the top half of the DrRacket window and contains the users
program.

This text defaults to a text% object, but if you change
drracket:get/extend:extend-definitions-text procedure, it will
use the extended class to create the text.

45

(send a-drracket:unit:tab get-directory)
Ñ (or/c string? false/c)

Overrides get-directory in drracket:rep:context<%>.

This is the directory that the file is saved in, or the directory DrRacket started
up in, if the file has not been saved.

(send a-drracket:unit:tab get-enabled) Ñ boolean?

Indicates if evaluation is currently enabled in this tab. Evaluation is typically
disabled when some evaluation is already running (in another thread).

(send a-drracket:unit:tab get-frame)
Ñ (is-a?/c drracket:unit:frame%)

Returns the frame that this tab is inside.

(send a-drracket:unit:tab get-ints)
Ñ (is-a?/c drracket:rep:text%)

This text is initially the bottom half of the DrRacket window and contains the
users interactions with the REPL.

This text defaults to a drracket:rep:text% object, but if you use the
drracket:get/extend:extend-interactions-text procedure, it will use
the extended class to create the text.

(send a-drracket:unit:tab is-current-tab?) Ñ boolean?

Indicates if this tab is the currently active tab.

(send a-drracket:unit:tab is-running?) Ñ boolean?

Indicates if the running message in the bottom right of DrRacket’s frame should
be “running” or “not running” when this frame is active.

(send a-drracket:unit:tab on-close) Ñ void?

Refine this method with augment.

Specification: This method is called when the tab is closed.

Default implementation: Calls the definitions text’s on-close and interactions
text’s on-close methods.

(send a-drracket:unit:tab reset-offer-kill) Ñ void?

46

Overrides reset-offer-kill in drracket:rep:context<%>.

(send a-drracket:unit:tab set-breakables thread
custodian) Ñ void?

thread : (or/c thread? false/c)
custodian : (or/c custodian? false/c)

Overrides set-breakables in drracket:rep:context<%>.

(send a-drracket:unit:tab add-bkg-running-color id
color
label) Ñ void?

id : symbol?
color : (or/c string? (is-a?/c color%))
label : string?

This method is final, so it cannot be overridden.

Sets the color of the circle in the bottom-right corner of the DrRacket window
to color with the tooltip window that appears over it containing label . If
multiple colors are registered they are all shown.

See also remove-bkg-running-color.

(send a-drracket:unit:tab remove-bkg-running-
color id) Ñ void?

id : symbol?

This method is final, so it cannot be overridden.

Removes the color and label added with id .

See also add-bkg-running-color.

(send a-drracket:unit:tab touched) Ñ void?

This method is final, so it cannot be overridden.

Called by the system to indicate that the tab has just been switched to from
another tab in the same frame (when the frame has the focus) or the frame itself
has come to the front (via on-activate) and the tab is the current tab in that
frame.

This method updates the private state that get-last-touched returns.

(send a-drracket:unit:tab get-last-touched) Ñ flonum?

This method is final, so it cannot be overridden.

Returns the time that this tab was last focused, as counted by current-
inexact-milliseconds.

47

drracket:unit:tab% : class?
superclass: object%
extends: drracket:unit:tab<%>

The base class that implements the tab’s functionality.

(make-object drracket:unit:tab%)
Ñ (is-a?/c drracket:unit:tab%)

(send a-drracket:unit:tab clear-annotations) Ñ void?

Overrides clear-annotations in drracket:rep:context<%>.

Clears any error highlighting; calls clear-annotations.

drracket:unit:program-editor-mixin : (class? . -> . class?)
argument extends/implements: text%

editor:basic<%>

This mixes in the ability to reset the highlighting for error message when the user modifies
the buffer. Use it for editors that have program text where errors can occur.

(send a-drracket:unit:program-editor after-delete start
len)

Ñ void?
start : number
len : number

Augments after-delete in text%.

Calls the inner method.

Resets an error highlighting.

(send a-drracket:unit:program-editor after-insert start
len)

Ñ void?
start : number
len : number

Augments after-insert in text%.

Calls the inner method.

Resets an error highlighting.

48

drracket:unit:interactions-canvas% : class?
superclass: canvas:wide-snip%

(new drracket:unit:interactions-canvas% ...superclass-
args...)

Ñ (is-a?/c drracket:unit:interactions-canvas%)

Passes all arguments to super-init.

drracket:unit:frame% : class?
superclass: (drracket:frame:basics-mixin (drracket:frame:mixin frame:searchable%))
extends: drracket:unit:frame<%>

This frame inserts the Racket and Language menus into the menu bar as it is initialized.

(new drracket:unit:frame% ...superclass-args...)
Ñ (is-a?/c drracket:unit:frame%)

Passes all arguments to super-init.

(send a-drracket:unit:frame add-show-menu-items show-menu)
Ñ void?
show-menu : (is-a?/c menu%)

Overrides add-show-menu-items in drracket:frame:<%>.

Adds the “Show Definitions”, “Show Interactions” and “Show Contour” menu
items.

(send a-drracket:unit:frame break-callback) Ñ void?

Specification: This method is called when the user clicks on the break button or
chooses the break menu item.

Default implementation: Breaks the user’s evaluation started by the Run button
(or possibly a queued callback in the user’s eventspace).

(send a-drracket:unit:frame change-to-file file) Ñ void?
file : string?

Loads this file into this already created frame. In normal DrRacket use, this
method is only called if this is the first frame opened and no editing has oc-
curred. It should be safe to call this at anytime, however.

49

(send a-drracket:unit:frame find-matching-tab p)
Ñ (or/c (is-a?/c drracket:unit:tab%) #f)
p : path-string?

Returns the tab that is currently editing p , if there is one in this frame. Returns
#f otherwise.

(send a-drracket:unit:frame change-to-tab tab) Ñ void?
tab : (is-a?/c drracket:unit:tab%)

Makes tab visible in this frame.

(send a-drracket:unit:frame edit-menu:between-select-all-
and-find edit-menu)

Ñ void?
edit-menu : (is-a?/c menu%)

Overrides edit-menu:between-select-all-and-find in
frame:standard-menus<%>.

Adds the "Split" and "Collapse" menu items.

(send a-drracket:unit:frame execute-callback) Ñ void?

Specification: This method is called when the user clicks on the Run button or
chooses the Run menu item.

Default implementation: It calls ensure-rep-shown and then it calls
evaluate-from-port passing in the result of get-interactions-text and
its entire range, unless the first two characters are #! in which case, it skips the
first line.

(send a-drracket:unit:frame file-menu:between-open-and-
revert file-menu)

Ñ void?
file-menu : (is-a?/c menu%)

Overrides file-menu:between-open-and-revert in
drracket:frame:basics-mixin.

Calls the super method and adds a separator-menu-item% to the menu.

(send a-drracket:unit:frame file-menu:between-print-and-
close file-menu)

Ñ void?
file-menu : (is-a?/c menu%)

Overrides file-menu:between-print-and-close in
drracket:frame:basics-mixin.

Adds a menu item for printing the interactions.

50

(send a-drracket:unit:frame file-menu:between-save-as-and-
print file-menu)

Ñ void?
file-menu : (is-a?/c menu%)

Overrides file-menu:between-save-as-and-print in frame:standard-
menus<%>.

Adds a submenu that contains various save options:

• save definitions as text

• save interactions

• save interactions as

• save interactions as text

and adds a separator item.

(send a-drracket:unit:frame file-menu:print-string) Ñ void?

Overrides file-menu:print-string in frame:standard-menus<%>.

returns "Definitions"

(send a-drracket:unit:frame file-menu:save-as-
string) Ñ void?

Overrides file-menu:save-as-string in frame:standard-menus<%>.

Returns "Definitions".

(send a-drracket:unit:frame file-menu:save-string) Ñ void?

Overrides file-menu:save-string in frame:standard-menus<%>.

Returns "Definitions".

(send a-drracket:unit:frame get-break-button)
Ñ (is-a?/c button%)

Returns the break button. Mostly used for test suites.

(send a-drracket:unit:frame get-button-panel)
Ñ (is-a?/c horizontal-panel%)

This panel goes along the top of the DrRacket window and has buttons for im-
portant actions the user frequently executes.

A tool can add a button to this panel to make some new functionality easily
accessible to the user.

See also mrlib’s switchable-button%.

51

(send a-drracket:unit:frame get-canvas)
Ñ (is-a?/c editor-canvas%)

Overrides get-canvas in frame:editor<%>.

Returns the result of get-definitions-canvas.

(send a-drracket:unit:frame get-canvas%) Ñ (is-
a?/c canvas%)

Overrides get-canvas% in frame:editor<%>.

Returns the result of drracket:get/extend:get-definitions-canvas.

(send a-drracket:unit:frame get-definitions/interactions-
panel-parent)

Ñ (is-a?/c vertical-panel%)
(send a-drracket:unit:frame get-definitions/interactions-panel-parent)

Ñ void?

Specification: This method is provided so that tools can add area-
container<%>s to the DrRacket frame. Override this method so that it returns
a child of the super-classes’s result and insert new children in between.

Default implementation: First case:

Returns the result of get-area-container

Second case:

(send a-drracket:unit:frame get-editor) Ñ (is-
a?/c editor<%>)

Overrides get-editor in frame:editor<%>.

Returns the result of get-definitions-text.

(send a-drracket:unit:frame get-editor%) Ñ (is-
a?/c editor<%>)

Overrides get-editor% in frame:editor<%>.

Returns the result of drracket:get/extend:get-definitions-text.

(send a-drracket:unit:frame get-execute-button)
Ñ (is-a?/c button%)

Returns the Run button. Mostly used for test suites.

(send a-drracket:unit:frame get-text-to-search)
Ñ (is-a?/c text:searching%)

52

Overrides get-text-to-search in frame:searchable-text-mixin.

returns the text that is active in the last canvas passed to make-searchable

(send a-drracket:unit:frame make-searchable canvas) Ñ void?
canvas : (is-a?/c drracket:unit:interactions-canvas%)

stores the canvas, until get-text-to-search is called.

(send a-drracket:unit:frame on-close) Ñ void?

Augments on-close in frame:standard-menus<%>.

Sends the result of get-interactions-text the shutdown and on-close
methods.

Always calls the inner method.

(send a-drracket:unit:frame on-size) Ñ void?

Overrides on-size in window<%>.

Updates the preferences for the window width and height so next time a Dr-
Racket window is opened, it will be this width and height.

(send a-drracket:unit:frame still-untouched?) Ñ boolean?

Specification: determines if the definitions window has not been modified. Used
in conjunction with change-to-file.

Default implementation: Returns #t if the buffer is empty, it has not been saved
and it is unmodified.

(send a-drracket:unit:frame update-save-button modified?)
Ñ void?
modified? : any/c

This method hides or shows the save button, based on the modified? argument.

If the save button has not been created yet, it remembers the modified? argu-
ment as an initial visibility for the save button.

This method is called by the set-modified method.

(send a-drracket:unit:frame update-save-
message name) Ñ void?

name : string?

Updates the save message on the DrRacket frame. This method is called by the
set-filename method.

(send a-drracket:unit:frame update-shown) Ñ void?

53

Overrides update-shown in drracket:frame:<%>.

Updates the interactions, definitions, and contour menu items based on the con-
tents of the windows.

drracket:unit:frame<%> : interface?
implements: drracket:frame:<%>

(send a-drracket:unit:frame get-language-menu)
Ñ (is-a?/c menu%)

Returns the language-specific menu. This menu is called the Racket menu in the
Racket language but is, in general, controlled by the 'drscheme:language-
menu-title capability (see drracket:language:register-capability
for details on capabilities).

(send a-drracket:unit:frame ensure-defs-shown) Ñ void?

Ensures that the definitions window is visible.

(send a-drracket:unit:frame ensure-rep-hidden) Ñ void?

Makes sure the rep is hidden (by making the definitions window visible).

(send a-drracket:unit:frame ensure-rep-shown rep) Ñ void?
rep : (is-a?/c drracket:rep:text<%>)

This method is called to force the rep window to be visible when, for example,
an error message is put into the rep. Also ensures that the appropriate tab is
visible, if necessary.

(send a-drracket:unit:frame get-current-tab)
Ñ (is-a?/c drracket:unit:tab<%>)

Returns the currently active tab.

(send a-drracket:unit:frame get-tab-filename i) Ñ string?
i : (<=/c 0 (get-tab-count))

Returns a string naming the file in the i th tab or, if the file is not saved, some-
thing like “Untitled”.

(send a-drracket:unit:frame get-tab-count)
Ñ exact-positive-integer?

54

Returns the number of open tabs in the frame.

(send a-drracket:unit:frame open-in-new-tab
filename

[#:start-pos start-pos
#:end-pos end-pos])

Ñ void?
filename : (or/c path-string? #f)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? 'same) = 'same

Opens a new tab in this frame. If filename is a path-string?, load that
file in the definitions window of the new tab. If start-pos and end-pos are
provided, call the tab’s definition’s window’s set-position with them.

(send a-drracket:unit:frame create-new-tab
[filename
#:start-pos start-pos
#:end-pos end-pos])

Ñ void?
filename : (or/c path-string? #f) = #f
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? 'same) = 'same

Creates a new tab. If filename is not #f, behaves like open-in-new-tab.

(send a-drracket:unit:frame after-create-new-tab tab
filename
start-pos
end-pos)

Ñ void?
tab : (is-a?/c drracket:unit:tab<%>)
filename : (or/c path-string? #f)
start-pos : exact-nonnegative-integer?
end-pos : (or/c exact-nonnegative-integer? 'same)

Refine this method with augment.

Specification: Called after a tab is created, possibly with a file loaded.

Default implementation: Does nothing.

(send a-drracket:unit:frame reopen-closed-tab) Ñ void?

Opens the most recently closed tabs.

(send a-drracket:unit:frame next-tab) Ñ void?

55

Switches to the next tab.

(send a-drracket:unit:frame prev-tab) Ñ void?

Switches to the previous tab.

(send a-drracket:unit:frame move-current-tab-right) Ñ void?

Swaps the current tab with its right-hand neighbor.

(send a-drracket:unit:frame move-current-tab-left) Ñ void?

Swaps the current tab with its left-hand neighbor.

(send a-drracket:unit:frame reorder-tabs tab-
order) Ñ void?

tab-order : (listof exact-nonnegative-integer?)

Reorders the tabs according to tab-order .

Each element in tab-order identifies a tab by its position in the list get-tabs,
and the position of this element identifies the new position of the tab.

For example, considering that there are only 3 tabs open, (send a-drracket-
frame reorder-tabs '(2 1 0)) swaps the first and last tabs, leaving the
middle one unchanged.

(send a-drracket:unit:frame close-current-tab) Ñ void?

This method is final, so it cannot be overridden.

Closes the current tab, making some other tab visible. If there is only one tab
open, this method does nothing.

(send a-drracket:unit:frame close-ith-tab i) Ñ void?
i : natural?

This method is final, so it cannot be overridden.

Closes the tab located at position i in the list returned by get-tabs. If there is
only one tab open, this method does nothing.

Added in version 1.9 of package drracket-core-lib.

(send a-drracket:unit:frame close-given-tab tab) Ñ void?
tab : (is-a?/c drracket:unit:tab<%>)

This method is final, so it cannot be overridden.

Closes tab . If tab is the only open tab, this method does nothing.

Added in version 1.9 of package drracket-core-lib.

56

(send a-drracket:unit:frame get-definitions-canvas)
Ñ (is-a?/c drracket:unit:definitions-canvas%)

This canvas is the canvas containing the get-definitions-text. It is initially
the top half of the DrRacket window.

This canvas defaults to a drracket:unit:definitions-canvas% object, but
if you change the drracket:get/extend:extend-definitions-canvas
procedure, it will use the class in the parameter to create the canvas.

(send a-drracket:unit:frame get-definitions-text)
Ñ (is-a?/c drracket:unit:definitions-text%)

Calls result of get-current-tab’s get-defs method.

(send a-drracket:unit:frame get-insert-menu) Ñ (is-
a?/c menu%)

Specification: Returns the Insert menu.

(send a-drracket:unit:frame get-interactions-canvas)
Ñ (instanceof (derivedfrom drracket:unit:interactions-canvas%))

This canvas is the canvas containing the get-interactions-text. It is ini-
tially the bottom half of the DrRacket window.

This canvas defaults to a drracket:unit:interactions-canvas% object,
but if you use the drracket:get/extend:extend-interactions-canvas
procedure, it will use the extended class to create the canvas.

(send a-drracket:unit:frame get-interactions-text)
Ñ (is-a?/c drracket:rep:text%)

Calls result of get-current-tab’s get-ints method.

(send a-drracket:unit:frame get-tabs)
Ñ (listof (is-a?/c drracket:unit:tab<%>))

Returns the list of tabs in this frame.

(send a-drracket:unit:frame on-tab-change from-tab
to-tab) Ñ void?

from-tab : (is-a?/c drracket:unit:tab<%>)
to-tab : (is-a?/c drracket:unit:tab<%>)

57

Refine this method with augment.

Specification: Called after a new tab becomes the selected tab in the frame.

Default implementation: The from-tab argument is the previously selected
tab, and the to-tab argument is the newly selected tab.

(send a-drracket:unit:frame register-capability-menu-item
key
menu)

Ñ void?
key : symbol
menu : (is-a? menu%)

Registers the menu item that was most recently added as being controlled by the
capability key . This means that the (boolean) value of the capability determines
if the menu item is present in the menu (the capability is checked when the
menus are clicked on).

This assumes that the menu items in this menu are not moved around, except by
the this capability. If they are, things can go funny (i.e., no good checks are in
place).

Note that the capability must be registered separately, via
drracket:language:register-capability.

(send a-drracket:unit:frame register-toolbar-button
tb

[#:number num])
Ñ void?
tb : (is-a?/c switchable-button%)
num : (or/c #f real?) = #f

Registers the toolbar button tb .

The num argument controls the ordering of tb with respect to other toolbar
buttons. If it is #f, then a number one smaller than the currently smallest number
is used.

The buttons are sorted by their numbers, from left to right in horizontal mode
and from top to bottom in vertical mode. If buttons are in sub-panels they can-
not, in general, be sorted entirely by number without changing the panel struc-
ture, but when a sub-panel appears as a sibling of some toolbar buttons, the sort-
ing routine looks for the smallest number appearing in a button in the sub-panel,
and uses that number when sorting the panel that appears with the buttons.

A number of buttons already come with numbers: the Stop button’s number is
101, the Run button’s number is 100, the Scribble PDF button’s number is 99,
the Scribble HTML button’s number is 98, the Macro Stepper button’s number
is 70, the Debug button’s number is 60, the Stepper button’s number is 59, and
the Check Syntax button’s number is 50.

58

All three are children of the panel returned by get-button-panel.

Registration is required so that the toolbar buttons properly switch orientation
when the toolbar’s position is moved and the ordering via the number argument
is preserved. See also sort-toolbar-buttons-panel.

(send a-drracket:unit:frame register-toolbar-buttons
tbs

[#:numbers nums])
Ñ void?
tbs : (listof (is-a?/c switchable-button%))
nums : (listof (or/c real? #f)) = (make-list (length tbs) #f)

Simultaneously registers the toolbar buttons tbs .

See also register-toolbar-button.

(send a-drracket:unit:frame unregister-toolbar-button tb)
Ñ void?
tb : (is-a?/c switchable-button%)

Unregisters the toolbar button tb . Use this method to ensure that the button is
not referenced by this frame and thus can be gc’d.

(send a-drracket:unit:frame sort-toolbar-buttons-panel)
Ñ void?

Sorts the children of get-button-panel, according to the number argument
passed to register-toolbar-button.

drracket:unit:definitions-text<%> : interface?

This interface is implemented by the definitions text.

(send a-drracket:unit:definitions-text after-set-next-
settings language-settings)

Ñ void?
language-settings : language-settings

Refine this method with augment.

Specification: Called when the next settings changes. See also get-next-
settings.

Default implementation:

59

(send a-drracket:unit:definitions-text begin-metadata-
changes)

Ñ void?

Augment this method to be notified when DrRacket is changing the buffer to
insert metadata. The metadata is only inserted during saving, so tools that track
changes to DrRacket will need to ignore changes that occur after this method is
called, and before end-metadata-changes is called.

A call to begin-metadata-changes will always be followed with a call to
end-metadata-changes (ie, the calls cannot be nested).

(send a-drracket:unit:definitions-text end-metadata-changes)
Ñ void?

Called when the changes to insert metadata are done, and the editor is back to
its state at the time of the call to begin-metadata-changes.

A call to begin-metadata-changes will always be followed with a call to
end-metadata-changes (ie, the calls cannot be nested).

(send a-drracket:unit:definitions-text get-next-settings)
Ñ language-settings

This method returns the language-settings that will be used when the user next
clicks Run in this DrRacket window.

(send a-drracket:unit:definitions-text get-tab)
Ñ (is-a?/c drracket:unit:tab%)

Returns the editor’s enclosing tab.

(send a-drracket:unit:definitions-text set-needs-execution-
message msg)

Ñ void?
msg : string?

Specification: This method, when called, puts this DrRacket window in a state
such that interactions submitted to the REPL will trigger a yellow warning mes-
sage. The state is reset when the program is next Run.

Default implementation: Records msg and uses it the next time the user submits
an interaction (unless the Runs first).

(send a-drracket:unit:definitions-text set-next-settings
language-settings

[update-prefs?])
Ñ void?
language-settings : language-settings
update-prefs? : any/c = #t

60

Changes the language settings for this window. If update-prefs? is a true
value, the preference is changed, which affects newly created windows.

See also after-set-next-settings and get-next-settings.

(send a-drracket:unit:definitions-text set-filename
filename

[temporary?])
Ñ void?
filename : (or/c path-string? #f)
temporary? : any/c = #f

Overrides ămethod not foundą.

The class that is the result of (get-drracket:unit:definitions-text%)
overrides this method and calls update-save-message.

(send a-drracket:unit:definitions-text set-
modified modified?)

Ñ void?
modified? : any/c

Overrides ămethod not foundą.

The class that is the result of (get-drracket:unit:definitions-text%)
overrides this method and calls update-save-button.

drracket:unit:definitions-canvas% : class?
superclass: editor-canvas%

Initializes the visibility of the save button.

(drracket:unit:get-definitions-text%)
Ñ (and/c (instanceof/c racket:text<%>)

(instanceof/c text:info%)
(implementation?/c drracket:unit:definitions-text<%>))

Returns the class used to implement the definitions text in the DrRacket frame. Its result
mixes in drracket:unit:program-editor-mixin.

(drracket:unit:get-program-editor-mixin)
Ñ ((subclass?/c text%) . -> . (subclass?/c text%))

61

Returns a mixin that must be mixed in to any text% object that might contain program text
(and thus can be in the source field of some syntax object).

See also drracket:unit:add-to-program-editor-mixin.

(drracket:unit:add-to-program-editor-mixin mixin) Ñ void?
mixin : ((subclass?/c text%) . -> . (subclass?/c text%))

This function can only be called in phase 1 (see §2 “Implementing DrRacket Plugins” for
details).

