XML: Parsing and Writing

Version 9.0.0.11

Paul Graunke and Jay McCarthy

January 4, 2026

(require xml) package: base

The xml library provides functions for parsing and generating XML. XML can be repre-
sented as an instance of the document structure type, or as a kind of S-expression that is
called an X-expression.

The xm1 library does not provide Document Type Declaration (DTD) processing, including
preservation of DTDs in read documents, or validation. It also does not expand user-defined
entities or read user-defined entities in attributes. It does not interpret namespaces either.

https://pkgs.racket-lang.org/package/base

1 Datatypes

1.1 Structures

(struct location (line char offset)
#:extra-constructor-name make-location)
line : (or/c #f exact-nonnegative-integer?)
char : (or/c #f exact-nonnegative-integer?)
offset : exact-nonnegative-integer?

Represents a location in an input stream. The offset is a character offset unless xml-count-
bytes is #t, in which case it is a byte offset.

Changed in version 8.17.0.5 of package base: Added support for serialization with racket/serialize.

location/c : contract?

Equivalent to (or/c location? symbol? #f).

(struct source (start stop)
#:extra-constructor-name make-source)
start : location/c
stop : location/c

Represents a source location. Other structure types extend source.

When XML is generated from an input stream by read-xml, locations are represented by
location instances. When XML structures are generated by xexpr->xml, then locations
are symbols.

(struct external-dtd (system)
#:extra-constructor-name make-external-dtd)
system : string?
(struct external-dtd/public external-dtd (public)
#:extra-constructor-name make-external-dtd/public)
public : string?
(struct external-dtd/system external-dtd ()
#:extra-constructor-name make-external-dtd/system)
no-external-dtd : external-dtd? = (external-dtd "")

Represents an externally defined DTD.

As a special case, an immediate instance of external-dtd represents the absence of an
external DTD, and its system field is ignored. The no-external-dtd value is provided
for clarity, but any immediate instance of external-dtd has the same meaning.

Immediate
instances of
source are not
serializable. The
xml library only
uses subtypes of
source.

Examples:

> (define (show-doctype name dtd)

(write-xml (document (prolog '() (document-
type name dtd #f) '())

(element #f #f name ') '())
ODD))

> (show-doctype

'svg

(external-dtd/public "http://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd"

"-//W3C//DTD SVG 1.1//EN"))

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg></svg>
> (show-doctype 'greeting (external-dtd/system "hello.dtd"))
<!DOCTYPE greeting SYSTEM "hello.dtd">
<greeting></greeting>
> (show-doctype 'html (external-dtd "ignored"))
<!DOCTYPE html>
<html></html>
> (show-doctype 'html no-external-dtd)
<IDOCTYPE html>
<html></html>

Changed in version 8.17.0.5 of package base: Added support for serialization with racket/serialize.
Changed in version 8.17.0.5: Added no-external-dtd.

(struct document-type (name external inlined)
#:extra-constructor-name make-document-type)
name : symbol?
external : external-dtd?
inlined : #f

Represents a document type. For examples, see external-dtd.

Changed in version 8.17.0.5 of package base: Added support for serialization with racket/serialize.

(struct comment (text)
#:extra-constructor-name make-comment)
text : string?

Represents a comment.

Changed in version 8.17.0.5 of package base: Added support for serialization with racket/serialize.

(struct p-i source (target-name instruction)
#:extra-constructor-name make-p-i)
target-name : symbol?
instruction : string?

Represents a processing instruction.
Example:

> (write-xml (document (prolog (list (p-i #f #f 'xml "version=\"1.0\""))
#f
O
(element #f #f 'x '() ')
O

<?xml version="1.0"7>
<x>< /x>

Changed in version 8.17.0.5 of package base: Added support for serialization with racket/serialize.

misc/c : contract?

Equivalent to (or/c comment? p-i7).

(struct prolog (misc dtd misc2)
#:extra-constructor-name make-prolog)
misc : (listof misc/c)
dtd : (or/c document-type #f)
misc2 : (listof misc/c)

Represents a document prolog.

Changed in version 8.17.0.5 of package base: Added support for serialization with racket/serialize.

(struct document (prolog element misc)
#:extra-constructor-name make-document)
prolog : prolog?
element : element?
misc : (listof misc/c)

Represents a document.

Changed in version 8.17.0.5 of package base: Added support for serialization with racket/serialize.

(struct element source (name attributes content)
#:extra-constructor-name make-element)

name : symbol?
attributes : (listof attribute?)
content : (listof content/c)

Represents an element.

Changed in version 8.17.0.5 of package base: Added support for serialization with racket/serialize.

(struct attribute source (name value)
#:extra-constructor-name make-attribute)
name : symbol?
value : (or/c string? permissive/c)

Represents an attribute within an element.

Changed in version 8.17.0.5 of package base: Added support for serialization with racket/serialize.

content/c : contract?

Equivalent to (or/c pcdata? element? entity? comment? cdata? p-i? permis-
sive/c).

permissive/c : contract?

If (permissive-xexprs) is #t, then equivalent to any/c, otherwise equivalent to (make-
none/c 'permissive).

(valid-char? x) — boolean?
x @ any/c

Returns true if x is an exact-nonnegative-integer whose character interpretation under UTF-
8 is from the set ([#x1-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]), in accordance
with section 2.2 of the XML 1.1 spec.

(struct entity source (text)
#:extra-constructor-name make-entity)
text : (or/c symbol? valid-char?)

Represents a symbolic entity reference or a numerical character reference.

As a special case, read-xml parses references to the predefined entities into pcdata val-
ues, so it does not generate entity values containing '1t, 'gt, 'amp, 'apos, or 'quot.
Nonetheless, such entity values may be created programmatically.

Examples:

> (for/list ([s '(1t gt amp apos quot)])
(with-output-to-string
@ O
(write-xml/content (entity #f #f s)))))

"("<" ">" "&" "'" """)

> (read-xml/element
(open-input-string "<x> <>&'" </x>"))

(element

(location 1 0 1)

(location 1 34 35)

X

0]

(list

(pcdata (location 1 3 4) (location 1 4 5) " ")
(pcdata (location 1 4 5) (location 1 8 9) "<")
(pcdata (location 1 8 9) (location 1 12 13) ">")
(pcdata (location 1 12 13) (location 1 17 18) "&")
(pcdata (location 1 17 18) (location 1 23 24) "'")
(pcdata (location 1 23 24) (location 1 29 30) "\"")
(pcdata (location 1 29 30) (location 1 30 31) " ")))

Changed in version 8.17.0.5 of package base: Added support for serialization with racket/serialize.

(struct pcdata source (string)
#:extra-constructor-name make-pcdata)
string : string?

Represents textual content, i.e. what the XML specification calls character data.

More specifically, this library has several representations for character data corresponding
to different concrete syntaxes in XML. The pcdata struct represents character data that
is neither encoded by a character reference or user-defined entity, which use entity, nor
written in a cdata section. References to the predefined entities can be represented by either
pcdata or entity, but this library always uses pcdata when parsing.

Changed in version 8.17.0.5 of package base: Added support for serialization with racket/serialize.

(struct cdata source (string)
#:extra-constructor-name make-cdata)
string : string?

Represents a CDATA section.

The string field is assumed to be of the form <! [CDATA [{content)]]> with proper quoting
of {content). Otherwise, write-xml generates ill-formed output.

Changed in version 8.17.0.5 of package base: Added support for serialization with racket/serialize.

The pcdata struct
isabitof a
misnomer. In XML,
PCDATA is a
keyword used to
declare that an
element contains
“mixed content,”
i.e. character data
potentially
interspersed with
child elements, but
the pcdata struct
specifically
represents character
data. Historically,
the term meant
“parsed character
data.”

https://www.w3.org/TR/REC-xml/#dt-chardata
https://www.w3.org/TR/REC-xml/#sec-mixed-content

1.2 Exceptions

(struct exn:invalid-xexpr exn:fail (code)
#:extra-constructor-name make-exn:invalid-xexpr)
code : any/c

Raised by validate-xexpr when passed an invalid X-expression. The code fields contains
an invalid part of the input to validate-xexpr.

(struct exn:xml exn:fail:read ()
#:extra-constructor-name make-exn:xml)

Raised by read-xml when an error in the XML input is found.

1.3 X-expressions

(xexpr? v) — boolean?
v : any/c

Returns #t if v is a X-expression, #f otherwise.

An X-expression is a type of Racket expression that can represent XML content. The fol-
lowing grammar describes expressions that create X-expressions:

Xexpr = string

| (list symbol (list (list symbol string) ...) xexpr ...)
| (cons symbol (list xexpr ...))

| symbol

| valid-char?

| cdata

| misc

A string is literal data. When converted to an XML stream, the characters of the data will
be escaped as necessary.

A pair represents an element, optionally with attributes. Each attribute’s name is represented
by a symbol, and its value is represented by a string.