Adds mixin to the result of drracket:unit:get-program-editor-mixin.

(drracket:unit:open-drscheme-window [filename
#:show? show?])

Ñ (is-a?/c drracket:unit:frame%)
filename : (or/c string? #f) = #f
show? : boolean? = #t

Opens a DrRacket frame that displays filename , or, if filename is #f, an empty file.

If show? is #t, then the show is not invoked before the function returns; otherwise it is.

(drracket:unit:add-search-help-desk-menu-item text
menu
position

[add-sep]) Ñ void?
text : (is-a?/c text%)
menu : (is-a?/c menu-item-container<%>)
position : exact-nonnegative-integer?
add-sep : (-> any) = void

Adds a menu item to menu that searches in Help Desk for the word around position in
text .

If there is only whitespace around position , then no menu-item%s are added, and add-
sep is not called. If there is something to be added, then add-sep is called before the menu
item is created.

(struct drracket:unit:teachpack-callbacks (get-names
add
remove
remove-all)

62

#:extra-constructor-name
make-drracket:unit:teachpack-callbacks)

get-names : (-> any/c (listof string?))
add : (-> any/c path-string? any/c)
remove : (-> path-string? any/c any/c)
remove-all : (-> any/c any/c)

Holds callbacks for teachpack operations. DrRacket invokes these functions in response to
GUI operations being triggered.

Each of the any/cs that appear in the field contracts are actually the settings of a language.

The get-names field returns the names of the teachpacks in the given settings; add returns
a new settings that includes the path-string? argument as a new teachpack; remove re-
moves the given teachpack and remove-all removes them all.

drracket:unit:struct:teachpack-callbacks : struct-type?

This is an alias for struct:drracket:unit:teachpack-callbacks.

drracket:unit:make-teachpack-callbacks : procedure?

This is an alias for make-drracket:unit:teachpack-callbacks.

(drracket:unit:find-symbol text pos) Ñ string?
text : (is-a?/c text%)
pos : exact-nonnegative-integer?

returns a string that corresponds to the a symbol surrounding pos (in text).

This is intended to be used with the “f1” keybinding for searching in the documentation, so
the result is not always a symbol, but instead a best effort to find something that is likely to
be useful to search for around a point in the text .

63

15 drracket:language

drracket:language:simple-module-based-language<%> : interface?

This interface represents the bare essentials when defining a module-based language.
Use the drracket:language:simple-module-based-language->module-based-
language-mixin mixin to construct an implementation of drracket:language:module-
based-language<%> from an implementation of this interface.

The class drracket:language:simple-module-based-language% provides an imple-
mentation of this interface.

(send a-drracket:language:simple-module-based-language get-
language-numbers)

Ñ (cons/c number? (listof number?))

Returns a list of numbers, whose length must be the same as the result of get-
language-position. Each number indicates the sorted order of the language
positions in the language dialog.

(send a-drracket:language:simple-module-based-language get-
language-position)

Ñ (cons/c string? (listof string?))

This method is the same as get-language-position.

(send a-drracket:language:simple-module-based-language get-
module)

Ñ s-expression

This method specifies the module that defines the language.

This method replaces front-end/complete-program and front-
end/interaction.

The result is expected to be the module (its initial require) except as value, ie
quoted.

(send a-drracket:language:simple-module-based-language get-
one-line-summary)

Ñ (or/c #f string?)

The result of this method is shown in a tooltip in the language dialog when the
user mouses over this language. If the result is #f, no tooltip is shown.

64

(send a-drracket:language:simple-module-based-language get-
reader)

Ñ (->* () (any/c input-port?) (or/c syntax? eof-object?))

This method must return a procedure that is used to read syntax from a port in
the same manner as read-syntax. It is used as the reader for this language.

drracket:language:simple-module-based-language% : class?
superclass: object%
extends: drracket:language:simple-module-based-language<%>

(make-object drracket:language:simple-module-based-language%
module
language-position

[language-numbers
one-line-summary
documentation-reference]
reader
language-id)

Ñ (is-a?/c drracket:language:simple-module-based-language%)
module : s-expression
language-position : (cons/c string? (listof string?))
language-numbers : (cons/c number? (listof number?))

= (map (lambda (x) 0) language-position)
one-line-summary : string? = ""
documentation-reference : (or/c #f something-else) = #f
reader : (->* () (any/c input-port?) (or/c syntax? eof-object?))
language-id : string?

The init args are used as the results of the get-module and get-language-
position methods.

(send a-drracket:language:simple-module-based-language get-
language-numbers)

Ñ (cons/c number? (listof number?))

Overrides get-language-numbers in drracket:language:simple-
module-based-language<%>.

returns the corresponding init arg.

(send a-drracket:language:simple-module-based-language get-
language-position)

Ñ s-expression

65

Overrides get-language-position in drracket:language:simple-
module-based-language<%>.

returns the corresponding init arg.

(send a-drracket:language:simple-module-based-language get-
module)

Ñ (cons/c string? (listof string?))

Overrides get-module in drracket:language:simple-module-based-
language<%>.

returns the corresponding init arg.

(send a-drracket:language:simple-module-based-language get-
one-line-summary)

Ñ string?

Overrides get-one-line-summary in drracket:language:simple-
module-based-language<%>.

returns the corresponding initialization argument.

(send a-drracket:language:simple-module-based-language get-
reader)

Ñ (->* () (any/c input-port?) (or/c syntax? eof-object?))

Overrides get-reader in drracket:language:simple-module-based-
language<%>.

returns the corresponding init arg.

drracket:language:simple-module-based-language->module-based-
language-mixin : (class? . -> . class?)

argument extends/implements: drracket:language:simple-module-based-language<%>
result implements: drracket:language:module-based-language<%>

This mixin uses a struct definition for its settings:

(define-struct drracket:language:simple-settings
(case-sensitive ; boolean?
printing-style ; (or/c 'constructor 'quasiquote 'write 'print)
fraction-style ; (or/c 'mixed-fraction 'mixed-fraction-e

; 'repeating-decimal 'repeating-decimal-e)
show-sharing ; boolean?
insert-newlines ; boolean?
annotations)) ; (or/c 'none 'debug 'debug/profile

; 'test-coverage)

66

The settings in this structure reflect the settings show in the language configuration dialog
for languages constructed with this mixin. The first controls the input for the language.
The rest specify printing controls for the language. The style 'print is the default style,
as normally used in the Racket REPL. The sharing field determines if cycles and sharing
in values are displayed when the value is rendered. The insert newlines field determines
if values in the repl are formatted with write style-line printouts, or with pretty-print
multi-line printouts.

(send a-drracket:language:simple-module-based-language-
>module-based-language config-panel)

Ñ (case-> (-> settings) (settings -> void?))

Constructs a configuration panel that lets the user configure all of the settings
for this language.

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language default-settings)

Ñ settings

The defaults for the settings are

• case-sensitive is #f

• printing-style is 'write

• show-sharing is #f

• insert-newlines is #t

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixins settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language default-settings?)

Ñ boolean?

(send a-drracket:language:simple-module-based-language-
>module-based-language get-init-code settings)

Ñ sexpression
settings : settings

67

Creates an s-expression of a module that sets the current-inspector, read-
case-sensitive, and error-value->string parameters. Additionally, it
may load errortrace, if debugging is enabled.

(send a-drracket:language:simple-module-based-language-
>module-based-language get-transformer-module)

Ñ s-expression

Returns 'mzscheme.
(send a-drracket:language:simple-module-based-language-
>module-based-language marshall-settings)

Ñ writable

Constructs a vector from the structure.

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixins settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language on-execute)

Ñ void?

Sets the case sensitivity of the language.

Sets the structure inspector to a new inspector, saving the original inspector for
use during printing.

Sets the global-port-print-handler to print based on the settings struc-
ture, but without any newlines.

If debugging is enabled, it sets the current-eval handler to one that annotates
each evaluated program with debugging annotations. Additionally, it sets the
error-display-handler to show the debugging annotations when an error is
raised.

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language render-value)

Ñ void?

Translates the value to a string, based on the settings.

Restores a super struct inspector to render structs properly. (See also on-
execute)

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

68

(send a-drracket:language:simple-module-based-language-
>module-based-language render-value/format)

Ñ void?

Translates the value to a string, based on the settings.

Restores a super struct inspector to render structs properly. (See also on-
execute.)

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language unmarshall-settings)

Ñ (or/c #f settings)

Builds a settings structure from the vector, or #f if the vector doesn’t match the
types of the structure.

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language use-mred-launcher)

Ñ boolean?

Returns #t.

drracket:language:module-based-language<%> : interface?

This interface is for languages that can be implemented with Racket modules.

Use the drracket:language:module-based-language->language-mixin mixin to
construct an implementation of drracket:language:language<%> from an implemen-
tation of this interface.

(send a-drracket:language:module-based-language config-
panel parent)

Ñ (case-> (-> settings) (settings -> void?))
parent : (is-a?/c panel%)

This method is the same as config-panel.

69

(send a-drracket:language:module-based-language default-
settings)

Ñ settings

This method is the same as default-settings.

(send a-drracket:language:module-based-language default-
settings? settings)

Ñ boolean?
settings : settings

This method is the same as default-settings?.

(send a-drracket:language:module-based-language get-init-
code settings)

Ñ sexp
settings : settings

Returns a module in sexpression form that is used for creating executables. The
module must provide a thunk, called init-code.

When either a stand-alone executable or a launcher is created, the module is
required, and init-code is invoked. This procedure is expected to set up the
environment, based on the settings.

(send a-drracket:language:module-based-language get-
language-numbers)

Ñ (cons/c number? (listof number?))

This method is the same as get-language-numbers.

(send a-drracket:language:module-based-language get-
language-position)

Ñ (cons/c string? (listof string?))

This method is the same as get-language-position.

(send a-drracket:language:module-based-language get-module)
Ñ s-expression

This method specifies the module that defines the language. It is used to initial-
ize the user’s namespace.

The result is expected to be the module (its initial require) except as value, ie
quoted.

See also get-transformer-module.

70

(send a-drracket:language:module-based-language get-one-
line-summary)

Ñ string?

The result of this method is shown in the language dialog when the user selects
this language.

(send a-drracket:language:module-based-language get-reader)
Ñ (->* () (any/c input-port?) (or/c syntax? eof-object?))

This method must return a procedure that is used to read syntax from a port in
the same manner as read-syntax. It is used as the reader for this language.

(send a-drracket:language:module-based-language get-
transformer-module)

Ñ (or/c quoted-module-path #f)

This method specifies the module that defines the transformation language. It is
used to initialize the transformer portion of the user’s namespace.

The result is expected to be the module (its initial require) except as value, i.e.,
quoted or #f.

If the result is #f, no module is required into the transformer part of the names-
pace.

See also get-module.

(send a-drracket:language:module-based-language marshall-
settings settings)

Ñ writable
settings : settings

This method is the same as marshall-settings.

(send a-drracket:language:module-based-language on-execute
settings
run-on-user-thread)

Ñ void?
settings : settings
run-on-user-thread : ((-> void?) -> void?)

This method is the same as on-execute.

(send a-drracket:language:module-based-language render-value
value
settings
port)

71

Ñ void?
value : TST
settings : settings
port : port?

This method is the same as render-value.

(send a-drracket:language:module-based-language render-value/format
value
settings
port
width)

Ñ void?
value : TST
settings : settings
port : port?
width : (or/c number? 'infinity)

This method is the same as render-value/format.
(send a-drracket:language:module-based-language unmarshall-
settings input)

Ñ (or/c settings #f)
input : writable

This method is the same as unmarshall-settings.

(send a-drracket:language:module-based-language use-mred-
launcher)

Ñ boolean?

This method is called when an executable is created to determine if the exe-
cutable should use the GRacket or the Racket binary.

(send a-drracket:language:module-based-language use-
namespace-require/copy?)

Ñ boolean?

Specification: The result of this method controls how the module is attached
to the user’s namespace. If the method returns #t, the Racket primitive
namespace-require/copy is used and if it returns #f, namespace-require
is used. Default implementation: Returns #f by default.

drracket:language:module-based-language->language-mixin : (class? . ->
. class?)

argument extends/implements: drracket:language:module-based-language<%>
result implements: drracket:language:language<%>

72

(send a-drracket:language:module-based-language-
>language front-end/complete-program)

Ñ (-> (or/c sexp/c syntax? eof-object?))

Reads a syntax object, from input. Does not use settings.

For languages that use these mixins, there is no difference between this method
and front-end/interaction.

(send a-drracket:language:module-based-language-
>language front-end/interaction)

Ñ (-> (or/c sexp/c syntax? eof-object?))

Reads a syntax object, from input. Does not use settings.

For languages that use these mixins, there is no difference between this method
and front-end/complete-program.

(send a-drracket:language:module-based-language-
>language get-language-name)

Ñ string?

Returns the last element of the list returned by get-language-position.

(send a-drracket:language:module-based-language-
>language on-execute)

Ñ void?

Overrides on-execute in drracket:language:module-based-
language<%>.

Calls the super method.

Uses namespace-require to install the result of get-module and Uses
namespace-require combined with for-syntax to install the result of get-
transformer-module into the user’s namespace.

drracket:language:language<%> : interface?

Implementations of this interface are languages that DrRacket supports.

See §3 “Adding Languages to DrRacket” for an overview of adding languages to DrRacket.

(send a-drracket:language:language capability-
value key) Ñ any

key : symbol?

73

Specification: Returns the language-specific value for some capability. See
also drracket:language:register-capability. Default implementation:
By default, returns the value from: drracket:language:get-capability-
default.

(send a-drracket:language:language config-panel parent)
Ñ (case-> (-> settings) (settings -> void?))
parent : (is-a?/c panel%)

This method used by the language configuration dialog to construct the “details”
panel for this language. It accepts a parent panel and returns a get/set function
that either updates the GUI to the argument or returns the settings for the current
GUI.

(send a-drracket:language:language create-executable
settings
parent
program-filename)

Ñ void?
settings : settings
parent : (or/c (is-a?/c dialog%) (is-a?/c frame%))
program-filename : string?

This method creates an executable in the given language. The program-
filename is the name of the program to store in the executable and
executable-filename is the name of a file where the executable goes.

See also drracket:language:create-module-based-stand-alone-
executable and drracket:language:create-module-based-launcher.

(send a-drracket:language:language default-settings)
Ñ settings

Specifies the default settings for this language.

(send a-drracket:language:language default-
settings? settings)

Ñ boolean?
settings : settings

Return #t if the input settings matches the default settings obtained via
default-settings.

(send a-drracket:language:language first-opened settings)
Ñ void?
settings : settings

74

This method is called after the language is initialized, but no program has yet
been run. It is called from the user’s eventspace’s main thread.

See also initialize-console.

Calling this method should not escape. DrRacket calls this method in a param-
eterize where the error-escape-handler is set to an escaping continuation
that continues initializing the interactions window. Thus, raising an exception
will report the error in the user’s interactions window as if this were a bug in
the user’s program. Escaping in any other way, however, can cause DrRacket to
fail to start up.

Also, IO system will deadlock if the first-opened method does IO on the
user’s IO ports, so the calling context of first-opened sets the current-
output-port and current-error-port to ports that just collect all of the IO
that happened and then replay it later in the initialization of the user’s program.

Contrary to the method contract spec, DrRacket will also invoke this method if it
has zero arguments, passing nothing; the zero argument version is for backwards
compatibility and is not recommended.

(send a-drracket:language:language front-end/complete-program
port
settings)

Ñ (-> (or/c sexp/c syntax? eof-object?))
port : port?
settings : settings

front-end/complete-program method reads and parses a program in the
language. The port argument contains all of the data to be read (until eof) and
the name of the port (obtained via object-name) is a value representing the
source of the program (typically an editor, but may also be a string naming a
file or some other value). The settings argument is the current settings for
the language.

The front-end/complete-program method is expected to return a thunk that
is called repeatedly to get all of the expressions in the program. When all ex-
pressions have been read, the thunk is expected to return eof.

This method is only called for programs in the definitions window. Notably, it
is not called for programs that are loaded or evaled. See current-load and
current-eval for those.

This method is expected to raise an appropriate exception if the program is
malformed, eg an exn:syntax or exn:read.

This is called on the user’s thread, as is the thunk it returns.

Implementations of this method should not return fully expanded expressions,
since there are two forms of expansion, using either expand or expand-top-
level-with-compile-time-evals and the use of the expanded code dictates
which applies.

75

See also front-end/interaction and front-end/finished-complete-
program.

(send a-drracket:language:language front-end/finished-
complete-program settings)

Ñ any
settings : settings

This method is called when Run is clicked, but only after front-
end/complete-program has been called. Specifically, front-
end/complete-program is first called to get a thunk that reads from
the program. That thunk is called some number of times, eventually returning
eof, or raising an exception. Then, this method is called.

This method is called on the user’s main eventspace thread, and without a
prompt or other control delimiter. It must return without raising an error, or
else the DrRacket window will be wedged.

(send a-drracket:language:language front-end/interaction
port
settings)

Ñ (-> (or/c sexp/c syntax? eof-object?))
port : input-port?
settings : settings

This method is just like front-end/complete-program except that it is called
with program fragments, for example the expressions entered in the interactions
window. It is also used in other contexts by tools to expand single expressions.

See also front-end/finished-complete-program.

(send a-drracket:language:language get-comment-character)
Ñ string? char?

Returns text to be used for the “Insert Large Letters” menu item in DrRacket.
The first result is a prefix to be placed at the beginning of each line and the
second result is a character to be used for each pixel in the letters.

(send a-drracket:language:language get-language-name)
Ñ string?

Returns the name of the language, as shown in the REPL when executing pro-
grams in the language and in the bottom left of the DrRacket window.

(send a-drracket:language:language get-language-numbers)
Ñ (cons/c number? (listof number?))

76

This method is used in a manner analogous to get-language-position.

Each element in the list indicates how the names at that point in dialog will be
sorted. Names with lower numbers appear first. If two languages are added
to DrRacket with the same strings (as given by the get-language-position
method) the corresponding numbers returned by this method must be the same.
Additionally, no two languages can have the same set of numbers.

(Note: this method should always return the same result, for the same language.)

(send a-drracket:language:language get-language-position)
Ñ (cons/c string? (listof string?))

This method returns a list of strings that is used to organize this language with
the other languages. Each entry in that list is a category or subcategory of the
language and the last entry in the list is the name of the language itself. In the
language dialog, each element in the list except for the last will be a nested turn
down triangle on the left of the dialog. The final entry will be the name that
the user can choose to select this language. Names that are the same will be
combined into the same turndown entry.

For example, if one language’s position is:

(list "General Category" "Specific Category" "My Lan-
guage")

and another’s is:

(list "General Category" "Specific Category" "My Other
Language")

The language dialog will collapse the first two elements in the list, resulting in
only a pair of nested turn-down triangles, not parallel pairs of nested turn-down
triangles.

(send a-drracket:language:language get-language-url)
Ñ (or/c string? #f)

Specification: Returns a url for the language. Default implementation: If the
result isn’t #f, the name of the language is clickable in the interactions window
and clicking takes you to this url.

(send a-drracket:language:language get-metadata modname
settings)

Ñ string?
modname : symbol?
settings : any/c

77

This method is only called when get-reader-module returns an sexp.

It is expected to return a string that contains N lines, where N is the result of
calling get-metadata-lines. The string is prefixed to the buffer before the
file is saved by DrRacket, and removed from the buffer after it is opened in
DrRacket.

The string is expect to be a prefix to the file that sets up a reader for files in this
language, using #reader.

The modname argument’s printed form is the same as the file’s name, but with-
out the path, and without an extension. The settings argument is the current
language’s settings value.

See also metadata->settings, get-metadata-lines, and get-reader-
module.

(send a-drracket:language:language get-metadata-lines)
Ñ number?

This method is only called when get-reader-module returns an sexp.

The result of the method is a count of the number of lines in the strings that get-
metadata returns. The get-metadata function does not necessarily return the
same string each time it is called (see metadata->settings) but it is expected
to always return a string with a fixed number of lines, as indicated by the result
of this method.

(send a-drracket:language:language get-one-line-summary)
Ñ string?

Specification: The result of this method is shown in the language dialog when
the user selects this language. Default implementation:

(send a-drracket:language:language get-reader-module)
Ñ (or/c sexp-representing-a-require-spec #f)

The result of this method is used when saving or loading files.

If the result is a sexp, saved files get a prefix inserted at the beginning (the
prefix is determined by calling get-metadata). When the file is then loaded,
DrRacket recognizes this prefix and sets the language back to match the saved
file.

See also metadata->settings, get-metadata-lines, and get-metadata.

(send a-drracket:language:language get-style-delta)
Ñ (or/c #f

(is-a?/c style-delta%)
(listof (list/c (is-a?/c style-delta%)

number?
number?)))

78

The style delta that this method returns is used in the language dialog and the
DrRacket REPL when the language’s name is printed.

When it is #f, no styling is used.

If the result is a list, each element is expected to be a list of three items, a style-
delta, and two numbers. The style delta will be applied to the corresponding
portion of the name.

(send a-drracket:language:language extra-repl-information
settings
port)

Ñ void?
settings : settings
port : output-port?

This method is called on the DrRacket eventspace main thread to insert extra
information into the REPL to reflect the state of the program.

It is used, for example, to print out the “Teachpack” lines in the HtDP languages.

(send a-drracket:language:language marshall-
settings settings)

Ñ writable
settings : settings

Translates an instance of the settings type into a Racket object that can be written
out to disk.

(send a-drracket:language:language metadata-
>settings metadata)

Ñ settings
metadata : string?

This method is only called when get-reader-module returns an sexp.

When a file is opened in DrRacket, if this language’s get-reader-module
returns an sexp, the prefix of the file (the first N lines, where N is the number
returned by get-metadata-lines) is scanned for "#reader" followed by the
result of get-reader-module. If that pattern is found, the language is set to
this language. Also, the entire prefix is passed, as a string, to this method which
returns a settings value, used as the settings for this language.

(send a-drracket:language:language on-execute
settings
run-on-user-thread)

Ñ any
settings : settings
run-on-user-thread : ((-> any) -> any)

79

The on-execute method is called on DrRacket’s eventspace’s main thread be-
fore any evaluation happens when the Run button is clicked. It is also called
when a new DrRacket tab (or window) is created to initialize the empty interac-
tions window.

Use this method to initialize Racket’s §11.3.2 “Parameters” for the user. When
this function is called, the user’s thread has already been created, as has its
custodian. These parameters have been changed from the defaults in Racket:

• current-custodian is set to a new custodian.

• current-namespace has been set to a newly created empty namespace.
This namespace has the following modules copied (with namespace-
attach-module) from DrRacket’s original namespace:

– 'mzscheme
– 'mred

• read-curly-brace-as-paren is #t,

• read-square-bracket-as-paren is #t,

• The port-write-handler and port-display-handler have been set
to procedures that call pretty-print and pretty-display instead of
write and display. When pretty-print and pretty-display are
called by these parameters, the pretty-print-columns parameter is set
to 'infinity, so the output looks just like write and display. This is
done so that special scheme values can be displayed as snips.

• The current-print-covert-hook is to a procedure so that snip%s are
just returned directly to be inserted into the interactions text% object.

• The output and input ports are set to point to the interactions window with
these parameters: current-input-port, current-output-port, and
current-error-port.

• The event-dispatch-handler is set so that DrRacket can perform
some initial setup and close down around the user’s code.

• The current-directory and current-load-relative-directory
are set to the directory where the definitions file is saved, or if it isn’t
saved, to the initial directory where DrRacket started up.

• The snip-class-list, returned by get-the-snip-class-list is initial-
ized with all of the snipclasses in DrRacket’s eventspace’s snip-class-list.

• The error-print-source-location parameter is set to #f and the
error-display-handler is set to a handler that creates an error mes-
sage from the exception record, with font and color information and inserts
that error message into the definitions window.

The run-on-user-thread arguments accepts thunks and runs them on the
user’s eventspace’s main thread. The output ports are not yet functioning, so
print outs should be directed to the original DrRacket output port, if necessary.

80

This thunk is wrapped in a with-handlers that catches all exceptions match-
ing exn:fail? and then prints out the exception message to the original output
port of the DrRacket process.

(send a-drracket:language:language order-manuals manuals)
Ñ (listof bytes?) boolean?
manuals : (listof bytes?)

Returns a sublist of its input, that specifies the manuals (and their order) to
search in. The boolean result indicates if doc.txt files should be searched.

(send a-drracket:language:language render-value value
settings
port)

Ñ void?
value : TST
settings : settings
port : port?

This method is just like render-value/format except that it is expected to
put the entire value on a single line with no newline after the value.

(send a-drracket:language:language render-value/format
value
settings
port
width)

Ñ void?
value : TST
settings : settings
port : port?
width : (or/c number? 'infinity)

This method is used to print values into a port, for display to a user. The final
argument is a maximum width to use (in characters) when formatting the value.

This method is expected to format the value by inserting newlines in appropriate
places and is expected to render a newline after the value.

See also render-value.

(send a-drracket:language:language unmarshall-
settings input)

Ñ (or/c settings #f)
input : writable

Translates a Racket value into a settings, returning #f if that is not possible.

81

drracket:language:object/c : contract?

(object-contract
(config-panel (-> (is-a?/c area-container<%>)

(case-> (-> any/c void?)
(-> any/c))))

(create-executable (-> any/c
(or/c (is-a?/c dialog%) (is-a?/c frame%))
path?
void?))

(default-settings (-> any/c))
(default-settings? (-> any/c boolean?))
(front-end/complete-program (-> input-port?

any/c
(-> any/c)))

(front-end/interaction (-> input-port?
any/c
(-> any/c)))

(get-language-name (-> string?))
(get-language-numbers (-> (cons/c number? (listof number?))))
(get-language-position (-> (cons/c string? (listof string?))))
(get-language-url (-> (or/c false/c string?)))
(get-one-line-summary (-> (or/c #f string?)))
(get-comment-character (-> (values string? char?)))
(get-style-delta
(-> (or/c false/c

(is-a?/c style-delta%)
(listof
(list/c (is-a?/c style-delta%)

number?
number?)))))

(marshall-settings (-> any/c printable/c))
(on-execute (-> any/c (-> (-> any) any) any))
(render-value (-> any/c

any/c
output-port?
void?))

(render-value/format (-> any/c
any/c
output-port?
(or/c number? (symbols 'infinity))
any))

(unmarshall-settings (-> printable/c any))

(capability-value

82

(->i ((s (and/c symbol?
drracket:language:capability-registered?)))

(res (s) (drracket:language:get-capability-contract s)))))

(drracket:language:register-capability s
the-contract
default) Ñ void?

s : symbol?
the-contract : contract?
default : the-contract

Registers a new capability with a default value for each language and a contract on the values
the capability might have.

By default, these capabilities are registered as DrRacket starts up:

• 'drracket:check-syntax-button : boolean? = #t — controls the visiblity of
the check syntax button

• 'drracket:language-menu-title : string? = (string-constant scheme-
menu-name) — controls the name of the menu just to the right of the language menu
(named “Racket” by default)

• 'drscheme:define-popup :

(or/c #f
(list/c string? string? string?)
(non-empty-listof (list/c string? string? string?))
(non-empty-listof (list/c string? string? string?

(or/c #f
(-> (is-a/c text%)

string?
exact-integer?
(->* ((is-

a/c text%)
string?
exact-

integer?)
(#:case-

sensitive? any/c
#:delimited? any/c)

(or/c exact-
integer? #f))

83

(or/c exact-
integer? #f)))

(or/c #f
(-> (is-a/c text%)

exact-integer?
(-> (is-a/c text%)

exact-integer?
string?)

string?))))
(cons/c string? string?))

= (list "(define" "(define ...)" "𝛿") — specifies the prefix that the define
popup should look for and what label it should have, or #f if it should not appear at
all. Text is found only when it is not in a comment or string literal.

If the list of three strings alternative is used, the first string is the prefix that is looked
for when finding definitions. The second and third strings are used as the label of the
control, in horizontal and vertical mode, respectively.

If it is a list of lists, then multiple prefixes are used for the definition pop-up. The name
of the popup menu is based only on the first element of the list. When a nested list
contains fourth and fifth elements, they can supply replacements (when not #f) for the
default functions that find a prefix and extract the subsequent name. See §1.9 “Defini-
tion Popup-Menu Navigation” for information about the protocols for the finding and
extraction procedures.

The pair of strings alternative is deprecated. If it is used, the pair (cons a-str b-
str) is the same as (list a-str b-str "𝛿").

• 'drscheme:help-context-term : (or/c false/c string?) = #f — specifies
a context query for documentation searches that are initiated in this language, can be
#f (no change to the user’s setting) or a string to be used as a context query (note:
the context is later maintained as a cookie, "" is different from #f in that it clears the
stored context)

• 'drscheme:special:insert-fraction : boolean? = #t — determines if the
insert fraction menu item in the special menu is visible

• 'drscheme:special:insert-lambda : boolean? = #t — determines if the insert
lambda menu item in the special menu is visible

• 'drscheme:special:insert-large-letters : boolean? = #t — determines if
the insert large letters menu item in the special menu is visible

• 'drscheme:special:insert-image : boolean? = #t — determines if the insert
image menu item in the special menu is visible

• 'drscheme:special:insert-comment-box : boolean? = #t — determines if
the insert comment box menu item in the special menu is visible

84

• 'drscheme:special:insert-gui-tool : boolean? = #t — determines if the
insert gui menu item in the special menu is visible

• 'drscheme:special:slideshow-menu-item : boolean? = #t — determines if
the insert pict box menu item in the special menu is visible

• 'drscheme:special:insert-text-box : boolean? = #t — determines if the
insert text box menu item in the special menu is visible

• 'drscheme:special:xml-menus : boolean? = #t — determines if the insert
scheme box, insert scheme splice box, and the insert xml box menu item in the special
menu are visible

• 'drscheme:autocomplete-words : (listof string?) = '() — determines the
list of words that are used when completing words in this language

• 'drscheme:tabify-menu-callback :

(or/c (-> (is-a?/c text%)
number?
number?
void?)

#f)

= (𝜆 (t a b) (send t tabify-selection a b)) — is used as the callback
when the “Reindent” or “Reindent All” menu is selected. The first argument is the
editor, and the second and third are a range in the editor.

(drracket:language:capability-registered? s) Ñ boolean?
s : symbol?

Indicates if drracket:language:register-capability has been called with s .

(drracket:language:get-capability-default s)
Ñ (drracket:language:get-capability-contract s)
s : (and/c symbol? drracket:language:capability-registered?)

Returns the default for a particular capability.

(drracket:language:get-capability-contract s) Ñ contract?
s : (and/c symbol? drracket:language:capability-registered?)

Returns the contract for a given capability, which was specified when
drracket:language:register-capability was called.

85

(drracket:language:add-snip-value test-value
convert-value

[setup-thunk]) Ñ void?
test-value : (-> any/c boolean?)
convert-value : (-> any/c (is-a?/c snip%))
setup-thunk : (-> any/c) = void

Registers a handler to convert values into snips as they are printed in the REPL.

The test-snip argument is called to determine if this handler can convert the value and the
convert-value argument is called to build a snip. The (optional) setup-thunk is called
just after the user’s namespace and other setings are built, but before any of the user’s code
is evaluated.

All three functions are called on the user’s thread and with the user’s settings.

(drracket:language:extend-language-interface
interface
default-implementation)

Ñ void?
interface : interface?
default-implementation : (make-mixin-contract drracket:language:language<%>)

This function can only be called in phase 1 (see §2 “Implementing DrRacket Plugins” for
details).

Each language added passed to drracket:language-configuration:add-language
must implement interface .

The default-implementation is a mixin that provides a default implementation of in-
terface . Languages that are unaware of the specifics of extension use default-
implementation via drracket:language:get-default-mixin.

(drracket:language:get-default-mixin)
Ñ (make-mixin-contract drracket:language:language<%>)

This function can only be called in phase 2 (see §2 “Implementing DrRacket Plugins” for
details).

The result of this function is the composite of all of the default-implementation argu-
ments passed to drracket:language:extend-language-interface.

(drracket:language:get-language-extensions)
Ñ (listof interface?)

86

This function can only be called in phase 2 (see §2 “Implementing DrRacket Plugins” for
details).

Returns a list of the interfaces passed to drracket:language:extend-language-
interface.

(drracket:language:put-executable parent
program-filename
mode
mred?
title)

Ñ (or/c false/c path?)
parent : (is-a?/c top-level-window<%>)
program-filename : path?
mode : (or/c boolean? 'launcher 'standalone 'distribution)
mred? : boolean?
title : string?

Calls the GRacket primitive put-file with arguments appropriate for creating an exe-
cutable from the file program-filename .

The arguments mred? and mode indicates what type of executable this should be (and the
dialog may be slightly different on some platforms, depending on these arguments). For
historical reasons, #f is allowed for mode as an alias for 'launcher, and #t is allowed for
mode as an alias for 'stand-alone.

The title argument is used as the title to the primitive put-file or get-directory
primitive.

(drracket:language:create-executable-gui parent
program-name
show-type
show-base)

Ñ (or/c #f
(list/c (or/c 'no-show 'launcher 'stand-alone 'distribution)

(or/c 'no-show 'mred 'mzscheme)
string?
(listof (cons/c symbol? any/c))))

parent : (or/c #f (is-a?/c top-level-window<%>))
program-name : (or/c #f string?)
show-type : (or/c #t 'launcher 'standalone 'distribution)
show-base : (or/c #t 'mzscheme 'mred)

Opens a dialog to prompt the user about their choice of executable. If show-type is #t,
the user is prompted about a choice of executable: stand-alone, launcher, or distribution;

87

otherwise, the symbol determines the type. If show-base is #t, the user is prompted about
a choice of base binary: mzscheme or mred; otherwise the symbol determines the base.

The program-name argument is used to construct the default executable name in a platform-
specific manner.

The parent argument is used for the parent of the dialog.

The result of this function is #f if the user cancel’s the dialog and a list of three items
indicating what options they chose. If either show-type or show-base was not #t, the
corresponding result will be 'no-show, otherwise it will indicate the user’s choice.

(drracket:language:create-module-based-stand-alone-executable
program-filename
executable-filename
module-language-spec
transformer-module-language-spec
init-code
gui?
use-copy?)

Ñ void?
program-filename : (or/c path? string?)
executable-filename : (or/c path? string?)
module-language-spec : any/c
transformer-module-language-spec : any/c
init-code : any/c
gui? : boolean?
use-copy? : boolean?

This procedure creates a stand-alone executable in the file executable-filename that runs
the program program-filename .

The arguments module-language-spec and transformer-module-language-spec
specify the settings of the initial namespace, both the transformer portion and the regular
portion. Both may be #f to indicate there are no initial bindings.

The init-code argument is an s-expression representing the code for a module. This mod-
ule is expected to provide the identifier init-code , bound to a procedure of no arguments.
That module is required and the init-code procedure is executed to initialize language-
specific settings before the code in program-filename runs.

The gui? argument indicates if a GRacket or Racket stand-alone executable is created.

The use-copy? argument indicates if the initial namespace should be populated with
namespace-require/copy or namespace-require.

88

(drracket:language:create-module-based-distribution
program-filename
distribution-filename
module-language-spec
transformer-module-language-spec
init-code
gui?
use-copy?)

Ñ void?
program-filename : (or/c path? string?)
distribution-filename : (or/c path? string?)
module-language-spec : any/c
transformer-module-language-spec : any/c
init-code : any/c
gui? : boolean?
use-copy? : boolean?

Like drracket:language:create-module-based-stand-alone-executable, but
packages the stand-alone executable into a distribution.

(drracket:language:create-distribution-for-executable
distribution-filename
gui?
make-executable)

Ñ void?
distribution-filename : (or/c path? string?)
gui? : boolean?
make-executable : (-> path? void?)

Creates a distribution where the given make-executable procedure creates the stand-
alone executable to be distributed. The make-executable procedure is given the name
of the executable to create. The gui? argument is needed in case the executable’s name
(which drracket:language:create-distribution-for-executable must generate)
depends on the type of executable. During the distribution-making process, a progress dialog
is shown to the user, and the user can click an Abort button that sends a break to the current
thread.

89

(drracket:language:create-module-based-launcher
program-filename
executable-filename
module-language-spec
transformer-module-language-spec
init-code
gui?
use-copy?)

Ñ void?
program-filename : (or/c path? string?)
executable-filename : (or/c path? string?)
module-language-spec : any/c
transformer-module-language-spec : any/c
init-code : any/c
gui? : boolean?
use-copy? : boolean?

This procedure is identical to drracket:language:create-module-based-stand-
alone-executable, except that it creates a launcher instead of a stand-alone executable.

(drracket:language:simple-module-based-language-convert-value
value
settings)

Ñ any
value : any/c
settings : drracket:language:simple-settings?

The result can be either one or two values. The first result is the converted value. The second
result is #t if the converted value should be printed with write (or pretty-write), #f if
the converted result should be printed with print (or pretty-print); the default second
result is #t.

The result of this function depends on the simple-settings-printing-style field
of settings . If it is 'print, the result is (values value #f). If it is 'write or
'trad-write, the result is just value . Otherwise, the result is produced by adjusting the
constructor-style-printing and show-sharing parameters based on settings , set-
ting current-print-convert-hook to ignore snips, and then applying print-convert
to value .

(drracket:language:setup-printing-parameters thunk
settings
width) Ñ any

thunk : (-> any)
settings : drracket:language:simple-settings?
width : (or/c number? 'infinity)

90

Equivalent to (drracket:language:make-setup-printing-parameters).

(drracket:language:make-setup-printing-parameters)
Ñ (-> (-> any) drracket:language:simple-settings? (or/c number? 'infinity) any)

Returns a procedure that accepts three arguments: a thunk, settings, and a pretty-print width.
The result procedure, when invoked sets all of the pretty-print and print-convert
parameters either to the defaults to values based on settings and then invokes thunk,
returning what it returns.

When drracket:language:make-setup-printing-parameters is invoked, it
dynamic-requires pict/convert and closes over the results, using them to convert
values when the resulting procedure is invoked.

(struct drracket:language:text/pos (text start end)
#:extra-constructor-name make-drracket:language:text/pos)

text : (is-a?/c text%)
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?

A record that tracks a text% object and a range inside it.

drracket:language:make-text/pos : procedure?

An alias for make-drracket:language:text/pos.

drracket:language:struct:text/pos : struct-type?

An alias for struct:drracket:language:text/pos.

(struct drracket:language:simple-settings (case-sensitive
printing-style
fraction-style
show-sharing
insert-newlines
annotations)

#:extra-constructor-name
make-drracket:language:simple-settings)

case-sensitive : boolean?
printing-style : (or/c 'constructor

'quasiquote
'write
'trad-write
'print)

91

fraction-style : (or/c 'mixed-fraction
'mixed-fraction-e
'repeating-decimal
'repeating-decimal-e)

show-sharing : boolean?
insert-newlines : boolean?
annotations : (or/c 'none 'debug 'debug/profile 'test-coverage)

A struct that tracks commonly used settings for a language.

drracket:language:make-simple-settings : procedure?

An alias for make-drracket:language:simple-settings.

drracket:language:struct:simple-settings : struct-type?

An alias for struct:drracket:language:simple-settings.

(drracket:language:simple-settings->vector simple-settings)
Ñ vector?
simple-settings : drracket:language:simple-settings?

Constructs a vector whose elements are the fields of simple-settings .

92

16 drracket:language-configuration

(drracket:language-configuration:get-languages)
Ñ (listof (is-a?/c drracket:language:language<%>))

This can only be called after all of the tools initialization phases have completed.

Returns the list of all of the languages installed in DrRacket.

(drracket:language-configuration:add-language
language

[#:allow-executable-creation? allow-executable-creation?])
Ñ void?
language : (and/c (is-a?/c drracket:language:language<%>)

drracket:language:object/c)
allow-executable-creation? : boolean? = #f

This function can only be called in phase 2 (see §2 “Implementing DrRacket Plugins” for
details).

Adds language to the languages offered by DrRacket.

If allow-executable-creation? is #f, then choosing the Create Executable... menu
item results in a dialog box saying that executable creation is disabled. If it is #t, then the
create-executable is called when that menu item is selected (after checking to make sure
the file is saved).

(drracket:language-configuration:get-settings-preferences-symbol)
Ñ symbol?

Returns the symbol that is used to store the user’s language settings. Use as an argument to
either preferences:get or preferences:set.

(struct drracket:language-configuration:language-settings
(language
settings)

#:extra-constructor-name
make-drracket:language-configuration:language-settings)

language : (or/c (is-a?/c drracket:language:language<%>)
drracket:language:object/c)

settings : any/c

This struct pairs together a language and some specific settings for the language.

93

The settings is a language-specific record that holds a value describing a parameterization of
the language.

drracket:language-configuration:struct:language-settings
: struct-type?

An alias for struct:drracket:language-configuration:language-settings.

drracket:language-configuration:make-language-settings
: procedure?

An alias for make-drracket:language-configuration:language-settings.

(drracket:language-configuration:language-dialog
show-welcome?
language-settings-to-show

[parent])
Ñ (or/c false/c drracket:language-configuration:language-settings?)
show-welcome? : boolean?
language-settings-to-show : drracket:language-configuration:language-settings?
parent : (or/c false/c (is-a?/c top-level-window<%>)) = #t

Opens the language configuration dialog. See also drracket:language-
configuration:fill-language-dialog.

The show-welcome? argument determines if if a “Welcome to DrRacket” message and some
natural language buttons are shown.

The language-settings-to-show argument must be some default language settings that
the dialog is initialized to. If unsure of a default, the currently set language in the user’s
preferences can be obtained via:

(preferences:get
(drracket:language-configuration:get-settings-preferences-

symbol))

The parent argument is used as the parent to the dialog.

The result if #f when the user cancells the dialog, and the selected language if they hit ok.

94

(drracket:language-configuration:fill-language-dialog
panel
button-panel
language-setting

[re-center
ok-handler])

Ñ (-> (is-a?/c drracket:language:language<%>))
(-> any/c)
(-> any/c (is-a?/c mouse-event%) any)

panel : (is-a?/c vertical-panel%)
button-panel : (is-a?/c area-container<%>)
language-setting : drracket:language-configuration:language-settings?
re-center : (or/c false/c (is-a?/c top-level-window<%>)) = #f
ok-handler : (-> symbol? void?) = void

This procedure accepts two parent panels and fills them with the contents of the language
dialog. It is used to include language configuration controls in some larger context in another
dialog.

The panel argument is the main panel where the language controls will be placed. The
function adds buttons to the button-panel to revert a language to its default settings and
to show the details of a language.

The language-setting is the default language to show in the dialog.

The re-center argument is used when the Show Details button is clicked. If that argument
is a top-level-window<%>, the Show Details callback will recenter the window each time
it is clicked. Otherwise, the argument is not used.

ok-handler is a function that is in charge of interfacing the OK button. It should accept
a symbol message: 'enable and 'disable to toggle the button, and 'execute to run
the desired operation. (The language selection dialog also uses an internal 'enable-sync
message.)

The first two results of the function return a language object and a settings for that language,
as chosen by the user using the dialog. The final function should be called when keystrokes
are typed in the enclosing frame. It is used to implement the shortcuts that choose the two
radio buttons in the language dialog.

95

17 drracket:debug

drracket:debug:profile-unit-frame-mixin : (class? . -> . class?)
argument extends/implements: drracket:frame:<%>

drracket:unit:frame<%>

Adds support for profiling information.

(send a-drracket:debug:profile-unit-frame show-profile-gui)
Ñ void?

Shows the GUI information shown about the profile.

(send a-drracket:debug:profile-unit-frame hide-profile-gui)
Ñ void?

Hides the GUI information shown about the profile.

drracket:debug:profile-tab-mixin : (class? . -> . class?)
argument extends/implements: drracket:unit:tab<%>
result implements: drracket:debug:profile-interactions-tab<%>

Tracks profiling information.

drracket:debug:profile-definitions-text-mixin : (class? . -> . class?)
argument extends/implements: drracket:unit:definitions-text<%>

text%

Tracks profiling information.

drracket:debug:test-coverage-definitions-text-mixin : (class? . -> .
class?)

argument extends/implements: text%
drracket:unit:definitions-text<%>

Tracks test case coverage information.

96

drracket:debug:test-coverage-interactions-text-mixin : (class? . -> .
class?)

argument extends/implements: drracket:rep:text<%>
text:basic<%>

result implements: drracket:debug:test-coverage-interactions-text<%>

Tracks test case coverage information.

drracket:debug:test-coverage-tab-mixin : (class? . -> . class?)
argument extends/implements: drracket:rep:context<%>

drracket:unit:tab<%>
result implements: drracket:debug:test-coverage-tab<%>

Tracks test case coverage information.

drracket:debug:test-coverage-frame-mixin : (class? . -> . class?)
argument extends/implements: drracket:unit:frame<%>
result implements: drracket:debug:test-coverage-frame<%>

Tracks test case coverage information.

(drracket:debug:error-display-handler/stacktrace
msg
exn

[stack
#:definitions-text defs
#:interactions-text ints])

Ñ any/c
msg : string?
exn : any/c
stack : (or/c false/c (listof srcloc?)) = #f
defs : (or/c #f (is-a?/c drracket:unit:definitions-text<%>))

= #f
ints : (or/c #f (is-a?/c drracket:rep:text<%>)) = #f

97

Displays the error message represented by the string, adding embellishments like those that
appears in the DrRacket REPL, specifically a clickable icon for the stack trace (if the srcloc
location is not empty), and a clickable icon for the source of the error (read & syntax errors
show their source locations and otherwise the first place in the stack trace is shown).