A symbol represents a symbolic entity reference. For example, 'nbsp represents . Note that
string->xexpr
A valid-char? represents a numerical character reference. For example, #x20 represents ~and other parsing

. procedures

 > represent references
to the predefined

A cdata is an instance of the cdata structure type, and a misc is an instance of the comment entities as strings

or p-1i structure types. instead of symbols.

Changed in version 8.17.0.5 of package base: Fixed a bug that had accepted instances of the pcdata structure
type.

xexpr/c : contract?
A contract that is like xexpr?, but produces a better error message when the value is not an
X-expression.

Changed in version 8.17.0.5 of package base: Fixed a bug that had accepted instances of the pcdata structure
type.

2 X-expression Predicate and Contract

(require xml/xexpr) package: base

The xml/xexpr library provides just xexpr/c, xexpr?, correct-xexpr?, and validate-
xexpr from xml with minimal dependencies.

https://pkgs.racket-lang.org/package/base

3 Reading and Writing XML

(read-xml [in]) — document?
in : input-port? = (current-input-port)

Reads in an XML document from the given or current input port. XML documents contain
exactly one element, raising exn:xml if the input stream has zero elements or more than one
element.

Malformed xml is reported with source locations in the form (I).{(c)/{0), where (I}, {c),
and (o) are the line number, column number, and next port position, respectively as returned
by port-next-location.

Any non-characters other than eof read from the input-port appear in the document content.
Such special values may appear only where XML content may. See make-input-port for
information about creating ports that return non-character values.

Example:

> (zml->xexpr (document-element
(read-xml (open-input-string
"<doc><bold>hi</bold> there!</doc>"))))
"(doc () (bold () "hi") " there!")

(read-xml/document [in]) — document?
in : input-port? = (current-input-port)

Like read-xml, except that the reader stops after the single element, rather than attempting
to read “miscellaneous” XML content after the element. The document returned by read-
xml/document always has an empty document-misc.

(read-xml/element [in]) — element?
in : input-port? = (current-input-port)
Reads a single XML element from the port. The next non-whitespace character read must
start an XML element, but the input port can contain other data after the element.

(syntax:read-xml [in #:src source-name]) — syntax?
in : input-port? = (current-input-port)
source-name : any/c = (object-name in)

Reads in an XML document and produces a syntax object version (like read-syntax) of an
X-expression.

10

(syntax:read-xml/element [in
#:src source-name]) — syntax?
in : input-port? = (current-input-port)
source-name : any/c = (object-name in)

Like syntax:real-xml, but it reads an XML element like read-xml/element.

(write-xml doc [out]) — void?
doc : document?
out : output-port? = (current-output-port)

Same as display-xml with #:indentation 'none.

(write-xml/content content [out]) — void?
content : content/c
out : output-port? = (current-output-port)

Same as display-xml/content with #:indentation 'none.

(display-xml doc
[out
#:indentation indentation]) — void?
doc : document?
out : output-port? = (current-output-port)
indentation : (or/c 'none 'classic 'peek 'scan) = 'classic

Writes the document to the given output port.

See display-xml/content for an explanation of indentation.

(display-xml/content content
[out
#:indentation indentation]) — void?
content : content/c
out : output-port? = (current-output-port)
indentation : (or/c 'none 'classic 'peek 'scan) = 'classic

Writes document content to the given output port.

Indentation can make the output more readable, though less technically correct when whites-
pace is significant. The four indentation modes are as follows:

e 'none — No whitespace is added. This is the only mode that is guaranteed to be
100% accurate in all situations.

11

e 'classic — Whitespace is added around almost every node. This mode is mostly
for compatibility.

e 'scan — If any child of an element? is pcdata? or entity?, then no whitespace
will be added inside that element. This mode works well for XML that does not
contain mixed content, but 'peek should be equally good and faster.

* 'peek — Like 'scan except only the first child is checked. This mode works well for
XML that does not contain mixed content.

Examples:

> (define example-data
'(root (a "nobody")
(b "some" "body")
(c "any" (i "body"))
(da (1 "every") "body")))
(define (show indentation [data example-datal])
(display-xml/content (xexpr->xml data)
#:indentation indentation))

\

; ‘none” is guaranteed to be accurate:

> (show 'none)
<root><a>nobodysomebody<c>any<i>body</i></c><d><i>every</i>body</d></root>
; “classic® adds the most whitespace.