If stack is false, then the stack traces embedded in the exn argument (if any) are used.
Specifically, this function looks for a stacktrace via errortrace-key in the continuation
marks of exn and continuation-mark-set->context.

If stack is not false, that stack is added to the stacks already in the exception.

This should be called in the same eventspace and on the same thread as the error.

(drracket:debug:make-debug-error-display-handler oedh)
Ñ (-> string? (or/c any/c exn?) any)
oedh : (-> string? (or/c any/c exn?) any)

This function implements an error-display-handler in terms of another error-display-handler.

See also Racket’s error-display-handler parameter.

If the current-error-port is the definitions window in DrRacket, this error handler inserts
some debugging annotations, calls oedh , and then highlights the source location of the run-
time error.

It looks for both stack trace information in the continuation marks both via the
errortrace/errortrace-key module and via continuation-mark-set->context.

(drracket:debug:hide-backtrace-window) Ñ void?

Hides the backtrace window.

(drracket:debug:add-prefs-panel) Ñ void?

Adds the profiling preferences panel.

(drracket:debug:make-debug-compile-handler oc)
Ñ (-> any/c boolean? compiled-expression?)
oc : (-> any/c boolean? compiled-expression?)

Returns a function suitable for use with current-compile.

The result function first adds debugging information to its argument and then passes it to oc .

98

(drracket:debug:make-debug-eval-handler oe) Ñ (-> any/c any)
oe : (-> any/c any)

Returns a function suitable for use with current-eval.

The result function first adds debugging information to its argument and then passes it to oe .

(drracket:debug:test-coverage-enabled) Ñ boolean?
(drracket:debug:test-coverage-enabled enabled?) Ñ void?

enabled? : boolean?

Determines if the test-coverage annotation is added by the result of
drracket:debug:make-debug-eval-handler.

drracket:debug:test-coverage-on-style-name : string?

The name of the style% object (in editor:get-standard-style-name) used to indicate
a covered region of code.

drracket:debug:test-coverage-off-style-name : string?

The name of the style% object (in editor:get-standard-style-name) used to indicate
a region of code that tests (or any code, really) didn’t cover.

(drracket:debug:profiling-enabled) Ñ boolean?
(drracket:debug:profiling-enabled enabled?) Ñ void?

enabled? : boolean?

Determines if the profiling annotation is added by the result of drracket:debug:make-
debug-eval-handler.

(drracket:debug:bug-info->ticket-url query) Ñ url?
query : (listof (cons/c symbol? (or/c #f string?)))

Builds a url that goes to the trac report system. The query argument is used as the url’s
query field.

drracket:debug:small-planet-bitmap : (is-a?/c bitmap%)

99

The icon used in the DrRacket REPL when an exception is raised that includes blame infor-
mation blaming a PLaneT package. (Clicking the icon connects to the PLaneT bug report
form.)

(drracket:debug:open-and-highlight-in-file debug-info
[edition-pair])

Ñ void?
debug-info : (or/c srcloc? (listof srcloc?))
edition-pair : (or/c #f (cons/c (𝜆 (x) (and (weak-box? x)

(let ([v (weak-box-value x)])
(or (not v)

(is-a? v editor<%>)))))
number?))

= #f

This function opens a DrRacket to display debug-info . Only the src the position and the
span fields of the srcloc are considered.

The edition-pair is used to determine if a warning message is shown when before open-
ing the file. If the edition-pair is not #f, it is compared with the result of get-edition-
number of the editor that is loaded to determine if the file has been edited since the source
location was recorded. If so, it puts up a warning dialog message to that effect.

(drracket:debug:show-backtrace-window/edition-pairs
error-message
dis
editions-pairs
defs
ints)

Ñ void?
error-message : string?
dis : (listof srcloc?)
editions-pairs : (listof

(or/c
#f
(cons/c (𝜆 (x)

(and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a? v editor<%>)))))

number?)))
defs : (or/c #f (is-a?/c drracket:unit:definitions-text<%>))
ints : (or/c #f (is-a?/c drracket:rep:text<%>))

Same as drracket:debug:show-backtrace-window/edition-pairs/two, where the

100

dis2 and editions-pairs2 arguments are both '()

(drracket:debug:show-backtrace-window/edition-pairs/two
error-message
dis1
editions-pairs1
dis2
editions-pairs2
defs
ints)

Ñ void?
error-message : string?
dis1 : (listof srcloc?)
editions-pairs1 : (listof

(or/c
#f
(cons/c (𝜆 (x)

(and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a? v editor<%>)))))

number?)))
dis2 : (listof srcloc?)
editions-pairs2 : (listof

(or/c
#f
(cons/c (𝜆 (x)

(and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a? v editor<%>)))))

number?)))
defs : (or/c #f (is-a?/c drracket:unit:definitions-text<%>))
ints : (or/c #f (is-a?/c drracket:rep:text<%>))

Shows the backtrace window you get when clicking on the bug in DrRacket’s REPL.

The error-message argument is the text of the error, dis1 and dis2 are the stack-
trace information, extracted from the continuation mark in the exception record, using
errortrace-key and using continuation-mark-set->context.

The editions1 and editions2 arguments indicate the editions of any editors that are open
editing the files corresponding to the source locations. The lists must have the same length
as dis1 and dis2 .

The defs argument should be non-#f if there are possibly stacktrace frames that contain

101

unsaved versions of the definitions window from DrRacket. Similarly, the ints argument
should be non-#f if there are possibly stacktrace frames that contain unsaved versions of the
interactions window.

Use drracket:rep:current-rep to get the rep during evaluation of a program.

(drracket:debug:get-error-color) Ñ (is-a?/c color%)

Returns the background color used to highlight errors in the definitions window (and other
places, possibly). See also drracket:debug:get-error-color-name.

The result depends on the result of (color-prefs:white-on-black-color-scheme?).

(drracket:debug:get-error-color-name)
Ñ color-prefs:color-scheme-color-name?

Returns the name of the background color used to highlight errors in the definitions window
(and other places, possibly).

(drracket:debug:show-backtrace-window error-message
dis

[rep
defs]) Ñ void?

error-message : string?
dis : (or/c exn?

(listof srcloc?))
rep : (or/c #f (is-a?/c drracket:rep:text<%>)) = #f
defs : (or/c #f (is-a?/c drracket:unit:definitions-text<%>))

= #f

Shows the backtrace window you get when clicking on the bug in DrRacket’s REPL.

If dis is a list of srcloc?, then this function simply calls drracket:debug:show-
backtrace-window/edition-pairs, passing error-message , dis , and a list of #f that
is as long as dis .

If dis is an exn:fail?, then this function calls drracket:debug:show-backtrace-
window/edition-pairs/two, extracting the builtin stack trace (via continuation-
mark-set->context) and an errortrace stack trace from the continuation marks in exn.

102

18 drracket:rep

drracket:rep:text<%> : interface?

drracket:rep:text% : class?
superclass: racket:text%
extends: drracket:rep:text<%>

This class implements a read-eval-print loop for DrRacket. User submitted evaluations in
DrRacket are evaluated asynchronously, in an eventspace created for the user. No evaluations
carried out by this class affect the implementation that uses it.

(make-object drracket:rep:text% context)
Ñ (is-a?/c drracket:rep:text%)
context : (implements drracket:rep:context<%>)

(send a-drracket:rep:text after-delete) Ñ void?

Overrides after-delete in mode:host-text-mixin.

Resets any error highlighting in this editor.

(send a-drracket:rep:text after-insert) Ñ void?

Overrides after-insert in mode:host-text-mixin.

Resets any error highlighting in this editor.

(send a-drracket:rep:text display-results results) Ñ void?
results : (list-of TST)

This displays each of the elements of results in the interactions window, ex-
pect those elements of results that are void. Those are just ignored.

(send a-drracket:rep:text evaluate-from-port
port
complete-program?
cleanup)

Ñ any
port : input-port?
complete-program? : boolean?
cleanup : (-> void)

103

Evaluates the program in the port argument. If complete-program? is #t,
this method calls the front-end/complete-program to evaluate the program.
If it is #f, it calls front-end/interaction method. When evaluation fin-
ishes, it calls cleanup on the user’s main thread.

Just before calling cleanup , this invokes the thunk in drracket:rep:after-
expression (if any). It takes the value of the drracket:rep:after-
expression parameter on the DrRacket main thread, but invokes the thunk
on the user’s thread.

This method must be called from the DrRacket main thread.

(send a-drracket:rep:text after-many-evals) Ñ any

Refine this method with augment.

Called from the DrRacket main thread after evaluate-from-port finishes (no
matter how it finishes).

If the call to evaluate-from-port was from the call that sets up the initial
read-eval-print loop, then the value of drracket:rep:module-language-
initial-run will be #t; otherwise it will be #f.

(send a-drracket:rep:text on-execute run-on-user-
thread) Ñ any

run-on-user-thread : (-> any)

Use run-on-user-thread to initialize the user’s parameters, etc.

Called from the DrRacket thread after the language’s on-execute method has
been invoked, and after the special values have been setup (the ones registered
via drracket:language:add-snip-value).

Do not print to current-output-port or current-error-port during the
dynamic extent of the thunk passed to run-on-user-thread because this
can deadlock. IO is still, in general, fine, but the current-error-port and
current-output-port are set to the user’s ports that print into the interac-
tions window and are not in a good state during those calls.

(send a-drracket:rep:text get-error-range)
Ñ (or/c false/c (list/c (is-a?/c text:basic%) number? number?))

Specification: Indicates the highlighted error range. The state for the error range
is shared across all instances of this class, so there can only be one highlighted
error region at a time.

Default implementation: If #f, no region is highlighted. If a list, the first ele-
ment is the editor where the range is highlighted and the second and third are
the beginning and ending regions, respectively.

(send a-drracket:rep:text get-user-custodian)
Ñ (or/c false/c custodian?)

104

This is the custodian controlling the user’s program.

(send a-drracket:rep:text get-user-eventspace)
Ñ (or/c false/c eventspace?)

This is the user’s eventspace. The result of get-user-thread is the main
thread of this eventspace.

(send a-drracket:rep:text get-user-language-settings)
Ñ language-settings

Returns the user’s language-settings for the most recently run program. Con-
sider using get-next-settings instead, since the user may have selected a
new language since the program was last run.

(send a-drracket:rep:text get-user-namespace)
Ñ (or/c false/c namespace?)

Returns the user’s namespace. This method returns a new namespace each time
Run is clicked.

(send a-drracket:rep:text get-user-thread)
Ñ (or/c false/c thread?)

This method returns the thread that the user’s code runs in. It returns a different
result each time the user runs the program.

It is #f before the first time the user click on the Run button or the evaluation
has been killed.

This thread has all of its parameters initialized according to the settings of the
current execution. See §11.3.2 “Parameters” for more information about param-
eters.

(send a-drracket:rep:text highlight-errors locs
[error-arrows])

Ñ void?
locs : (listof srcloc?)
error-arrows : (or/c #f (listof srcloc?)) = #f

Call this method to highlight errors associated with this repl. See also reset-
highlighting, and highlight-errors/exn.

This method highlights a series of dis-contiguous ranges in the editor.

It puts the caret at the location of the first error.

(send a-drracket:rep:text highlight-
errors/exn exn) Ñ void?

exn : exn

105

Highlights the errors associated with the exn (only syntax and read errors – does
not extract any information from the continuation marks)

See also highlight-errors.

(send a-drracket:rep:text on-highlighted-
errors loc/s) Ñ void?

loc/s : (or/c srcloc? (listof srcloc?))

This method is called when an error is highlighted in a DrRacket window.

If the input is a list of srcloc? objects, then all of them are highlighted, and
they are all of the errors known to DrRacket at this point.

If a single one is passed, then user probably typed the . menu shortcut to high-
light a single error and there may be other errors known to DrRacket.

Errors are made known to DrRacket via highlight-errors.

(send a-drracket:rep:text initialize-console) Ñ void?

This inserts the “Welcome to DrRacket” message into the interactions buffer,
calls reset-console, insert-prompt, and clear-undos.

Once the console is initialized, this method calls first-opened. Accordingly,
this method should not be called to initialize a REPL when the user’s evalua-
tion is imminent. That is, this method should be called when new tabs or new
windows are created, but not when the Run button is clicked.

This method calls the first-opened from the user’s eventspace’s main thread
and, when first-opened returns, it enqueue’s a callback that ends an edit
sequence on the REPL and calls clear-undos. Accordingly, if the first-
opened method does not return, the interactions text will be in an unclosed edit
sequence.

(send a-drracket:rep:text insert-prompt) Ñ void?

Inserts a new prompt at the end of the text.

(send a-drracket:rep:text kill-evaluation) Ñ void?

This method is called when the user chooses the kill menu item.

(send a-drracket:rep:text on-close) Ñ void?

Overrides on-close in editor:basic<%>.

Calls shutdown.

Calls the super method.

106

(send a-drracket:rep:text queue-output thnk) Ñ void?
thnk : (-> void?)

Specification: This method queues thunks for DrRacket’s eventspace in a spe-
cial output-related queue.

(send a-drracket:rep:text reset-console) Ñ void?

Kills the old eventspace, and creates a new parameterization for it.

(send a-drracket:rep:text reset-highlighting) Ñ void?

This method resets the highlighting being displayed for this repl. See also:
highlight-errors, and highlight-errors/exn.

(send a-drracket:rep:text run-in-evaluation-
thread f) Ñ void?

f : (-> void)

Specification: This function runs its arguments in the user evaluation thread.
This thread is the same as the user’s eventspace main thread.

Default implementation: Calls f , after switching to the user’s thread.

(send a-drracket:rep:text shutdown) Ñ void?

Shuts down the user’s program and all windows. Reclaims any resources the
program allocated. It is expected to be called from DrRacket’s main eventspace
thread.

(send a-drracket:rep:text wait-for-io-to-complete) Ñ void?

This waits for all pending IO in the rep to finish and then returns.

This method must only be called from the main thread in DrRacket’s eventspace

(send a-drracket:rep:text wait-for-io-to-complete/user)
Ñ void?

This waits for all pending IO in the rep to finish and then returns.

This method must only be called from the main thread in the user’s eventspace

drracket:rep:drs-bindings-keymap-mixin : (class? . -> . class?)
argument extends/implements: editor:keymap<%>

This mixin adds some DrRacket-specific keybindings to the editor it is mixed onto.

107

(send a-drracket:rep:drs-bindings-keymap get-keymaps)
Ñ (listof (is-a?/c keymap%))

Overrides get-keymaps in editor:keymap<%>.

Calls the super method and adds in a keymap with the DrRacket-specific key-
bindings:

• f5 - Run

• c:x;o - toggles the focus between the definition and interactions windows.

drracket:rep:context<%> : interface?

Objects that match this interface provide all of the services that the drracket:rep:text%
class needs to connect with its context.

(send a-drracket:rep:context clear-annotations) Ñ void?

Specification: Call this method to clear any annotations in the text before exe-
cuting or analyzing or other such activities that should process the program.

Tools that annotate the program text should augment this method to clear their
own annotations on the program text.

DrRacket calls this method before a program is run (via the Run button).

Default implementation: Clears any error highlighting in the definitions win-
dow.

(send a-drracket:rep:context disable-evaluation) Ñ void?

Call this method to disable evaluation GUI evaluation while some evaluation (or
expansion) is taking place on another thread.

Override this method if you add a GUI-based mechanism for initiating evalua-
tion in the frame.

This method is also called when the user switches tabs.

See also enable-evaluation.

(send a-drracket:rep:context enable-evaluation) Ñ void?

This method must disable the GUI controls that start user-sponsored evaluation.
It is called once the user starts some evaluation to ensure that only one evaluation
proceeds at a time.

It is also called when the user switches tabs.

See also disable-evaluation.

108

(send a-drracket:rep:context ensure-rep-shown rep) Ñ void?
rep : (is-a?/c drracket:rep:text<%>)

This method is called to force the rep window to be visible when, for example,
an error message is put into the rep. Also ensures that the appropriate tab is
visible, if necessary.

(send a-drracket:rep:context get-breakables)
Ñ (or/c thread? false/c)

(or/c custodian? false/c)

Returns the last values passed to set-breakables.

(send a-drracket:rep:context get-directory) Ñ path?

The result of this method is used as the initial directory for the user’s program
to be evaluated in.

(send a-drracket:rep:context needs-execution)
Ñ (or/c string? false/c)

This method should return an explanatory string when the state of the program
that the repl reflects has changed. It should return #f otherwise.

(send a-drracket:rep:context reset-offer-kill) Ñ void?

The break button typically offers to kill if it has been pushed twice in a row. If
this method is called, however, it ignores any prior clicks.

(send a-drracket:rep:context set-breakables thread
custodian) Ñ void?

thread : (or/c thread false/c)
custodian : (or/c custodian false/c)

Calling this method with a thread and a custodian means that the next time the
break button is clicked, it will either break the thread or shutdown the custodian.

See also get-breakables.

(send a-drracket:rep:context update-
running running?) Ñ void?

running? : any/c

This method should update some display in the gui that indicates whether or not
evaluation is currently proceeding in the user’s world.

109

(drracket:rep:get-welcome-delta) Ñ (is-a?/c style-delta%)

Returns a style delta that matches the style and color of the phrase “Welcome to” in the
beginning of the interactions window.

(drracket:rep:get-dark-green-delta) Ñ (is-a?/c style-delta%)

Returns a style delta that matches the style and color of the name of a language in the
interactions window.

(drracket:rep:get-error-delta) Ñ (is-a?/c style-delta%)

Returns a style delta that matches the style and color of errors that get shown in the interac-
tions window.

(drracket:rep:get-drs-bindings-keymap) Ñ (is-a?/c keymap%)

Returns a keymap that binds various DrRacket-specific keybindings. This keymap is used in
the definitions and interactions window.

By default, binds C-x;o to a function that switches the focus between the definitions and
interactions windows. Also binds f5 to Execute and f1 to Help Desk.

(drracket:rep:current-rep)
Ñ (or/c false/c (is-a?/c drracket:rep:text%))

This is a parameter whose value should not be set by tools. It is initialized to the repl that
controls this evaluation in the user’s thread.

It only returns #f if the program not running in the context of a repl (eg, the test suite
window).

(drracket:rep:current-value-port) Ñ (or/c false/c port?)

This is a parameter whose value is a port that prints in the REPL in blue. It is used to print
the values of toplevel expressions in the REPL.

It is only initialized on the user’s thread.

110

(drracket:rep:after-expression) Ñ (or/c #f (-> any))
(drracket:rep:after-expression top-level-expression) Ñ void?

top-level-expression : (or/c #f (-> any))

This parameter is used by evaluate-from-port. When it is a thunk, then DrRacket in-
vokes the thunk on the user’s thread as the last thing it does (before cleaning up).

(drracket:rep:current-language-settings)
Ñ drracket:language-configuration:language-settings?

(drracket:rep:current-language-settings language-settings)
Ñ void?
language-settings : drracket:language-configuration:language-settings?

This parameter is set (on the user’s thread) to the drracket:language-
configuration:language-settings for the currently running language.

(drracket:rep:module-language-initial-run) Ñ boolean?
(drracket:rep:module-language-initial-run initial-run?) Ñ void?

initial-run? : boolean?

The value of this parameter is #t in the dynamic extent of the call to evaluate-from-port
that sets up the initial read-eval-print loop (which doesn’t run the user’s program)

111

19 drracket:frame

drracket:frame:name-message% : class?
superclass: canvas%

This class implements the little filename button in the top-left hand side of DrRacket’s frame.

(make-object drracket:frame:name-message% parent)
Ñ (is-a?/c drracket:frame:name-message%)
parent : (is-a?/c area-container<%>)

(send a-drracket:frame:name-message set-message name
short-name)

Ñ void?
name : (or/c string? false/c)
short-name : string?

Specification: Sets the names that the button shows.

Default implementation: The string short-name is the name that is shown
on the button and name is shown when the button is clicked on, in a separate
window. If name is #f, a message indicating that the file hasn’t been saved is
shown.

drracket:frame:mixin : (class? . -> . class?)
argument extends/implements: drracket:frame:basics<%>

frame:text-info<%>
frame:editor<%>

result implements: drracket:frame:<%>

Provides an implementation of drracket:frame:<%>

drracket:frame:basics-mixin : (class? . -> . class?)
argument extends/implements: frame:standard-menus<%>
result implements: drracket:frame:basics<%>

Use this mixin to establish some common menu items across various DrRacket windows.

112

(send a-drracket:frame:basics edit-menu:between-find-and-
preferences edit-menu)

Ñ void?
edit-menu : (is-a?/c menu%)

Overrides edit-menu:between-find-and-preferences in
frame:standard-menus<%>.

Adds a separator-menu-item%. Next, adds the "Keybindings" menu item
to the edit menu. Finally, if the current-eventspace-has-standard-
menus? procedure returns #f, creates another separator-menu-item%.

(send a-drracket:frame:basics file-menu:between-open-and-
revert file-menu)

Ñ void?
file-menu : (is-a?/c menu%)

Overrides file-menu:between-open-and-revert in frame:standard-
menus<%>.

Adds an “Install .plt File...” menu item, which downloads and installs .plt files
from the web, or installs them from the local disk. After that, calls the super
method.

(send a-drracket:frame:basics file-menu:between-print-and-
close file-menu)

Ñ void?
file-menu : (is-a?/c menu%)

Overrides file-menu:between-print-and-close in frame:standard-
menus<%>.

Calls the super method. Then, creates a menu item for multi-file searching.
Finally, adds a separator-menu-item%.

(send a-drracket:frame:basics file-menu:new-callback item
evt)

Ñ void?
item : (is-a?/c menu-item%)
evt : (is-a?/c control-event%)

Overrides file-menu:new-callback in frame:standard-menus<%>.

Opens a new, empty DrRacket window.

(send a-drracket:frame:basics file-menu:new-
string) Ñ string?

Overrides file-menu:new-string in frame:standard-menus<%>.

Returns the empty string.

113

(send a-drracket:frame:basics file-menu:open-callback item
evt)

Ñ void?
item : (is-a?/c menu-item%)
evt : (is-a?/c control-event%)

Overrides file-menu:open-callback in frame:standard-menus<%>.

Calls handler:edit-file.

(send a-drracket:frame:basics file-menu:open-
string) Ñ string?

Overrides file-menu:open-string in frame:standard-menus<%>.

Returns the empty string.

(send a-drracket:frame:basics get-additional-important-urls)
Ñ (listof (list string string))

Specification: Each string in the result of this method is added as a menu item
to DrRacket’s “Related Web Sites” menu item. The first string is the name of
the menu item and the second string is a url that, when the menu item is chosen,
is sent to the user’s browser.

Default implementation: Returns the empty list by default.

(send a-drracket:frame:basics help-menu:about-callback item
evt)

Ñ void?
item : (is-a?/c menu-item%)
evt : (is-a?/c control-event%)

Overrides help-menu:about-callback in frame:standard-menus<%>.

Opens an about box for DrRacket.

(send a-drracket:frame:basics help-menu:about-string)
Ñ string?

Overrides help-menu:about-string in frame:standard-menus<%>.

Returns the string "DrRacket".

(send a-drracket:frame:basics help-menu:before-about help-
menu)

Ñ void?
help-menu : (is-a?/c menu%)

Overrides help-menu:before-about in frame:standard-menus<%>.

Adds the Help Desk menu item and the Welcome to DrRacket menu item.

114

(send a-drracket:frame:basics help-menu:create-about?)
Ñ boolean?

Overrides help-menu:create-about? in frame:standard-menus<%>.

Returns #t.

drracket:frame:basics<%> : interface?
implements: frame:standard-menus<%>

This interface is the result of the drracket:frame:basics-mixin

drracket:frame:<%> : interface?
implements: frame:editor<%>

frame:text-info<%>
drracket:frame:basics<%>

(send a-drracket:frame: add-show-menu-items show-
menu) Ñ void?

show-menu : (is-a?/c menu%)

Specification: This method is called during the construction of the View menu.
This method is intended to be overridden with the overriding methods adding
other Show/Hide menu items to the View menu.

See also set-show-menu-sort-key and get-show-menu. Default implemen-
tation: Does nothing.

(send a-drracket:frame: set-show-menu-sort-key item
key) Ñ void?

item : (is-a?/c menu-item<%>)
key : (and/c real? positive?)

Controls the ordering of items in the View menu.

The number determines the sorting order and where separators in the menu
appear (smaller numbers first).

These are the numbers for many of the View menu items that come built-in to
DrRacket:

Toolbar 1
Split 2

115

Collapse 3
Show Definitions 101
Show Interactions 102
Use Horizontal Layout 103
Show Log 205
Show Tracing 206
Hide Profile 207
Show Program Contour 301
Show Line Numbers 302
Show Module Browser 401

In addition, a separator is inserted for each 100. So, for example, a separator is
inserted between Collapse and Show Definitions.

Note that the argument may be a rational number, effectively allowing insertion
between any two menu items already in the menu. For this reason, avoid using
0, or any number is that 0 modulo 100.

(send a-drracket:frame: get-show-menu) Ñ (is-a?/c menu%)

returns the View menu, for use by the update-shown method.

See also add-show-menu-items.

The method (and others) uses the word show to preserve backwards compati-
bility from when the menu itself was named the Show menu.

(send a-drracket:frame: update-shown) Ñ void?

Specification: This method is intended to be overridden. It’s job is to update
the "View" menu to match the state of the visible windows. In the case of the
standard DrRacket window, it change the menu items to reflect the visibility of
the definitions and interaction editor-canvas%s.

Call this method whenever the state of the show menu might need to change.

See also get-show-menu.

Default implementation: Does nothing.

116

20 drracket:help-desk

(drracket:help-desk:help-desk
[search-key
search-context
parent
#:language-family language-family])

Ñ any
search-key : (or/c #f string?) = #f
search-context : (or/c #f string? (list/c string? string?))

= #f
parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f
language-family : string? = #f

if search-key is a string, performs a search in the docs with search-key and search-
context . Otherwise, calls send-language-family-page. The language-family ar-
gument is passed along in either case.

The search may involve asking the user a question, in which case the dialog with the question
uses parent as its parent.

(drracket:help-desk:goto-plt-license) Ñ void?

Opens the user’s web browser and points it at the license for PLT software.

117

21 drracket:eval

(drracket:eval:set-basic-parameters
snipclasses

[#:gui-modules? gui-modules])
Ñ void?
snipclasses : (listof (is-a?/c snip-class%))
gui-modules : boolean? = #t

Sets the parameters that are shared between the repl’s initialization and
drracket:eval:build-user-eventspace/custodian.

Specifically, it sets these parameters:

• current-namespace has been set to a newly created empty namespace. This names-
pace has the following modules shared (with namespace-attach-module) from Dr-
Racket’s original namespace:

– racket/base

– '#%foreign

– mzlib/pconvert-prop

– planet/terse-info

If the gui-modules? parameter is a true value, then these modules are also shared:

– mred/mred

– mrlib/cache-image-snip

– mrlib/image-core

– mrlib/matrix-snip

• read-curly-brace-as-paren is #t;

• read-square-bracket-as-paren is #t;

• error-print-width is set to 250;

• current-ps-setup is set to a newly created ps-setup% object;

• the exit-handler is set to a parameter that kills the user’s custodian; and

• the snip-class-list, returned by get-the-snip-class-list is initialized with all of
the snipclasses in DrRacket’s eventspace’s snip-class-list.

118

(drracket:eval:get-snip-classes)
Ñ (listof (is-a?/c snip-class%))

Returns a list of all of the snipclasses in the current eventspace.

(drracket:eval:expand-program input
language-settings
eval-compile-time-part?
init
kill-termination
iter

[#:gui-modules? gui-modules?])
Ñ void?
input : (or/c input-port? drracket:language:text/pos?)
language-settings : drracket:language-configuration:language-settings?
eval-compile-time-part? : boolean?
init : (-> void?)
kill-termination : (-> void?)
iter : (-> (or/c eof-object? syntax? (cons/c string? any/c))

(-> any)
any)

gui-modules? : boolean? = #t

Use this function to expand the contents of the definitions window for use with external
program processing tools.

This function uses drracket:eval:build-user-eventspace/custodian to build
the user’s environment. The arguments language-settings , init , kill-
termination , and gui-modules? are passed to drracket:eval:build-user-
eventspace/custodian.

The input argument specifies the source of the program.

The eval-compile-time-part? argument indicates if expand is called or if expand-
top-level-with-compile-time-evals is called when the program is expanded.
Roughly speaking, if your tool will evaluate each expression itself by calling eval then
pass #f. Otherwise, if your tool just processes the expanded program, be sure to pass #t.

This function calls front-end/complete-program to expand the program. Unlike when
the Run is clicked, however, it does not call front-end/finished-complete-program.

The first argument to iter is the expanded program (represented as syntax) or eof. The
iter argument is called for each expression in the expanded program and once more with
eof, unless an error is raised during expansion. It is called from the user’s thread. If an

119

exception is raised during expansion of the user’s program, iter is not called. Consider
setting the exception-handler during init to handle this situation.

The second argument to iter is a thunk that continues expanding the rest of the contents
of the definitions window. If the first argument to iter was eof, this argument is just the
primitive void.

See also drracket:eval:expand-program/multiple.

(drracket:eval:traverse-program/multiple
language-settings
init
kill-termination

[#:gui-modules? gui-modules])
Ñ (-> (or/c input-port? drracket:language:text/pos?)

(-> (or/c eof-object? syntax? (cons/c string? any/c))
(-> any)
any)

boolean?
void?)

language-settings : drracket:language-configuration:language-settings?
init : (-> void?)
kill-termination : (-> void?)
gui-modules : boolean? = #t

This function is similar to drracket:eval:expand-program/multiple The only differ-
ence is that it does not expand the program in the editor; instead the processing function can
decide how to expand the program.

(drracket:eval:expand-program/multiple
language-settings
eval-compile-time-part?
init
kill-termination

[#:gui-modules? gui-modules?])
Ñ (-> (or/c input-port? drracket:language:text/pos?)

(-> (or/c eof-object? syntax? (cons/c string? any/c))
(-> any)
any)

boolean?
void?)

language-settings : drracket:language-configuration:language-settings?
eval-compile-time-part? : boolean?
init : (-> void?)
kill-termination : (-> void?)

120

gui-modules? : boolean? = #t

This function is just like drracket:eval:expand-program except that it is curried and
the second application can be used multiple times. Use this function if you want to initialize
the user’s thread (and namespace, etc) once but have program text that comes from multiple
sources.

The extra boolean argument to the result function determines if
drracket:language:language front-end/complete-program<%> or
drracket:language:language front-end/interaction<%> is called.

(drracket:eval:build-user-eventspace/custodian
language-settings
init
kill-termination

[#:gui-modules? gui-modules?])
Ñ eventspace? custodian?
language-settings : drracket:language-configuration:language-settings?
init : (-> void?)
kill-termination : (-> void?)
gui-modules? : boolean? = #t

This function creates a custodian and an eventspace (on the new custodian) to expand
the user’s program. It does not kill this custodian, but it can safely be shutdown (with
custodian-shutdown-all) after the expansion is finished.

It initializes the user’s eventspace’s main thread with several parameters:

• current-custodian is set to a new custodian.

• In addition, it calls drracket:eval:set-basic-parameters, passing the #:gui-
modules? parameter along.

The language-settings argument is the current language and its settings. See
drracket:language-configuration:language-settings for details on that struc-
ture.

If the program is associated with a DrRacket frame, get the frame’s language settings from
the get-next-settings method of drracket:unit:definitions-text<%>. Also,
the most recently chosen language in the language dialog is saved via the framework’s
preferences. Apply preferences:get to drracket:language-configuration:get-
settings-preferences-symbol for that language-settings .

121

The init argument is called after the user’s parameters are all set, but before the program
is run. It is called on the user’s thread. The current-directory and current-load-
relative-directory parameters are not set, so if there are appropriate directories, the
init argument is a good place to set them.

The kill-termination argument is called when the main thread of the eventspace ter-
minates, no matter if the custodian was shutdown, or the thread was killed. This proce-
dure is also called when the thread terminates normally. This procedure is called from a
new, dedicated thread (i. e., not the thread created to do the expansion, nor the thread that
drracket:eval:build-user-eventspace/custodian was called from.)

122

22 drracket:modes

(drracket:modes:add-mode
name
surrogate
repl-submit
matches-language

[#:intended-to-edit-programs? intended-to-edit-programs?])
Ñ drracket:modes:mode?
name : string?
surrogate : (or/c #f (is-a?/c mode:surrogate-text<%>))
repl-submit : (-> (is-a?/c drracket:rep:text%) number? boolean?)
matches-language : (-> (or/c #f (listof string?)) boolean?)
intended-to-edit-programs? : boolean? = #t

Adds a mode to DrRacket. Returns a mode value that identifies the mode.

The first argument, name , is the name of the mode, used in DrRacket’s GUI to allow the
user to select this mode.

The surrogate argument is set to the definitions text and the interactions text (via the
mode:host-text set-surrogate<%> method) whenever this mode is enabled.

The repl-submit procedure is called whenever the user types a return in the interactions
window. It is passed the interactions editor and the position where the last prompt occurs. If
it returns #t, the text after the last prompt is treated as a program fragment and evaluated,
according to the language settings. If it returns #f, the text is assumed to be an incomplete
program fragment, and the keystroke is not treated specially.

The matches-language predicate is called whenever the language changes. If it returns
#t this mode is installed. It is passed the list of strings that correspond to the names of the
language in the language dialog.

The intended-to-edit-programs? boolean indicates if this mode is intended to be for
editing programs (as opposed to some other kind of file content). If it is #f, online expansion
is disabled and DrRacket won’t look for (module at the front of the buffer to try to guess
the intended filename.

Modes are tested in the opposite order that they are added. That is, the last mode to be added
gets tested first when the filename changes or when the language changes.

See also drracket:modes:get-modes.

Changed in version 1.1 of package drracket-core-lib: Added the intended-to-edit-programs? argument.

123

(struct drracket:modes:mode (name
surrogate
repl-submit
matches-language
intended-to-edit-programs?))

name : string?
surrogate : (or/c #f (is-a?/c mode:surrogate-text<%>))
repl-submit : (-> (is-a?/c drracket:rep:text%) number? boolean?)
matches-language : (-> (or/c #f (listof string?)) boolean?)
intended-to-edit-programs? : boolean?

See drracket:modes:add-mode for details on modes.

Changed in version 1.1 of package drracket-core-lib: Added the intended-to-edit-programs? field.

drracket:modes:struct:mode : struct-type?

An alias for struct:drracket:modes:mode.

(drracket:modes:get-modes) Ñ (listof drracket:modes:mode?)

Returns all of the modes currently added to DrRacket.

Note that the surrogate field of the mode corresponding to the module language does not
take into account the definitions-text-surrogate, so it may not be the actual class
used directly in DrRacket, even when the mode is active.

See also drracket:modes:add-mode.

124

23 drracket:module-language-tools

(drracket:module-language-tools:add-opt-out-toolbar-button
make-button
id

[#:number number])
Ñ void?
make-button : (-> (is-a?/c top-level-window<%>)

(is-a?/c area-container<%>)
(is-a?/c switchable-button%))

id : symbol?
number : (or/c real? #f) = #f

Call this function to add another button to DrRacket’s toolbar. When buttons are added this
way, DrRacket monitors the #lang line at the top of the file; when it changes DrRacket
queries the language to see if this button should be included. These buttons are “opt out”,
meaning that if the language doesn’t explicitly ask to not have this button (or all such but-
tons), the button will appear. See drracket:opt-out-toolbar-buttons for more infor-
mation.

The number argument is the same as the number argument to register-toolbar-
button.

(drracket:module-language-tools:add-opt-in-toolbar-button
make-button
id

[#:number number])
Ñ void?
make-button : (-> (is-a?/c top-level-window<%>)

(is-a?/c area-container<%>)
(is-a?/c switchable-button%))

id : symbol?
number : (or/c real? #f) = #f

Like drracket:module-language-tools:add-opt-out-toolbar-button, but for
buttons that should not be enabled by default, but instead explicitly opted in by languages
via drracket:opt-in-toolbar-buttons.

Added in version 1.6 of package drracket-core-lib.

(drracket:module-language-tools:add-online-expansion-handler
mod-path
id
local-handler)

125

Ñ void?
mod-path : path-string?
id : symbol?
local-handler : (-> (is-a?/c drracket:unit:definitions-text<%>)

any/c
any)

Registers a pair of procedures with DrRacket’s online expansion machinery. (See also
drracket:module-language-tools:add-online-expansion-monitor.)

The procedure id from mod-path is loaded by dynamic-require into a specially designed
separate place. When DrRacket detects that the editor has been modified, it sends the con-
tents of the editor over to that separate place, expands the program there, and then supplies
the fully expanded object to that first procedure. (The procedure is called in the same context
as the expansion process.)

If the expansion raises an exception, then that exception is supplied as the first argument
instead of the syntax object. If a non-exn? is raised, or if the expansion process is terminated
(e.g. via custodian-shutdown-all called during expansion), then the expansion monitor
is not notified.

The contract for that procedure is

(-> (or/c syntax? exn?) path? any/c custodian?
any)

There are three other arguments:

• The path? argument is the path that was the current-directory when the code was
expanded. This directory should be used as the current-directory when resolving
module paths obtained from the syntax object.

• The third argument is the source object used in the syntax objects that come from the
definitions window in DrRacket. It may be a path (if the file was saved), but it also
might not be. Use equal? to compare it with the syntax-source field of syntax
objects to determine if they come from the definitions window.

• Note that the thread that calls this procedure may be killed at any time: DrRacket may
kill it when the user types in the buffer (in order to start a new expansion), but bizarro
code may also create a separate thread during expansion that lurks around and then
mutates arbitrary things.

Some code, however, should be longer running, surviving such custodian shutdowns.
To support this, the procedure called in the separate place is supplied with a more
powerful custodian that is not shut down.

126

The result of the procedure is expected to be something that can be sent across a place-
channel, which is then sent back to the original place where DrRacket itself is running and
passed to the local-handler argument. At this point, the only code running is trusted code
(DrRacket itself and other tools), but any long running computations may freeze DrRacket’s
GUI, since this procedure is invoked on DrRacket’s eventspace’s handler thread.

(drracket:module-language-tools:add-online-expansion-monitor
mod-path
id
local-handler)

Ñ void?
mod-path : path-string?
id : symbol?
local-handler : (-> (is-a?/c drracket:unit:definitions-text<%>)

(or/c drracket:module-language-tools:start?
any/c)

any)

Registers a pair of procedures with DrRacket’s online expansion machinery.

Like drracket:module-language-tools:add-online-expansion-handler, the first
two arguments specify a procedure that is called in the separate place designated for expan-
sion.

The procedure is called before expansion starts and once it returns, expansion begins. The
procedure should match this contract:

(-> (-> any/c void?)
path? any/c custodian?
any)

The first argument is a function that transmits its argument back to the DrRacket place,
send it to the local-handler argument. The other three arguments are the same as the
corresponding procedure used by drracket:module-language-tools:add-online-
expansion-handler.

The expectation is that this procedure creates a thread and monitors the expansion process,
sending back information to the main place while expansion is progressing.

The local-handler procedure is called each time the (-> any/c void?) procedure (de-
scribed just above) is called. It is also called each time an expansion starts; it receives a value
that returns #t from drracket:module-language-tools:start? in that case.

To help with debugging, DrRacket logs progress and recovers from some errors that happen
when running the handler procedures. To monitor its progress, monitor the 'debug level of
the logger with the topic 'drracket-background-compilation.

127

(drracket:module-language-tools:start? val) Ñ boolean?
val : any/c

Returns #t if this is a special (unique) value, used as discussed in drracket:module-
language-tools:add-online-expansion-monitor. Returns #f otherwise.

(drracket:module-language-tools:register-online-expansion-pref func)
Ñ void?
func : (-> (is-a?/c vertical-panel%) void?)

Registers func so that it is called while building the preferences panel. The function is
passed a panel that contains other configuration controls for online expansion.

(drracket:module-language-tools:done? val) Ñ boolean?
val : any/c

Returns #t for drracket:module-language-tools:done and #f otherwise.

drracket:module-language-tools:done
: drracket:module-language-tools:done?

Used to inform a monitor-based handler that the online expansion has finished.

128

24 drracket:module-language

drracket:module-language:module-language<%> : interface?

The only language that implements this interface is DrRacket’s “Use the language declared
in the source” language.

(send a-drracket:module-language:module-language get-users-
language-name)

Ñ string

Returns the name of the language that is declared in the source, as a string.

drracket:module-language-tools:definitions-text<%> : interface?

(send a-drracket:module-language-tools:definitions-
text move-to-new-language)

Ñ void?

This method is called when a new language is evident in the definitions window
(by editing the #lang line.

(send a-drracket:module-language-tools:definitions-text get-
in-module-language?)

Ñ boolean?

Returns #t when the current language setting (from the language dialog) is “The
Racket Language”.

drracket:module-language-tools:tab<%> : interface?

This interface signals an implementation of a tab that specially handles programs beginning
with #lang.

drracket:module-language-tools:frame<%> : interface?

This interface signals an implementation of a frame that specially handles programs begin-
ning with #lang.

129

drracket:module-language-tools:definitions-text-mixin : (class? . -> .
class?)

argument extends/implements: text:basic<%>
racket:text<%>
drracket:unit:definitions-text<%>

result implements: drracket:module-language-tools:definitions-text<%>

drracket:module-language-tools:frame-mixin : (class? . -> . class?)
argument extends/implements: drracket:unit:frame<%>
result implements: drracket:module-language-tools:frame<%>

drracket:module-language-tools:tab-mixin : (class? . -> . class?)
argument extends/implements: drracket:unit:tab<%>
result implements: drracket:module-language-tools:tab<%>

(drracket:module-language:add-module-language) Ñ any

Adds the module language to DrRacket. This is called during DrRacket’s startup.

(drracket:module-language:module-language-put-file-mixin super%)
Ñ (implementation?/c text:basic<%>)
super% : (implementation?/c text:basic<%>)

Extends super% by overriding the put-file method to use a default name from the buffer, if
the buffer contains something like (module name ...).

130

25 drracket:tracing

drracket:tracing:tab-mixin : (class? . -> . class?)
argument extends/implements: drracket:unit:tab<%>

drracket:rep:context<%>

Tracks function call tracing information.

drracket:tracing:frame-mixin : (class? . -> . class?)
argument extends/implements: drracket:frame:<%>

drracket:unit:frame<%>

Tracks function call tracing information.

(drracket:tracing:annotate stx) Ñ syntax?
stx : syntax?

Call this function to add tracing annotations to the a fully-expanded expression. When the
program runs, DrRacket will pop open the tracing window to display the trace.

131

26 drracket:init

(drracket:init:original-error-display-handler message
exn) Ñ any

message : string?
exn : any/c

This is the error-display-handler installed at the time that DrRacket starts up.

DrRacket sets the error-display-handler to one that shows an “Internal Error” dialog
box.

132

27 Backwards Compatibility

This section lists the bindings that begin with drscheme: provided by the tools library; they
are here for backwards compatibility and to provide links to the drracket: versions of the
names.

drscheme:tool^ : any/c

This is provided for backwards compatibility; new code should use drracket:tool^ in-
stead.

drscheme:tool-exports^ : any/c

This is provided for backwards compatibility; new code should use drracket:tool-
exports^ instead.

drscheme:debug:profile-definitions-text-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:profile-definitions-text-mixin instead.

drscheme:debug:profile-tab-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:profile-tab-mixin instead.

drscheme:debug:profile-unit-frame-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:profile-unit-frame-mixin instead.

drscheme:debug:test-coverage-interactions-text-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:test-coverage-interactions-text-mixin instead.

drscheme:debug:test-coverage-definitions-text-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:test-coverage-definitions-text-mixin instead.

133

drscheme:debug:test-coverage-tab-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:test-coverage-tab-mixin instead.

drscheme:debug:test-coverage-frame-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:test-coverage-frame-mixin instead.

drscheme:unit:tab% : any/c

This is provided for backwards compatibility; new code should use drracket:unit:tab%
instead.

drscheme:unit:frame% : any/c

This is provided for backwards compatibility; new code should use
drracket:unit:frame% instead.

drscheme:unit:definitions-canvas% : any/c

This is provided for backwards compatibility; new code should use
drracket:unit:definitions-canvas% instead.

drscheme:unit:get-definitions-text% : any/c

This is provided for backwards compatibility; new code should use drracket:unit:get-
definitions-text% instead.

drscheme:unit:interactions-canvas% : any/c

This is provided for backwards compatibility; new code should use
drracket:unit:interactions-canvas% instead.

drscheme:rep:drs-bindings-keymap-mixin : any/c

This is provided for backwards compatibility; new code should use drracket:rep:drs-
bindings-keymap-mixin instead.

134

drscheme:rep:text% : any/c

This is provided for backwards compatibility; new code should use drracket:rep:text%
instead.

drscheme:rep:text<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:rep:text<%> instead.

drscheme:frame:mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:frame:mixin instead.

drscheme:frame:basics-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:frame:basics-mixin instead.

drscheme:language:language<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:language:language<%> instead.

drscheme:language:module-based-language<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:language:module-based-language<%> instead.

drscheme:language:simple-module-based-language<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:language:simple-module-based-language<%> instead.

drscheme:language:simple-module-based-language% : any/c

This is provided for backwards compatibility; new code should use
drracket:language:simple-module-based-language% instead.

135

drscheme:language:simple-module-based-language->module-based-
language-mixin

: any/c

This is provided for backwards compatibility; new code should use
drracket:language:simple-module-based-language->module-based-
language-mixin instead.

drscheme:language:module-based-language->language-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:language:module-based-language->language-mixin instead.

drscheme:tracing:tab-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:tracing:tab-mixin instead.

drscheme:tracing:frame-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:tracing:frame-mixin instead.

drscheme:module-language:module-language<%> : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language:module-language<%> instead.

drscheme:module-language-tools:frame-mixin : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language-tools:frame-mixin instead.

drscheme:module-language-tools:tab-mixin : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language-tools:tab-mixin instead.