; Even the 'nmobody' pcdata has whitespace added:

> (show 'classic)

<root>
<a>
nobody

some
body

<c>
any
<i>
body
</i>
</c>
<d>
<i>
every

12

</i>
body
</d>
</root>
; “peek’ cannot see that <d> contains a pcdata child:
> (show 'peek)

<root>
<a>nobody
somebody
<c>any<i>body</i></c>
<d>
<i>every</i>
body
</d>
</root>
; “scan’ sees that <d> contains a pcdata child:
> (show 'scan)

<root>
<a>nobody
somebody
<c>any<i>body</i></c>
<d><i>every</i>body</d>
</root>

Be warned that even 'scan does not handle HTML with 100% accuracy. The following
example will be incorrectly rendered as "no body" instead of "nobody":

Examples:

> (define html-data '(span (i "no") (b "body")))
> (show 'scan html-data)

<i>no</i>
body

(write-xexpr xe
[out
#:insert-newlines? insert-newlines?]) — void?
xe : xexpr/c

13

out : output-port? = (current-output-port)
insert-newlines? : any/c = #f

Writes an X-expression to the given output port, without using an intermediate XML docu-
ment.

If insert-newlines? is true, the X-expression is written with newlines before the closing
angle bracket of a tag.

14

4 XML and X-expression Conversions

(permissive-xexprs) — boolean?
(permissive-xexprs v) — void?
v : any/c

If this is set to non-false, then xml->xexpr will allow non-XML objects, such as other
structs, in the content of the converted XML and leave them in place in the resulting “X-
expression”.

(xml->xexpr content) — xexpr/c
content : content/c

Converts document content into an X-expression, using permissive-xexprs to determine
if foreign objects are allowed.

(xexpr->xml xexpr) — content/c
xexpr : xexpr/c

Converts an X-expression into XML content.

(xexpr->string xexpr) — string?
Xexpr : xexpr/c

Converts an X-expression into a string containing XML.

(string->xexpr str) — xexpr/c
str . string?

Converts XML represented with a string into an X-expression.

(xml-attribute-encode str) — string?
str . string?
Escapes a string as required for XML attributes.

The escaping performed for attribute strings is slightly different from that performed for
body strings, in that double-quotes must be escaped, as they would otherwise terminate the
enclosing string.

Note that this conversion is performed automatically in attribute positions by xexpr-
>string, and you are therefore unlikely to need this function unless you are using
include-template to insert strings directly into attribute positions of HTML.

Added in version 6.6.0.7 of package base.

15

((eliminate-whitespace [tags choose]) elem) — element?
tags : (listof symbol?) = empty
choose : (boolean? . -> . boolean?) = (1 (x) x)
elem : element?

Some elements should not contain any text, only other tags, except they often contain whites-
pace for formatting purposes. Given a list of tag names as tags and the identity function as
choose, eliminate-whitespace produces a function that filters out PCDATA consisting
solely of whitespace from those elements, and it raises an error if any non-whitespace text
appears. Passing in not as choose filters all elements which are not named in the tags list.
Using (lambda (x) #t) as choose filters all elements regardless of the tags list.

(validate-xexpr v) — #t
v : any/c

If v is an X-expression, the result is #t. Otherwise, exn:invalid-xexprs is raised, with
a message of the form “Expected (something), given (something-else)”. The code field of
the exception is the part of v that caused the exception.

Examples:

> (validate-xexpr '(doc () "over " (em () "9000") "!"))
#t

> (validate-xexpr #\newline)

Expected a string, symbol, valid numeric entity, comment,

processing instruction, or list, given #\newline

Changed in version 8.17.0.5 of package base: Fixed a bug that had accepted instances of the pcdata structure

type.

(correct-xexpr? v success-k fail-k) — any/c

v : any/c
success-k : (-> any/c)
fail-k : (exn:invalid-xexpr? . -> . any/c)

Like validate-xexpr, except that success-k is called on each valid leaf, and fail-k
is called on invalid leaves; the fail-k may return a value instead of raising an exception
or otherwise escaping. Results from the leaves are combined with and to arrive at the final
result.

Changed in version 8.17.0.5 of package base: Fixed a bug that had accepted instances of the pcdata structure

type.

16

5 Parameters

(current-unescaped-tags) — (listof symbol?)
(current-unescaped-tags tags) — void?

tags : (listof symbol?)

='0

A parameter that determines which tags’ string contents should not be escaped. For back-
wards compatibility, this defaults to the empty list.

Added in version 8.0.0.12 of package base.

html-unescaped-tags : (listof symbol?) = '(script style)

The list of tags whose contents are normally not escaped in HTML. See current-
unescaped-tags.

Example:

> (parameterize ([current-unescaped-tags html-unescaped-tags])
(write-xexpr '(html
(p "1 <2")
(script "1 < 2"))))
<html><p>1 < 2</p><script>1 < 2</script></html>

Added in version 8.0.0.12 of package base.