136

drscheme:module-language-tools:definitions-text-mixin : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language-tools:definitions-text-mixin instead.

drscheme:frame:basics<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:frame:basics<%> instead.

drscheme:frame:<%> : any/c

This is provided for backwards compatibility; new code should use drracket:frame:<%>
instead.

drscheme:unit:frame<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:unit:frame<%> instead.

drscheme:unit:definitions-text<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:unit:definitions-text<%> instead.

drscheme:unit:tab<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:unit:tab<%> instead.

drscheme:rep:context<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:rep:context<%> instead.

drscheme:module-language-tools:definitions-text<%> : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language-tools:definitions-text<%> instead.

137

drscheme:module-language-tools:tab<%> : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language-tools:tab<%> instead.

drscheme:module-language-tools:frame<%> : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language-tools:frame<%> instead.

drscheme:debug:error-display-handler/stacktrace
: (->* (string? any/c)

((or/c false/c (listof srcloc?))
#:definitions-text (or/c #f (is-a?/c drracket:unit:definitions-text<%>))
#:interactions-text (or/c #f (is-a?/c drracket:rep:text<%>)))

any/c)

This binding provided for backwards compatibility; new code should use
drracket:debug:error-display-handler/stacktrace instead.

drscheme:debug:make-debug-error-display-handler
: (-> (-> string? (or/c any/c exn?) any)

(-> string? (or/c any/c exn?) any))

This binding provided for backwards compatibility; new code should use
drracket:debug:make-debug-error-display-handler instead.

drscheme:debug:hide-backtrace-window : (-> void?)

This binding provided for backwards compatibility; new code should use
drracket:debug:hide-backtrace-window instead.

drscheme:debug:add-prefs-panel : (-> void?)

This binding provided for backwards compatibility; new code should use
drracket:debug:add-prefs-panel instead.

drscheme:debug:make-debug-compile-handler
: (-> (-> any/c boolean? compiled-expression?)

(-> any/c boolean? compiled-expression?))

138

This binding provided for backwards compatibility; new code should use
drracket:debug:make-debug-compile-handler instead.

drscheme:debug:make-debug-eval-handler
: (-> (-> any/c any) (-> any/c any))

This binding provided for backwards compatibility; new code should use
drracket:debug:make-debug-eval-handler instead.

drscheme:debug:test-coverage-enabled : (parameter/c boolean?)

This binding provided for backwards compatibility; new code should use
drracket:debug:test-coverage-enabled instead.

drscheme:debug:test-coverage-on-style-name : string?

This binding provided for backwards compatibility; new code should use
drracket:debug:test-coverage-on-style-name instead.

drscheme:debug:test-coverage-off-style-name : string?

This binding provided for backwards compatibility; new code should use
drracket:debug:test-coverage-off-style-name instead.

drscheme:debug:profiling-enabled : (parameter/c boolean?)

This binding provided for backwards compatibility; new code should use
drracket:debug:profiling-enabled instead.

drscheme:debug:bug-info->ticket-url
: (-> (listof (cons/c symbol? (or/c #f string?)))

url?)

This binding provided for backwards compatibility; new code should use
drracket:debug:bug-info->ticket-url instead.

drscheme:debug:small-planet-bitmap : (is-a?/c bitmap%)

139

This binding provided for backwards compatibility; new code should use
drracket:debug:small-planet-bitmap instead.

drscheme:debug:open-and-highlight-in-file
: (->* ((or/c srcloc? (listof srcloc?)))

((or/c #f (cons/c (𝜆 (x) (and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a? v editor<%>)))))

number?)))
void?)

This binding provided for backwards compatibility; new code should use
drracket:debug:open-and-highlight-in-file instead.

drscheme:debug:show-backtrace-window/edition-pairs
: (-> string?

(listof srcloc?)
(listof
(or/c
#f
(cons/c (𝜆 (x)

(and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a? v editor<%>)))))

number?)))
(or/c #f (is-a?/c drracket:unit:definitions-text<%>))
(or/c #f (is-a?/c drracket:rep:text<%>))
void?)

This binding provided for backwards compatibility; new code should use
drracket:debug:show-backtrace-window/edition-pairs instead.

drscheme:debug:show-backtrace-window/edition-pairs/two

140

: (-> string?
(listof srcloc?)
(listof
(or/c
#f
(cons/c (𝜆 (x)

(and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a? v editor<%>)))))

number?)))
(listof srcloc?)
(listof
(or/c
#f
(cons/c (𝜆 (x)

(and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a? v editor<%>)))))

number?)))
(or/c #f (is-a?/c drracket:unit:definitions-text<%>))
(or/c #f (is-a?/c drracket:rep:text<%>))
void?)

This binding provided for backwards compatibility; new code should use
drracket:debug:show-backtrace-window/edition-pairs/two instead.

drscheme:debug:get-error-color : (-> (is-a?/c color%))

This binding provided for backwards compatibility; new code should use
drracket:debug:get-error-color instead.

drscheme:debug:get-error-color-name
: (-> color-prefs:color-scheme-color-name?)

This binding provided for backwards compatibility; new code should use
drracket:debug:get-error-color-name instead.

drscheme:debug:show-backtrace-window

141

: (->* (string?
(or/c exn?

(listof srcloc?)))
((or/c #f (is-a?/c drracket:rep:text<%>))
(or/c #f (is-a?/c drracket:unit:definitions-text<%>)))

void?)

This binding provided for backwards compatibility; new code should use
drracket:debug:show-backtrace-window instead.

drscheme:eval:set-basic-parameters
: (->* ((listof (is-a?/c snip-class%)))

(#:gui-modules? boolean?)
void?)

This binding provided for backwards compatibility; new code should use
drracket:eval:set-basic-parameters instead.

drscheme:eval:get-snip-classes
: (-> (listof (is-a?/c snip-class%)))

This binding provided for backwards compatibility; new code should use
drracket:eval:get-snip-classes instead.

drscheme:eval:expand-program
: (->* ((or/c input-port? drracket:language:text/pos?)

drracket:language-configuration:language-settings?
boolean?
(-> void?)
(-> void?)
(-> (or/c eof-object? syntax? (cons/c string? any/c))

(-> any)
any))

(#:gui-modules? boolean?)
void?)

This binding provided for backwards compatibility; new code should use
drracket:eval:expand-program instead.

drscheme:eval:traverse-program/multiple

142

: (->* (drracket:language-configuration:language-settings?
(-> void?)
(-> void?))

(#:gui-modules? boolean?)
(-> (or/c input-port? drracket:language:text/pos?)

(-> (or/c eof-object? syntax? (cons/c string? any/c))
(-> any)
any)

boolean?
void?))

This binding provided for backwards compatibility; new code should use
drracket:eval:traverse-program/multiple instead.

drscheme:eval:expand-program/multiple
: (->* (drracket:language-configuration:language-settings?

boolean?
(-> void?)
(-> void?))

(#:gui-modules? boolean?)
(-> (or/c input-port? drracket:language:text/pos?)

(-> (or/c eof-object? syntax? (cons/c string? any/c))
(-> any)
any)

boolean?
void?))

This binding provided for backwards compatibility; new code should use
drracket:eval:expand-program/multiple instead.

drscheme:eval:build-user-eventspace/custodian
: (->* (drracket:language-configuration:language-settings?

(-> void?)
(-> void?))

(#:gui-modules? boolean?)
(values eventspace? custodian?))

This binding provided for backwards compatibility; new code should use
drracket:eval:build-user-eventspace/custodian instead.

drscheme:get/extend:extend-unit-frame
: (->i ([mixin (make-mixin-contract drracket:unit:frame%)])

([before boolean?]
#:name-for-changes [name-for-changes (or/c #f symbol?)])

[result void?])

143

This binding provided for backwards compatibility; new code should use
drracket:get/extend:extend-unit-frame instead.

drscheme:get/extend:get-unit-frame
: (-> (subclass?/c drracket:unit:frame%))

This binding provided for backwards compatibility; new code should use
drracket:get/extend:get-unit-frame instead.

drscheme:get/extend:extend-tab
: (->i ([mixin (make-mixin-contract drracket:unit:tab<%>)])

([before boolean?]
#:name-for-changes [name-for-changes (or/c #f symbol?)])

[result void?])

This binding provided for backwards compatibility; new code should use
drracket:get/extend:extend-tab instead.

drscheme:get/extend:get-tab
: (-> (implementation?/c drracket:unit:tab<%>))

This binding provided for backwards compatibility; new code should use
drracket:get/extend:get-tab instead.

drscheme:get/extend:extend-definitions-text
: (->i ([mixin (make-mixin-contract drracket:unit:definitions-text<%>

editor:standard-style-list<%>
editor:info<%>
racket:text<%>
text:all-string-snips<%>
text:file<%>
text:info<%>
text:wide-snip<%>)])

([before boolean?]
#:name-for-changes [name-for-changes (or/c #f symbol?)])

[result void?])

This binding provided for backwards compatibility; new code should use
drracket:get/extend:extend-definitions-text instead.

drscheme:get/extend:get-definitions-text

144

: (-> (and/c (implementation?/c drracket:unit:definitions-text<%>)
(implementation?/c editor:standard-style-list<%>)
(implementation?/c editor:info<%>)
(implementation?/c racket:text<%>)
(implementation?/c text:all-string-snips<%>)
(implementation?/c text:file<%>)
(implementation?/c text:info<%>)
(implementation?/c text:wide-snip<%>)))

This binding provided for backwards compatibility; new code should use
drracket:get/extend:get-definitions-text instead.

drscheme:get/extend:extend-interactions-text
: (->i ([mixin (make-mixin-contract drracket:rep:text<%>)])

([before boolean?]
#:name-for-changes [name-for-changes (or/c #f symbol?)])

[result void?])

This binding provided for backwards compatibility; new code should use
drracket:get/extend:extend-interactions-text instead.

drscheme:get/extend:get-interactions-text
: (-> (implementation?/c drracket:rep:text<%>))

This binding provided for backwards compatibility; new code should use
drracket:get/extend:get-interactions-text instead.

drscheme:get/extend:extend-definitions-canvas
: (->i ([mixin (make-mixin-contract drracket:unit:definitions-canvas%)])

([before boolean?]
#:name-for-changes [name-for-changes (or/c #f symbol?)])

[result void?])

This binding provided for backwards compatibility; new code should use
drracket:get/extend:extend-definitions-canvas instead.

drscheme:get/extend:get-definitions-canvas
: (-> (subclass?/c drracket:unit:definitions-canvas%))

This binding provided for backwards compatibility; new code should use
drracket:get/extend:get-definitions-canvas instead.

145

drscheme:get/extend:extend-interactions-canvas
: (->i ([mixin (make-mixin-contract drracket:unit:interactions-canvas%)])

([before boolean?]
#:name-for-changes [name-for-changes (or/c #f symbol?)])

[result void?])

This binding provided for backwards compatibility; new code should use
drracket:get/extend:extend-interactions-canvas instead.

drscheme:get/extend:get-interactions-canvas
: (-> (subclass?/c drracket:unit:interactions-canvas%))

This binding provided for backwards compatibility; new code should use
drracket:get/extend:get-interactions-canvas instead.

drscheme:get/extend:disallow-re-extension! : (-> void?)

This binding provided for backwards compatibility; new code should use
drracket:get/extend:disallow-re-extension! instead.

drscheme:get/extend:allow-re-extension! : (-> void?)

This binding provided for backwards compatibility; new code should use
drracket:get/extend:allow-re-extension! instead.

drscheme:help-desk:help-desk
: (->* ()

((or/c #f string?)
(or/c #f string? (list/c string? string?))
(or/c (is-a?/c frame%) (is-a?/c dialog%) #f)
#:language-family string?)

any)

This binding provided for backwards compatibility; new code should use drracket:help-
desk:help-desk instead.

drscheme:help-desk:goto-plt-license : (-> void?)

This binding provided for backwards compatibility; new code should use drracket:help-
desk:goto-plt-license instead.

146

drscheme:language-configuration:get-languages
: (-> (listof (is-a?/c drracket:language:language<%>)))

This binding provided for backwards compatibility; new code should use
drracket:language-configuration:get-languages instead.

drscheme:language-configuration:add-language
: (->* ((and/c (is-a?/c drracket:language:language<%>)

drracket:language:object/c))
(#:allow-executable-creation? boolean?)
void?)

This binding provided for backwards compatibility; new code should use
drracket:language-configuration:add-language instead.

drscheme:language-configuration:get-settings-preferences-symbol
: (-> symbol?)

This binding provided for backwards compatibility; new code should use
drracket:language-configuration:get-settings-preferences-symbol in-
stead.

drscheme:language-configuration:language-settings?
: (-> any/c boolean?)

This binding provided for backwards compatibility; new code should use
drracket:language-configuration:language-settings? instead.

drscheme:language-configuration:language-settings-language
: (-> drracket:language-configuration:language-settings? (or/c (is-a?/c drracket:language:language<%>) drracket:language:object/c))

This binding provided for backwards compatibility; new code should use
drracket:language-configuration:language-settings-language instead.

drscheme:language-configuration:language-settings-settings
: (-> drracket:language-configuration:language-settings? any/c)

This binding provided for backwards compatibility; new code should use
drracket:language-configuration:language-settings-settings instead.

147

drscheme:language-configuration:struct:language-settings
: struct-type?

This binding provided for backwards compatibility; new code should use
drracket:language-configuration:struct:language-settings instead.

drscheme:language-configuration:make-language-settings
: procedure?

This binding provided for backwards compatibility; new code should use
drracket:language-configuration:make-language-settings instead.

drscheme:language-configuration:language-dialog
: (->* (boolean? drracket:language-configuration:language-settings?)

((or/c false/c (is-a?/c top-level-window<%>)))
(or/c false/c drracket:language-configuration:language-settings?))

This binding provided for backwards compatibility; new code should use
drracket:language-configuration:language-dialog instead.

drscheme:language-configuration:fill-language-dialog
: (->*

((is-a?/c vertical-panel%)
(is-a?/c area-container<%>)
drracket:language-configuration:language-settings?)

((or/c false/c (is-a?/c top-level-window<%>))
(-> symbol? void?))

(values (-> (is-a?/c drracket:language:language<%>))
(-> any/c)
(-> any/c (is-a?/c mouse-event%) any)))

This binding provided for backwards compatibility; new code should use
drracket:language-configuration:fill-language-dialog instead.

drscheme:language:register-capability
: (->i ([s symbol?]

[the-contract contract?]
[default (the-contract) the-contract])

()
[res void?])

148

This binding provided for backwards compatibility; new code should use
drracket:language:register-capability instead.

drscheme:language:capability-registered? : (-> symbol? boolean?)

This binding provided for backwards compatibility; new code should use
drracket:language:capability-registered? instead.

drscheme:language:get-capability-default
: (->i ([s (and/c symbol? drracket:language:capability-registered?)])

()
[res (s) (drracket:language:get-capability-contract s)])

This binding provided for backwards compatibility; new code should use
drracket:language:get-capability-default instead.

drscheme:language:get-capability-contract
: (-> (and/c symbol? drracket:language:capability-registered?)

contract?)

This binding provided for backwards compatibility; new code should use
drracket:language:get-capability-contract instead.

drscheme:language:add-snip-value
: (->* ((-> any/c boolean?)

(-> any/c (is-a?/c snip%)))
((-> any/c))
void?)

This binding provided for backwards compatibility; new code should use
drracket:language:add-snip-value instead.

drscheme:language:extend-language-interface
: (-> interface?

(make-mixin-contract drracket:language:language<%>)
void?)

This binding provided for backwards compatibility; new code should use
drracket:language:extend-language-interface instead.

149

drscheme:language:get-default-mixin
: (-> (make-mixin-contract drracket:language:language<%>))

This binding provided for backwards compatibility; new code should use
drracket:language:get-default-mixin instead.

drscheme:language:get-language-extensions
: (-> (listof interface?))

This binding provided for backwards compatibility; new code should use
drracket:language:get-language-extensions instead.

drscheme:language:put-executable
: ((is-a?/c top-level-window<%>)

path?
(or/c boolean? 'launcher 'standalone 'distribution)
boolean?
string?
. -> . (or/c false/c path?))

This binding provided for backwards compatibility; new code should use
drracket:language:put-executable instead.

drscheme:language:create-executable-gui
: ((or/c #f (is-a?/c top-level-window<%>))

(or/c #f string?)
(or/c #t 'launcher 'standalone 'distribution)
(or/c #t 'mzscheme 'mred)
. -> .
(or/c #f

(list/c (or/c 'no-show 'launcher 'stand-alone 'distribution)
(or/c 'no-show 'mred 'mzscheme)
string?
(listof (cons/c symbol? any/c)))))

This binding provided for backwards compatibility; new code should use
drracket:language:create-executable-gui instead.

drscheme:language:create-module-based-stand-alone-executable
: ((or/c path? string?)

(or/c path? string?) any/c any/c any/c boolean? boolean?
. -> .
void?)

150

This binding provided for backwards compatibility; new code should use
drracket:language:create-module-based-stand-alone-executable instead.

drscheme:language:create-module-based-distribution
: ((or/c path? string?)

(or/c path? string?) any/c any/c any/c boolean? boolean?
. -> .
void?)

This binding provided for backwards compatibility; new code should use
drracket:language:create-module-based-distribution instead.

drscheme:language:create-distribution-for-executable
: ((or/c path? string?)

boolean?
(-> path? void?)
. -> .
void?)

This binding provided for backwards compatibility; new code should use
drracket:language:create-distribution-for-executable instead.

drscheme:language:create-module-based-launcher
: ((or/c path? string?) (or/c path? string?) any/c any/c any/c boolean? boolean?

. -> .
void?)

This binding provided for backwards compatibility; new code should use
drracket:language:create-module-based-launcher instead.

drscheme:language:simple-module-based-language-convert-value
: (-> any/c drracket:language:simple-settings? any)

This binding provided for backwards compatibility; new code should use
drracket:language:simple-module-based-language-convert-value instead.

drscheme:language:setup-printing-parameters
: (-> (-> any) drracket:language:simple-settings? (or/c number? 'infinity) any)

This binding provided for backwards compatibility; new code should use
drracket:language:setup-printing-parameters instead.

151

drscheme:language:make-setup-printing-parameters
: (-> (-> (-> any) drracket:language:simple-settings? (or/c number? 'infinity) any))

This binding provided for backwards compatibility; new code should use
drracket:language:make-setup-printing-parameters instead.

drscheme:language:text/pos? : (-> any/c boolean?)

This binding provided for backwards compatibility; new code should use
drracket:language:text/pos? instead.

drscheme:language:text/pos-text
: (-> drracket:language:text/pos? (is-a?/c text%))

This binding provided for backwards compatibility; new code should use
drracket:language:text/pos-text instead.

drscheme:language:text/pos-start
: (-> drracket:language:text/pos? exact-nonnegative-integer?)

This binding provided for backwards compatibility; new code should use
drracket:language:text/pos-start instead.

drscheme:language:text/pos-end
: (-> drracket:language:text/pos? exact-nonnegative-integer?)

This binding provided for backwards compatibility; new code should use
drracket:language:text/pos-end instead.

drscheme:language:make-text/pos : procedure?

This binding provided for backwards compatibility; new code should use
drracket:language:make-text/pos instead.

drscheme:language:struct:text/pos : struct-type?

This binding provided for backwards compatibility; new code should use
drracket:language:struct:text/pos instead.

152

drscheme:language:simple-settings? : (-> any/c boolean?)

This binding provided for backwards compatibility; new code should use
drracket:language:simple-settings? instead.

drscheme:language:simple-settings-case-sensitive
: (-> drracket:language:simple-settings? boolean?)

This binding provided for backwards compatibility; new code should use
drracket:language:simple-settings-case-sensitive instead.

drscheme:language:simple-settings-printing-style
: (-> drracket:language:simple-settings? (or/c 'constructor 'quasiquote 'write 'trad-write 'print))

This binding provided for backwards compatibility; new code should use
drracket:language:simple-settings-printing-style instead.

drscheme:language:simple-settings-fraction-style
: (-> drracket:language:simple-settings? (or/c 'mixed-fraction 'mixed-fraction-e 'repeating-decimal 'repeating-decimal-e))

This binding provided for backwards compatibility; new code should use
drracket:language:simple-settings-fraction-style instead.

drscheme:language:simple-settings-show-sharing
: (-> drracket:language:simple-settings? boolean?)

This binding provided for backwards compatibility; new code should use
drracket:language:simple-settings-show-sharing instead.

drscheme:language:simple-settings-insert-newlines
: (-> drracket:language:simple-settings? boolean?)

This binding provided for backwards compatibility; new code should use
drracket:language:simple-settings-insert-newlines instead.

drscheme:language:simple-settings-annotations
: (-> drracket:language:simple-settings? (or/c 'none 'debug 'debug/profile 'test-coverage))

153

This binding provided for backwards compatibility; new code should use
drracket:language:simple-settings-annotations instead.

drscheme:language:make-simple-settings : procedure?

This binding provided for backwards compatibility; new code should use
drracket:language:make-simple-settings instead.

drscheme:language:struct:simple-settings : struct-type?

This binding provided for backwards compatibility; new code should use
drracket:language:struct:simple-settings instead.

drscheme:language:simple-settings->vector
: (drracket:language:simple-settings? . -> . vector?)

This binding provided for backwards compatibility; new code should use
drracket:language:simple-settings->vector instead.

drscheme:modes:add-mode
: (->* (string?

(or/c #f (is-a?/c mode:surrogate-text<%>))
(-> (is-a?/c drracket:rep:text%) number? boolean?)
(-> (or/c #f (listof string?)) boolean?))

(#:intended-to-edit-programs? boolean?)
drracket:modes:mode?)

This binding provided for backwards compatibility; new code should use
drracket:modes:add-mode instead.

drscheme:modes:mode? : (-> any/c boolean?)

This binding provided for backwards compatibility; new code should use
drracket:modes:mode? instead.

drscheme:modes:mode-name : (-> drracket:modes:mode? string?)

This binding provided for backwards compatibility; new code should use
drracket:modes:mode-name instead.

154

drscheme:modes:mode-surrogate
: (-> drracket:modes:mode? (or/c #f (is-a?/c mode:surrogate-text<%>)))

This binding provided for backwards compatibility; new code should use
drracket:modes:mode-surrogate instead.

drscheme:modes:mode-repl-submit
: (-> drracket:modes:mode? (-> (is-a?/c drracket:rep:text%) number? boolean?))

This binding provided for backwards compatibility; new code should use
drracket:modes:mode-repl-submit instead.

drscheme:modes:mode-matches-language
: (-> drracket:modes:mode? (-> (or/c #f (listof string?)) boolean?))

This binding provided for backwards compatibility; new code should use
drracket:modes:mode-matches-language instead.

drscheme:modes:mode-intended-to-edit-programs?
: (-> drracket:modes:mode? boolean?)

This binding provided for backwards compatibility; new code should use
drracket:modes:mode-intended-to-edit-programs? instead.

drscheme:modes:struct:mode : struct-type?

This binding provided for backwards compatibility; new code should use
drracket:modes:struct:mode instead.

drscheme:modes:get-modes : (-> (listof drracket:modes:mode?))

This binding provided for backwards compatibility; new code should use
drracket:modes:get-modes instead.

drscheme:module-language-tools:add-opt-out-toolbar-button
: (->* ((-> (is-a?/c top-level-window<%>)

(is-a?/c area-container<%>)
(is-a?/c switchable-button%))

symbol?)
(#:number (or/c real? #f))
void?)

155

This binding provided for backwards compatibility; new code should use
drracket:module-language-tools:add-opt-out-toolbar-button instead.

drscheme:module-language-tools:add-opt-in-toolbar-button
: (->* ((-> (is-a?/c top-level-window<%>)

(is-a?/c area-container<%>)
(is-a?/c switchable-button%))

symbol?)
(#:number (or/c real? #f))
void?)

This binding provided for backwards compatibility; new code should use
drracket:module-language-tools:add-opt-in-toolbar-button instead.

drscheme:module-language-tools:add-online-expansion-handler
: (-> path-string? symbol? (-> (is-a?/c drracket:unit:definitions-text<%>)

any/c
any)

void?)

This binding provided for backwards compatibility; new code should use
drracket:module-language-tools:add-online-expansion-handler instead.

drscheme:module-language-tools:add-online-expansion-monitor
: (-> path-string? symbol?

(-> (is-a?/c drracket:unit:definitions-text<%>)
(or/c drracket:module-language-tools:start?

any/c)
any)

void?)

This binding provided for backwards compatibility; new code should use
drracket:module-language-tools:add-online-expansion-monitor instead.

drscheme:module-language-tools:start? : (-> any/c boolean?)

This binding provided for backwards compatibility; new code should use
drracket:module-language-tools:start? instead.

drscheme:module-language-tools:register-online-expansion-pref
: (-> (-> (is-a?/c vertical-panel%) void?) void?)

156

This binding provided for backwards compatibility; new code should use
drracket:module-language-tools:register-online-expansion-pref instead.

drscheme:module-language-tools:done? : (-> any/c boolean?)

This binding provided for backwards compatibility; new code should use
drracket:module-language-tools:done? instead.

drscheme:module-language-tools:done
: drracket:module-language-tools:done?

This binding provided for backwards compatibility; new code should use
drracket:module-language-tools:done instead.

drscheme:module-language:add-module-language : (-> any)

This binding provided for backwards compatibility; new code should use
drracket:module-language:add-module-language instead.

drscheme:module-language:module-language-put-file-mixin
: (-> (implementation?/c text:basic<%>) (implementation?/c text:basic<%>))

This binding provided for backwards compatibility; new code should use
drracket:module-language:module-language-put-file-mixin instead.

drscheme:rep:get-welcome-delta : (-> (is-a?/c style-delta%))

This binding provided for backwards compatibility; new code should use
drracket:rep:get-welcome-delta instead.

drscheme:rep:get-dark-green-delta : (-> (is-a?/c style-delta%))

This binding provided for backwards compatibility; new code should use
drracket:rep:get-dark-green-delta instead.

drscheme:rep:get-error-delta : (-> (is-a?/c style-delta%))

This binding provided for backwards compatibility; new code should use
drracket:rep:get-error-delta instead.

157

drscheme:rep:get-drs-bindings-keymap : (-> (is-a?/c keymap%))

This binding provided for backwards compatibility; new code should use
drracket:rep:get-drs-bindings-keymap instead.

drscheme:rep:current-rep
: (-> (or/c false/c (is-a?/c drracket:rep:text%)))

This binding provided for backwards compatibility; new code should use
drracket:rep:current-rep instead.

drscheme:rep:current-value-port : (-> (or/c false/c port?))

This binding provided for backwards compatibility; new code should use
drracket:rep:current-value-port instead.

drscheme:rep:after-expression : (parameter/c (or/c #f (-> any)))

This binding provided for backwards compatibility; new code should use
drracket:rep:after-expression instead.

drscheme:rep:current-language-settings
: (parameter/c drracket:language-configuration:language-settings?)

This binding provided for backwards compatibility; new code should use
drracket:rep:current-language-settings instead.

drscheme:rep:module-language-initial-run
: (parameter/c boolean?)

This binding provided for backwards compatibility; new code should use
drracket:rep:module-language-initial-run instead.

drscheme:unit:get-program-editor-mixin
: (-> ((subclass?/c text%) . -> . (subclass?/c text%)))

This binding provided for backwards compatibility; new code should use
drracket:unit:get-program-editor-mixin instead.

158

drscheme:unit:add-to-program-editor-mixin
: (((subclass?/c text%) . -> . (subclass?/c text%)) . -> . void?)

This binding provided for backwards compatibility; new code should use
drracket:unit:add-to-program-editor-mixin instead.

drscheme:unit:open-drscheme-window
: (->* ()

((or/c string? #f) #:show? boolean?)
(is-a?/c drracket:unit:frame%))

This binding provided for backwards compatibility; new code should use
drracket:unit:open-drscheme-window instead.

drscheme:unit:add-search-help-desk-menu-item
: (->* ((is-a?/c text%) (is-a?/c menu-item-container<%>) exact-nonnegative-integer?) ((-> any)) void?)

This binding provided for backwards compatibility; new code should use
drracket:unit:add-search-help-desk-menu-item instead.

drscheme:unit:teachpack-callbacks? : (-> any/c boolean?)

This binding provided for backwards compatibility; new code should use
drracket:unit:teachpack-callbacks? instead.

drscheme:unit:teachpack-callbacks-get-names
: (-> drracket:unit:teachpack-callbacks? (-> any/c (listof string?)))

This binding provided for backwards compatibility; new code should use
drracket:unit:teachpack-callbacks-get-names instead.

drscheme:unit:teachpack-callbacks-add
: (-> drracket:unit:teachpack-callbacks? (-> any/c path-string? any/c))

This binding provided for backwards compatibility; new code should use
drracket:unit:teachpack-callbacks-add instead.

drscheme:unit:teachpack-callbacks-remove
: (-> drracket:unit:teachpack-callbacks? (-> path-string? any/c any/c))

159

This binding provided for backwards compatibility; new code should use
drracket:unit:teachpack-callbacks-remove instead.

drscheme:unit:teachpack-callbacks-remove-all
: (-> drracket:unit:teachpack-callbacks? (-> any/c any/c))

This binding provided for backwards compatibility; new code should use
drracket:unit:teachpack-callbacks-remove-all instead.

drscheme:unit:struct:teachpack-callbacks : struct-type?

This binding provided for backwards compatibility; new code should use
drracket:unit:struct:teachpack-callbacks instead.

drscheme:unit:make-teachpack-callbacks : procedure?

This binding provided for backwards compatibility; new code should use
drracket:unit:make-teachpack-callbacks instead.

drscheme:unit:find-symbol
: (-> (is-a?/c text%) exact-nonnegative-integer? string?)

This binding provided for backwards compatibility; new code should use
drracket:unit:find-symbol instead.

drscheme:tracing:annotate : (-> syntax? syntax?)

This binding provided for backwards compatibility; new code should use
drracket:tracing:annotate instead.

drscheme:init:original-error-display-handler
: (-> string? any/c any)

This binding provided for backwards compatibility; new code should use
drracket:init:original-error-display-handler instead.

160

Index
add-bkg-running-color (method of

drracket:unit:tab<%>), 47
add-show-menu-items (method of

drracket:frame:<%>), 115
add-show-menu-items (method of

drracket:unit:frame%), 49
Adding Arbitrary Languages to DrRacket,

23
Adding Languages to DrRacket, 22
adding languages to DrRacket, 22
Adding Module-based Languages to Dr-

Racket, 22
Adding New Toolbar Buttons, 14
after-create-new-tab (method of

drracket:unit:frame<%>), 55
after-delete (method of

drracket:unit:program-editor-mixin),
48

after-delete (method of
drracket:rep:text%), 103

after-insert (method of
drracket:unit:program-editor-mixin),
48

after-insert (method of
drracket:rep:text%), 103

after-many-evals (method of
drracket:rep:text%), 104

after-set-next-settings (method of
drracket:unit:definitions-text<%>), 59

Backwards Compatibility, 133
begin-metadata-changes (method of

drracket:unit:definitions-text<%>), 60
break button, 28
break-callback (method of

drracket:unit:frame%), 49
break-callback (method of

drracket:unit:tab<%>), 45
breaking, 28
can-close? (method of

drracket:unit:tab<%>), 45
capability-value (method of

drracket:language:language<%>), 73

change-to-file (method of
drracket:unit:frame%), 49

change-to-tab (method of
drracket:unit:frame%), 50

Check Syntax, 31
Check Syntax Button, 31
clear-annotations (method of

drracket:rep:context<%>), 108
clear-annotations (method of

drracket:unit:tab%), 48
close-current-tab (method of

drracket:unit:frame<%>), 56
close-given-tab (method of

drracket:unit:frame<%>), 56
close-ith-tab (method of

drracket:unit:frame<%>), 56
Color Schemes, 29
'color-lexer, 7
'comment, 7
Comments, 9
config-panel (method of

drracket:language:module-based-language<%>),
69

config-panel (method of
drracket:language:language<%>), 74

config-panel (method of
drracket:language:simple-module-based-language->module-based-language-mixin),
67

'constant, 7
Cooperating with Background Check Syn-

tax, 38
create-executable (method of

drracket:language:language<%>), 74
create-new-tab (method of

drracket:unit:frame<%>), 55
Creating New Kinds of DrRacket Frames, 26
default-settings (method of

drracket:language:module-based-language<%>),
70

default-settings (method of
drracket:language:language<%>), 74

default-settings (method of
drracket:language:simple-module-based-language->module-based-language-mixin),
67

161

default-settings? (method of
drracket:language:module-based-language<%>),
70

default-settings? (method of
drracket:language:simple-module-based-language->module-based-language-mixin),
67

default-settings? (method of
drracket:language:language<%>), 74

Definition Popup-Menu Navigation, 14
Definitions Text Surrogate, 16
'definitions-text-surrogate, 16
disable-evaluation (method of

drracket:unit:tab<%>), 45
disable-evaluation (method of

drracket:rep:context<%>), 108
'disappeared-binding, 32
'disappeared-use, 32
display-results (method of

drracket:rep:text%), 103
Documentation Language Family, 16
'documentation-language-family, 16
drracket capability, drscheme:tabify-menu-

callback, 85
drracket capability, drscheme:special:xml-

menus, 85
drracket capability,

drscheme:special:slideshow-menu-item,
85

drracket capability, drscheme:special:insert-
text-box, 85

drracket capability, drscheme:special:insert-
large-letters, 84

drracket capability, drscheme:special:insert-
lambda, 84

drracket capability, drscheme:special:insert-
image, 84

drracket capability, drscheme:special:insert-
gui-tool, 85

drracket capability, drscheme:special:insert-
fraction, 84

drracket capability, drscheme:special:insert-
comment-box, 84

drracket capability, drscheme:help-context-
term, 84

drracket capability, drscheme:define-popup,
83

drracket capability, drscheme:autocomplete-
words, 85

drracket capability, drracket:language-menu-
title, 83

drracket capability, drracket:check-syntax-
button, 83

DrRacket Plugins, 1
'drracket-background-compilation,

127
drracket-tool-icons, 17
drracket-tool-names, 17
drracket-tool-urls, 17
drracket-tools, 17
drracket/syncheck-drracket-button,

31
drracket/tool, 1
drracket/tool-lib, 1
'drracket:comment-delimiters, 9
drracket:debug, 96
drracket:debug:add-prefs-panel, 98
drracket:debug:bug-info->ticket-
url, 99

drracket:debug:error-display-
handler/stacktrace, 97

drracket:debug:get-error-color, 102
drracket:debug:get-error-color-
name, 102

drracket:debug:hide-backtrace-
window, 98

drracket:debug:make-debug-
compile-handler, 98

drracket:debug:make-debug-error-
display-handler, 98

drracket:debug:make-debug-eval-
handler, 99

drracket:debug:open-and-
highlight-in-file, 100

drracket:debug:profile-
definitions-text-mixin, 96

drracket:debug:profile-tab-mixin,
96

162

drracket:debug:profile-unit-
frame-mixin, 96

drracket:debug:profiling-enabled,
99

drracket:debug:show-backtrace-
window, 102

drracket:debug:show-backtrace-
window/edition-pairs, 100

drracket:debug:show-backtrace-
window/edition-pairs/two, 101

drracket:debug:small-planet-
bitmap, 99

drracket:debug:test-coverage-
definitions-text-mixin, 96

drracket:debug:test-coverage-
enabled, 99

drracket:debug:test-coverage-
frame-mixin, 97

drracket:debug:test-coverage-
interactions-text-mixin, 97

drracket:debug:test-coverage-off-
style-name, 99

drracket:debug:test-coverage-on-
style-name, 99

drracket:debug:test-coverage-tab-
mixin, 97

'drracket:default-extension, 12
'drracket:default-filters, 12
'drracket:define-popup, 14
drracket:eval, 118
drracket:eval:build-user-
eventspace/custodian, 121

drracket:eval:expand-program, 119
drracket:eval:expand-
program/multiple, 120

drracket:eval:get-snip-classes, 119
drracket:eval:set-basic-
parameters, 118

drracket:eval:traverse-
program/multiple, 120

drracket:frame, 112
drracket:frame:<%>, 115
drracket:frame:basics-mixin, 112

drracket:frame:basics<%>, 115
drracket:frame:mixin, 112
drracket:frame:name-message%, 112
drracket:get/extend, 41
drracket:get/extend:allow-re-
extension!, 44

drracket:get/extend:disallow-re-
extension!, 44

drracket:get/extend:extend-
definitions-canvas, 43

drracket:get/extend:extend-
definitions-text, 42

drracket:get/extend:extend-
interactions-canvas, 43

drracket:get/extend:extend-
interactions-text, 42

drracket:get/extend:extend-tab, 41
drracket:get/extend:extend-unit-
frame, 41

drracket:get/extend:get-
definitions-canvas, 43

drracket:get/extend:get-
definitions-text, 42

drracket:get/extend:get-
interactions-canvas, 44

drracket:get/extend:get-
interactions-text, 43

drracket:get/extend:get-tab, 42
drracket:get/extend:get-unit-
frame, 41

'drracket:grouping-position, 11
drracket:help-desk, 117
drracket:help-desk:goto-plt-
license, 117

drracket:help-desk:help-desk, 117
'drracket:indentation, 8
drracket:init, 132
drracket:init:original-error-
display-handler, 132

'drracket:keystrokes, 11
drracket:language, 64
drracket:language-configuration, 93
drracket:language-

163

configuration:add-language, 93
drracket:language-
configuration:fill-language-
dialog, 95

drracket:language-
configuration:get-languages,
93

drracket:language-
configuration:get-settings-
preferences-symbol, 93

drracket:language-
configuration:language-dialog,
94

drracket:language-
configuration:language-settings
(struct), 93

drracket:language-
configuration:language-settings-
language, 93

drracket:language-
configuration:language-settings-
settings, 93

drracket:language-
configuration:language-
settings?, 93

drracket:language-
configuration:make-language-
settings, 94

drracket:language-
configuration:struct:language-
settings, 94

drracket:language:add-snip-value,
86

drracket:language:capability-
registered?, 85

drracket:language:create-
distribution-for-executable,
89

drracket:language:create-
executable-gui, 87

drracket:language:create-module-
based-distribution, 89

drracket:language:create-module-
based-launcher, 90

drracket:language:create-module-
based-stand-alone-executable,
88

drracket:language:extend-
language-interface, 86

drracket:language:get-capability-
contract, 85

drracket:language:get-capability-
default, 85

drracket:language:get-default-
mixin, 86

drracket:language:get-language-
extensions, 86

drracket:language:language<%>, 73
drracket:language:make-setup-
printing-parameters, 91

drracket:language:make-simple-
settings, 92

drracket:language:make-text/pos, 91
drracket:language:module-based-
language->language-mixin, 72

drracket:language:module-based-
language<%>, 69

drracket:language:object/c, 82
drracket:language:put-executable,

87
drracket:language:register-
capability, 83

drracket:language:setup-printing-
parameters, 90

drracket:language:simple-module-
based-language%, 65

drracket:language:simple-module-
based-language->module-based-
language-mixin, 66

drracket:language:simple-module-
based-language-convert-value,
90

drracket:language:simple-module-
based-language<%>, 64

drracket:language:simple-settings
(struct), 91

drracket:language:simple-settings, 66
drracket:language:simple-

164

settings->vector, 92
drracket:language:simple-
settings-annotations, 91

drracket:language:simple-
settings-case-sensitive, 91

drracket:language:simple-
settings-fraction-style, 91

drracket:language:simple-
settings-insert-newlines, 91

drracket:language:simple-
settings-printing-style, 91

drracket:language:simple-
settings-show-sharing, 91

drracket:language:simple-
settings?, 91

drracket:language:struct:simple-
settings, 92

drracket:language:struct:text/pos,
91

drracket:language:text/pos (struct), 91
drracket:language:text/pos-end, 91
drracket:language:text/pos-start,

91
drracket:language:text/pos-text, 91
drracket:language:text/pos?, 91
drracket:modes, 123
drracket:modes:add-mode, 123
drracket:modes:get-modes, 124
drracket:modes:mode (struct), 124
drracket:modes:mode-intended-to-
edit-programs?, 124

drracket:modes:mode-matches-
language, 124

drracket:modes:mode-name, 124
drracket:modes:mode-repl-submit,

124
drracket:modes:mode-surrogate, 124
drracket:modes:mode?, 124
drracket:modes:struct:mode, 124
drracket:module-language, 129
drracket:module-language-tools, 125
drracket:module-language-
tools:add-online-expansion-

handler, 125
drracket:module-language-
tools:add-online-expansion-
monitor, 127

drracket:module-language-
tools:add-opt-in-toolbar-button,
125

drracket:module-language-
tools:add-opt-out-toolbar-
button, 125

drracket:module-language-
tools:definitions-text-mixin,
130

drracket:module-language-
tools:definitions-text<%>, 129

drracket:module-language-
tools:done, 128

drracket:module-language-
tools:done?, 128

drracket:module-language-
tools:frame-mixin, 130

drracket:module-language-
tools:frame<%>, 129

drracket:module-language-
tools:register-online-expansion-
pref, 128

drracket:module-language-
tools:start?, 128

drracket:module-language-
tools:tab-mixin, 130

drracket:module-language-
tools:tab<%>, 129

drracket:module-language:add-
module-language, 130

drracket:module-language:module-
language-put-file-mixin, 130

drracket:module-language:module-
language<%>, 129

'drracket:opt-in-toolbar-buttons,
13

'drracket:opt-out-toolbar-buttons,
13

'drracket:paren-matches, 9
'drracket:quote-matches, 9

165

'drracket:range-indentation, 8
'drracket:range-
indentation/reverse-choices,
8

drracket:rep, 103
drracket:rep:after-expression, 111
drracket:rep:context<%>, 108
drracket:rep:current-language-
settings, 111

drracket:rep:current-rep, 110
drracket:rep:current-value-port,

110
drracket:rep:drs-bindings-keymap-
mixin, 107

drracket:rep:get-dark-green-delta,
110

drracket:rep:get-drs-bindings-
keymap, 110

drracket:rep:get-error-delta, 110
drracket:rep:get-welcome-delta, 110
drracket:rep:module-language-
initial-run, 111

drracket:rep:text%, 103
drracket:rep:text<%>, 103
'drracket:show-big-defs/ints-
labels, 13

'drracket:submit-predicate, 12
drracket:tool-exports^, 40
drracket:tool^, 40
drracket:tool^, 17
'drracket:toolbar-buttons, 14
drracket:tracing, 131
drracket:tracing:annotate, 131
drracket:tracing:frame-mixin, 131
drracket:tracing:tab-mixin, 131
drracket:unit, 45
drracket:unit:add-search-help-
desk-menu-item, 62

drracket:unit:add-to-program-
editor-mixin, 62

drracket:unit:definitions-canvas%,
61

drracket:unit:definitions-text<%>,

59
drracket:unit:find-symbol, 63
drracket:unit:frame%, 49
drracket:unit:frame<%>, 54
drracket:unit:get-definitions-
text%, 61

drracket:unit:get-program-editor-
mixin, 61

drracket:unit:interactions-
canvas%, 49

drracket:unit:make-teachpack-
callbacks, 63

drracket:unit:open-drscheme-
window, 62

drracket:unit:program-editor-
mixin, 48

drracket:unit:struct:teachpack-
callbacks, 63

drracket:unit:tab%, 48
drracket:unit:tab<%>, 45
drracket:unit:teachpack-callbacks

(struct), 62
drracket:unit:teachpack-
callbacks-add, 62

drracket:unit:teachpack-
callbacks-get-names, 62

drracket:unit:teachpack-
callbacks-remove, 62

drracket:unit:teachpack-
callbacks-remove-all, 62

drracket:unit:teachpack-
callbacks?, 62

drscheme-language-modules, 22
drscheme-language-numbers, 22
drscheme-language-one-line-
summaries, 22

drscheme-language-positions, 22
drscheme-language-readers, 22
drscheme-language-urls, 22
drscheme/tool, 1
drscheme/tool-lib, 1
drscheme:debug:add-prefs-panel, 138
drscheme:debug:bug-info->ticket-

166

url, 139
drscheme:debug:error-display-
handler/stacktrace, 138

drscheme:debug:get-error-color, 141
drscheme:debug:get-error-color-
name, 141

drscheme:debug:hide-backtrace-
window, 138

drscheme:debug:make-debug-
compile-handler, 138

drscheme:debug:make-debug-error-
display-handler, 138

drscheme:debug:make-debug-eval-
handler, 139

drscheme:debug:open-and-
highlight-in-file, 140

drscheme:debug:profile-
definitions-text-mixin, 133

drscheme:debug:profile-tab-mixin,
133

drscheme:debug:profile-unit-
frame-mixin, 133

drscheme:debug:profiling-enabled,
139

drscheme:debug:show-backtrace-
window, 141

drscheme:debug:show-backtrace-
window/edition-pairs, 140

drscheme:debug:show-backtrace-
window/edition-pairs/two, 140

drscheme:debug:small-planet-
bitmap, 139

drscheme:debug:test-coverage-
definitions-text-mixin, 133

drscheme:debug:test-coverage-
enabled, 139

drscheme:debug:test-coverage-
frame-mixin, 134

drscheme:debug:test-coverage-
interactions-text-mixin, 133

drscheme:debug:test-coverage-off-
style-name, 139

drscheme:debug:test-coverage-on-
style-name, 139

drscheme:debug:test-coverage-tab-
mixin, 134

drscheme:eval:build-user-
eventspace/custodian, 143

drscheme:eval:expand-program, 142
drscheme:eval:expand-
program/multiple, 143

drscheme:eval:get-snip-classes, 142
drscheme:eval:set-basic-
parameters, 142

drscheme:eval:traverse-
program/multiple, 142

drscheme:frame:<%>, 137
drscheme:frame:basics-mixin, 135
drscheme:frame:basics<%>, 137
drscheme:frame:mixin, 135
drscheme:get/extend:allow-re-
extension!, 146

drscheme:get/extend:disallow-re-
extension!, 146

drscheme:get/extend:extend-
definitions-canvas, 145

drscheme:get/extend:extend-
definitions-text, 144

drscheme:get/extend:extend-
interactions-canvas, 146

drscheme:get/extend:extend-
interactions-text, 145

drscheme:get/extend:extend-tab, 144
drscheme:get/extend:extend-unit-
frame, 143

drscheme:get/extend:get-
definitions-canvas, 145

drscheme:get/extend:get-
definitions-text, 144

drscheme:get/extend:get-
interactions-canvas, 146

drscheme:get/extend:get-
interactions-text, 145

drscheme:get/extend:get-tab, 144
drscheme:get/extend:get-unit-
frame, 144

drscheme:help-desk:goto-plt-

167

license, 146
drscheme:help-desk:help-desk, 146
drscheme:init:original-error-
display-handler, 160

drscheme:language-
configuration:add-language, 147

drscheme:language-
configuration:fill-language-
dialog, 148

drscheme:language-
configuration:get-languages,
147

drscheme:language-
configuration:get-settings-
preferences-symbol, 147

drscheme:language-
configuration:language-dialog,
148

drscheme:language-
configuration:language-settings-
language, 147

drscheme:language-
configuration:language-settings-
settings, 147

drscheme:language-
configuration:language-
settings?, 147

drscheme:language-
configuration:make-language-
settings, 148

drscheme:language-
configuration:struct:language-
settings, 148

drscheme:language:add-snip-value,
149

drscheme:language:capability-
registered?, 149

drscheme:language:create-
distribution-for-executable,
151

drscheme:language:create-
executable-gui, 150

drscheme:language:create-module-
based-distribution, 151

drscheme:language:create-module-
based-launcher, 151

drscheme:language:create-module-
based-stand-alone-executable,
150

drscheme:language:extend-
language-interface, 149

drscheme:language:get-capability-
contract, 149

drscheme:language:get-capability-
default, 149

drscheme:language:get-default-
mixin, 150

drscheme:language:get-language-
extensions, 150

drscheme:language:language<%>, 135
drscheme:language:make-setup-
printing-parameters, 152

drscheme:language:make-simple-
settings, 154

drscheme:language:make-text/pos,
152

drscheme:language:module-based-
language->language-mixin, 136

drscheme:language:module-based-
language<%>, 135

drscheme:language:put-executable,
150

drscheme:language:register-
capability, 148

drscheme:language:setup-printing-
parameters, 151

drscheme:language:simple-module-
based-language%, 135

drscheme:language:simple-module-
based-language->module-based-
language-mixin, 136

drscheme:language:simple-module-
based-language-convert-value,
151

drscheme:language:simple-module-
based-language<%>, 135

drscheme:language:simple-
settings->vector, 154

168

drscheme:language:simple-
settings-annotations, 153

drscheme:language:simple-
settings-case-sensitive, 153

drscheme:language:simple-
settings-fraction-style, 153

drscheme:language:simple-
settings-insert-newlines, 153

drscheme:language:simple-
settings-printing-style, 153

drscheme:language:simple-
settings-show-sharing, 153

drscheme:language:simple-
settings?, 153

drscheme:language:struct:simple-
settings, 154

drscheme:language:struct:text/pos,
152

drscheme:language:text/pos-end, 152
drscheme:language:text/pos-start,

152
drscheme:language:text/pos-text,

152
drscheme:language:text/pos?, 152
drscheme:modes:add-mode, 154
drscheme:modes:get-modes, 155
drscheme:modes:mode-intended-to-
edit-programs?, 155

drscheme:modes:mode-matches-
language, 155

drscheme:modes:mode-name, 154
drscheme:modes:mode-repl-submit,

155
drscheme:modes:mode-surrogate, 155
drscheme:modes:mode?, 154
drscheme:modes:struct:mode, 155
drscheme:module-language-
tools:add-online-expansion-
handler, 156

drscheme:module-language-
tools:add-online-expansion-
monitor, 156

drscheme:module-language-
tools:add-opt-in-toolbar-button,

156
drscheme:module-language-
tools:add-opt-out-toolbar-
button, 155

drscheme:module-language-
tools:definitions-text-mixin,
137

drscheme:module-language-
tools:definitions-text<%>, 137

drscheme:module-language-
tools:done, 157

drscheme:module-language-
tools:done?, 157

drscheme:module-language-
tools:frame-mixin, 136

drscheme:module-language-
tools:frame<%>, 138

drscheme:module-language-
tools:register-online-expansion-
pref, 156

drscheme:module-language-
tools:start?, 156

drscheme:module-language-
tools:tab-mixin, 136

drscheme:module-language-
tools:tab<%>, 138

drscheme:module-language:add-
module-language, 157

drscheme:module-language:module-
language-put-file-mixin, 157

drscheme:module-language:module-
language<%>, 136

'drscheme:opt-out-toolbar-buttons,
13

drscheme:rep:after-expression, 158
drscheme:rep:context<%>, 137
drscheme:rep:current-language-
settings, 158

drscheme:rep:current-rep, 158
drscheme:rep:current-value-port,

158
drscheme:rep:drs-bindings-keymap-
mixin, 134

drscheme:rep:get-dark-green-delta,

169

157
drscheme:rep:get-drs-bindings-
keymap, 158

drscheme:rep:get-error-delta, 157
drscheme:rep:get-welcome-delta, 157
drscheme:rep:module-language-
initial-run, 158

drscheme:rep:text%, 135
drscheme:rep:text<%>, 135
drscheme:tool-exports^, 133
drscheme:tool^, 133
'drscheme:toolbar-buttons, 14
drscheme:tracing:annotate, 160
drscheme:tracing:frame-mixin, 136
drscheme:tracing:tab-mixin, 136
drscheme:unit:add-search-help-
desk-menu-item, 159

drscheme:unit:add-to-program-
editor-mixin, 159

drscheme:unit:definitions-canvas%,
134

drscheme:unit:definitions-text<%>,
137

drscheme:unit:find-symbol, 160
drscheme:unit:frame%, 134
drscheme:unit:frame<%>, 137
drscheme:unit:get-definitions-
text%, 134

drscheme:unit:get-program-editor-
mixin, 158

drscheme:unit:interactions-
canvas%, 134

drscheme:unit:make-teachpack-
callbacks, 160

drscheme:unit:open-drscheme-
window, 159

drscheme:unit:struct:teachpack-
callbacks, 160

drscheme:unit:tab%, 134
drscheme:unit:tab<%>, 137
drscheme:unit:teachpack-
callbacks-add, 159

drscheme:unit:teachpack-

callbacks-get-names, 159
drscheme:unit:teachpack-
callbacks-remove, 159

drscheme:unit:teachpack-
callbacks-remove-all, 160

drscheme:unit:teachpack-
callbacks?, 159

edit-menu:between-find-
and-preferences (method of
drracket:frame:basics-mixin), 113

edit-menu:between-select-all-and-
find (method of drracket:unit:frame%),
50

Editor Modes, 29
enable-evaluation (method of

drracket:rep:context<%>), 108
enable-evaluation (method of

drracket:unit:tab<%>), 45
end-metadata-changes (method of

drracket:unit:definitions-text<%>),
60

ensure-defs-shown (method of
drracket:unit:frame<%>), 54

ensure-rep-hidden (method of
drracket:unit:frame<%>), 54

ensure-rep-shown (method of
drracket:rep:context<%>), 109

ensure-rep-shown (method of
drracket:unit:frame<%>), 54

'error, 7
evaluate-from-port (method of

drracket:rep:text%), 103
execute-callback (method of

drracket:unit:frame%), 50
Expanding the User’s Program Text and

Breaking, 28
expanding user programs, 28
Extending the Existing DrRacket Classes, 27
extra-repl-information (method of

drracket:language:language<%>), 79
file-menu:between-open-and-revert

(method of drracket:frame:basics-mixin),
113

file-menu:between-open-and-revert

170

(method of drracket:unit:frame%), 50
file-menu:between-print-and-close

(method of drracket:unit:frame%), 50
file-menu:between-print-and-close

(method of drracket:frame:basics-mixin),
113

file-menu:between-save-as-and-
print (method of drracket:unit:frame%),
51

file-menu:new-callback (method of
drracket:frame:basics-mixin), 113

file-menu:new-string (method of
drracket:frame:basics-mixin), 113

file-menu:open-callback (method of
drracket:frame:basics-mixin), 114

file-menu:open-string (method of
drracket:frame:basics-mixin), 114

file-menu:print-string (method of
drracket:unit:frame%), 51

file-menu:save-as-string (method of
drracket:unit:frame%), 51

file-menu:save-string (method of
drracket:unit:frame%), 51

Filename Extensions, 12
find-matching-tab (method of

drracket:unit:frame%), 50
first-opened (method of

drracket:language:language<%>), 74
front-end/complete-program (method of

drracket:language:module-based-language->language-mixin),
73

front-end/complete-program (method of
drracket:language:language<%>), 75

front-end/finished-
complete-program (method of
drracket:language:language<%>), 76

front-end/interaction (method of
drracket:language:module-based-language->language-mixin),
73

front-end/interaction (method of
drracket:language:language<%>), 76

General-purpose Modes, 29
get-additional-important-urls

(method of drracket:frame:basics-mixin),

114
get-break-button (method of

drracket:unit:frame%), 51
get-breakables (method of

drracket:unit:tab<%>), 45
get-breakables (method of

drracket:rep:context<%>), 109
get-button-panel (method of

drracket:unit:frame%), 51
get-canvas (method of

drracket:unit:frame%), 52
get-canvas% (method of

drracket:unit:frame%), 52
get-comment-character (method of

drracket:language:language<%>), 76
get-current-tab (method of

drracket:unit:frame<%>), 54
get-definitions-canvas (method of

drracket:unit:frame<%>), 57
get-definitions-text (method of

drracket:unit:frame<%>), 57
get-definitions/interactions-
panel-parent (method of
drracket:unit:frame%), 52

get-defs (method of drracket:unit:tab<%>),
45

get-directory (method of
drracket:unit:tab<%>), 46

get-directory (method of
drracket:rep:context<%>), 109

get-drscheme-language-positions, 22
get-editor (method of

drracket:unit:frame%), 52
get-editor% (method of

drracket:unit:frame%), 52
get-enabled (method of

drracket:unit:tab<%>), 46
get-error-range (method of

drracket:rep:text%), 104
get-execute-button (method of

drracket:unit:frame%), 52
get-frame (method of drracket:unit:tab<%>),

46
get-in-module-language? (method of

171

drracket:module-language-tools:definitions-text<%>),
129

get-init-code (method of
drracket:language:simple-module-based-language->module-based-language-mixin),
67

get-init-code (method of
drracket:language:module-based-language<%>),
70

get-insert-menu (method of
drracket:unit:frame<%>), 57

get-interactions-canvas (method of
drracket:unit:frame<%>), 57

get-interactions-text (method of
drracket:unit:frame<%>), 57

get-ints (method of drracket:unit:tab<%>),
46

get-keymaps (method of
drracket:rep:drs-bindings-keymap-mixin),
108

get-language-menu (method of
drracket:unit:frame<%>), 54

get-language-name (method of
drracket:language:language<%>), 76

get-language-name (method of
drracket:language:module-based-language->language-mixin),
73

get-language-numbers (method of
drracket:language:language<%>), 76

get-language-numbers (method of
drracket:language:module-based-language<%>),
70

get-language-numbers (method of
drracket:language:simple-module-based-language%),
65

get-language-numbers (method of
drracket:language:simple-module-based-language<%>),
64

get-language-position (method of
drracket:language:simple-module-based-language<%>),
64

get-language-position (method of
drracket:language:language<%>), 77

get-language-position (method of
drracket:language:module-based-language<%>),

70
get-language-position (method of

drracket:language:simple-module-based-language%),
65

get-language-url (method of
drracket:language:language<%>), 77

get-last-touched (method of
drracket:unit:tab<%>), 47

get-metadata (method of
drracket:language:language<%>), 77

get-metadata-lines (method of
drracket:language:language<%>), 78

get-module (method of
drracket:language:module-based-language<%>),
70

get-module (method of
drracket:language:simple-module-based-language<%>),
64

get-module (method of
drracket:language:simple-module-based-language%),
66

get-next-settings (method of
drracket:unit:definitions-text<%>),
60

get-one-line-summary (method of
drracket:language:module-based-language<%>),
71

get-one-line-summary (method of
drracket:language:simple-module-based-language%),
66

get-one-line-summary (method of
drracket:language:simple-module-based-language<%>),
64

get-one-line-summary (method of
drracket:language:language<%>), 78

get-reader (method of
drracket:language:simple-module-based-language%),
66

get-reader (method of
drracket:language:simple-module-based-language<%>),
65

get-reader (method of
drracket:language:module-based-language<%>),
71

172

get-reader-module (method of
drracket:language:language<%>), 78

get-show-menu (method of
drracket:frame:<%>), 116

get-style-delta (method of
drracket:language:language<%>), 78

get-tab (method of
drracket:unit:definitions-text<%>),
60

get-tab-count (method of
drracket:unit:frame<%>), 54

get-tab-filename (method of
drracket:unit:frame<%>), 54

get-tabs (method of
drracket:unit:frame<%>), 57

get-text-to-search (method of
drracket:unit:frame%), 52

get-transformer-module (method of
drracket:language:simple-module-based-language->module-based-language-mixin),
68

get-transformer-module (method of
drracket:language:module-based-language<%>),
71

get-user-custodian (method of
drracket:rep:text%), 104

get-user-eventspace (method of
drracket:rep:text%), 105

get-user-language-settings (method of
drracket:rep:text%), 105

get-user-namespace (method of
drracket:rep:text%), 105

get-user-thread (method of
drracket:rep:text%), 105

get-users-language-name (method of
drracket:module-language:module-language<%>),
129

help-menu:about-callback (method of
drracket:frame:basics-mixin), 114

help-menu:about-string (method of
drracket:frame:basics-mixin), 114

help-menu:before-about (method of
drracket:frame:basics-mixin), 114

help-menu:create-about? (method of
drracket:frame:basics-mixin), 115

hide-profile-gui (method of
drracket:debug:profile-unit-frame-mixin),
96

highlight-errors (method of
drracket:rep:text%), 105

highlight-errors/exn (method of
drracket:rep:text%), 105

htdp-file-prefix?, 39
htdp-save-file-prefix, 39
'identifiers-as-disappeared-uses?,

34
Implementing DrRacket Plugins, 17
Indentation, 8
initialize-console (method of

drracket:rep:text%), 106
insert-prompt (method of

drracket:rep:text%), 106
is-current-tab? (method of

drracket:unit:tab<%>), 46
is-running? (method of

drracket:unit:tab<%>), 46
Keystrokes, 11
'keyword, 7
kill-evaluation (method of

drracket:rep:text%), 106
lang/htdp-langs-save-file-prefix,

39
Language Extensions, 24
make-drracket:language-
configuration:language-settings,
93

make-drracket:language:simple-
settings, 91

make-drracket:language:text/pos, 91
make-drracket:unit:teachpack-
callbacks, 62

make-searchable (method of
drracket:unit:frame%), 53

marshall-settings (method of
drracket:language:module-based-language<%>),
71

marshall-settings (method of
drracket:language:simple-module-based-language->module-based-language-mixin),
68

173

marshall-settings (method of
drracket:language:language<%>), 79

metadata->settings (method of
drracket:language:language<%>), 79

modes, 29
'mouse-over-tooltips, 36
move-current-tab-left (method of

drracket:unit:frame<%>), 56
move-current-tab-right (method of

drracket:unit:frame<%>), 56
move-to-new-language (method of

drracket:module-language-tools:definitions-text<%>),
129

needs-execution (method of
drracket:rep:context<%>), 109

next-tab (method of
drracket:unit:frame<%>), 55

on-close (method of drracket:unit:tab<%>),
46

on-close (method of drracket:unit:frame%),
53

on-close (method of drracket:rep:text%),
106

on-execute (method of
drracket:language:module-based-language->language-mixin),
73

on-execute (method of
drracket:language:module-based-language<%>),
71

on-execute (method of
drracket:language:language<%>), 79

on-execute (method of drracket:rep:text%),
104

on-execute (method of
drracket:language:simple-module-based-language->module-based-language-mixin),
68

on-highlighted-errors (method of
drracket:rep:text%), 106

on-size (method of drracket:unit:frame%), 53
on-tab-change (method of

drracket:unit:frame<%>), 57
online-check-syntax logger, 38
open-in-new-tab (method of

drracket:unit:frame<%>), 55

Opting In to Language-Specific Toolbar But-
tons, 13

Opting Out of Standard Toolbar Buttons, 13
order-manuals (method of

drracket:language:language<%>), 81
'original-for-check-syntax, 31
'other, 7
'parenthesis, 7
phase1, 40
phase2, 40
Plugin Capabilities, 30
prev-tab (method of

drracket:unit:frame<%>), 56
queue-output (method of

drracket:rep:text%), 107
racket mode, 29
register-capability-menu-item

(method of drracket:unit:frame<%>), 58
register-toolbar-button (method of

drracket:unit:frame<%>), 58
register-toolbar-buttons (method of

drracket:unit:frame<%>), 59
remove-bkg-running-color (method of

drracket:unit:tab<%>), 47
render-value (method of

drracket:language:simple-module-based-language->module-based-language-mixin),
68

render-value (method of
drracket:language:language<%>), 81

render-value (method of
drracket:language:module-based-language<%>),
71

render-value/format (method of
drracket:language:language<%>), 81

render-value/format (method of
drracket:language:simple-module-based-language->module-based-language-mixin),
69

render-value/format (method of
drracket:language:module-based-language<%>),
72

reopen-closed-tab (method of
drracket:unit:frame<%>), 55

reorder-tabs (method of
drracket:unit:frame<%>), 56

174

REPL Submit Predicate, 12
reset-console (method of

drracket:rep:text%), 107
reset-highlighting (method of

drracket:rep:text%), 107
reset-offer-kill (method of

drracket:unit:tab<%>), 46
reset-offer-kill (method of

drracket:rep:context<%>), 109
run-in-evaluation-thread (method of

drracket:rep:text%), 107
scheme mode, 29
set-breakables (method of

drracket:unit:tab<%>), 47
set-breakables (method of

drracket:rep:context<%>), 109
set-filename (method of

drracket:unit:definitions-text<%>),
61

set-message (method of
drracket:frame:name-message%), 112

set-modified (method of
drracket:unit:definitions-text<%>),
61

set-needs-execution-message (method
of drracket:unit:definitions-text<%>), 60

set-next-settings (method of
drracket:unit:definitions-text<%>),
60

set-show-menu-sort-key (method of
drracket:frame:<%>), 115

Show Big “Definitions” and “Interactions”
Labels, 13

show-profile-gui (method of
drracket:debug:profile-unit-frame-mixin),
96

shutdown (method of drracket:rep:text%),
107

Signatures, 40
sort-toolbar-buttons-panel (method of

drracket:unit:frame<%>), 59
still-untouched? (method of

drracket:unit:frame%), 53
'string, 7

struct:drracket:language-
configuration:language-settings,
93

struct:drracket:language:simple-
settings, 91

struct:drracket:language:text/pos,
91

struct:drracket:modes:mode, 124
struct:drracket:unit:teachpack-
callbacks, 62

'sub-range-binders, 34
'sub-range-binding, 31
'sub-range-binding, 36
'symbol, 7
syncheck-bitmap, 31
syncheck-drracket-button, 31
syncheck:button-callback, 31
Syntax Coloring, 7
Syntax Properties that Check Syntax Looks

For, 31
Teaching Languages, 39
Tool support for #lang-based Languages, 6
Toolbar Buttons, 13
touched (method of drracket:unit:tab<%>), 47
unmarshall-settings (method of

drracket:language:simple-module-based-language->module-based-language-mixin),
69

unmarshall-settings (method of
drracket:language:language<%>), 81

unmarshall-settings (method of
drracket:language:module-based-language<%>),
72

unregister-toolbar-button (method of
drracket:unit:frame<%>), 59

update-running (method of
drracket:rep:context<%>), 109

update-save-button (method of
drracket:unit:frame%), 53

update-save-message (method of
drracket:unit:frame%), 53

update-shown (method of
drracket:unit:frame%), 53

update-shown (method of

175

drracket:frame:<%>), 116
use-mred-launcher (method of

drracket:language:simple-module-based-language->module-based-language-mixin),
69

use-mred-launcher (method of
drracket:language:module-based-language<%>),
72

use-namespace-
require/copy? (method of
drracket:language:module-based-language<%>),
72

View menu, 116
wait-for-io-to-complete (method of

drracket:rep:text%), 107
wait-for-io-to-complete/user (method

of drracket:rep:text%), 107

176

	1 Tool support for #lang-based Languages
	1.1 Syntax Coloring
	1.2 Indentation
	1.3 Comments
	1.4 Keystrokes
	1.5 Filename Extensions
	1.6 REPL Submit Predicate
	1.7 Show Big "Definitions" and "Interactions" Labels
	1.8 Toolbar Buttons
	1.8.1 Opting Out of Standard Toolbar Buttons
	1.8.2 Opting In to Language-Specific Toolbar Buttons
	1.8.3 Adding New Toolbar Buttons

	1.9 Definition Popup-Menu Navigation
	1.10 Documentation Language Family
	1.11 Definitions Text Surrogate

	2 Implementing DrRacket Plugins
	3 Adding Languages to DrRacket
	3.1 Adding Module-based Languages to DrRacket
	3.2 Adding Arbitrary Languages to DrRacket
	3.3 Language Extensions

	4 Creating New Kinds of DrRacket Frames
	5 Extending the Existing DrRacket Classes
	6 Expanding the User's Program Text and Breaking
	7 Editor Modes
	7.1 Color Schemes
	7.2 General-purpose Modes

	8 Plugin Capabilities
	9 Check Syntax
	9.1 Check Syntax Button
	9.2 Syntax Properties that Check Syntax Looks For

	10 Cooperating with Background Check Syntax
	11 Teaching Languages
	12 Signatures
	13 drracket:get/extend
	14 drracket:unit
	15 drracket:language
	16 drracket:language-configuration
	17 drracket:debug
	18 drracket:rep
	19 drracket:frame
	20 drracket:help-desk
	21 drracket:eval
	22 drracket:modes
	23 drracket:module-language-tools
	24 drracket:module-language
	25 drracket:tracing
	26 drracket:init
	27 Backwards Compatibility
	Index
	Index