(empty-tag-shorthand) — (or/c 'always 'never (listof symbol?))
(empty-tag-shorthand shorthand) — void?
shorthand : (or/c 'always 'nmever (listof symbol?))

A parameter that determines whether output functions should use the <{fag)/> tag notation
instead of <{tag)></(tag)> for elements that have no content.

When the parameter is set to 'always, the abbreviated notation is always used. When set
of 'never, the abbreviated notation is never generated. when set to a list of symbols is
provided, tags with names in the list are abbreviated.

The abbreviated form is the preferred XML notation. However, most browsers designed
for HTML will only properly render XHTML if the document uses a mixture of the two
formats. The html-empty-tags constant contains the W3 consortium’s recommended list
of XHTML tags that should use the shorthand. This list is the default value of empty-tag-
shorthand.

html-empty-tags : (listof symbol?)

= '(param meta link isindex input img hr frame col br basefont base area)

17

See empty-tag-shorthand.
Example:

> (parameterize ([empty-tag-shorthand html-empty-tags])
(write-xml/content (xexpr->xml ~ (html
(body ((bgcolor "red"))
"Hi!" (br) "Bye!")))))
<html><body bgcolor="red">Hi!
Bye!</body></html>

(collapse-whitespace) — boolean?
(collapse-whitespace collapse?) — void?
collapse? : any/c

A parameter that controls whether consecutive whitespace is replaced by a single space.
CDATA sections are not affected. The default is #f.

(read-comments) — boolean?
(read-comments preserve?) — void?
preserve? : any/c

A parameter that determines whether comments are preserved or discarded when reading
XML. The default is #£f, which discards comments.

(xml-count-bytes) — boolean?
(xml-count-bytes count-bytes?) — void?
count-bytes? : any/c

A parameter that determines whether read-xml counts characters or bytes in its location
tracking. The default is #£, which counts characters.

You may want to use #t if, for example, you will be communicating these offsets to a C
program that can more easily deal with byte offsets into the character stream, as opposed to
UTF-8 character offsets.

(xexpr-drop-empty-attributes) — boolean?
(xexpr-drop-empty-attributes drop?) — void?
drop? : any/c

Controls whether xm1->xexpr drops or preserves attribute sections for an element that has
no attributes. The default is #£, which means that all generated X-expression elements have
an attributes list (even if it’s empty).

18

6 PList Library

(require xml/plist) package: base

The xm1/plist library provides the ability to read and write XML documents that conform
to the plist DTD, which is used to store dictionaries of string—value associations. This format
is used by Mac OS (both the operating system and its applications) to store all kinds of data.

A plist value is a value that could be created by an expression matching the following pl-
expr grammar, where a value created by a dict-expr is a plist dictionary:

pl-expr = string
| (list 'true)
| (list 'false)
| (list 'integer integer)
| (1ist 'real real)
| (list 'data string)
| (list 'date string)
| dict-expr
| (list 'array pl-expr ...)
dict-expr = (list 'dict assoc-pair ...)

assoc-pair = (list 'assoc-pair string pl-expr)

(plist-value? any/c) — boolean?
any/c : v

Returns #t if v is a plist value, #f otherwise.

(plist-dict? any/c) — boolean?
any/c : v

Returns #t if v is a plist dictionary, #f otherwise.

(read-plist in) — plist-value?
in : input-port?

Reads a plist from a port, and produces a plist value.

(write-plist dict out) — void?
dict : plist-value?
out : output-port?

Write a plist value to the given port.

Examples:

19

https://pkgs.racket-lang.org/package/base

> (define my-dict
“(dict (assoc-pair "first-key"
"just a string with some whitespace")
(assoc-pair "second-key"
(false))
(assoc-pair "third-key"
(dict))
(assoc-pair "fourth-key"
(dict (assoc-pair "inner-key"
(real 3.432))))
(assoc-pair "fifth-key"
(array (integer 14)
"another string"
(true)))
(assoc-pair "sixth-key"
(array))
(assoc-pair "seventh-key"
(data "some data"))
(assoc-pair "eighth-key"
(date "2013-05-10T20:29:55Z"))))

> (define-values (in out) (make-pipe))
> (write-plist my-dict out)

> (close-output-port out)

> (define new-dict (read-plist in))

> (equal? my-dict new-dict)

#t

The XML generated by write-plist in the above example looks like the following, if
re-formatted by hand to have newlines and indentation:

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist SYSTEM
"file://localhost/System/Library/DTDs/PropertyList.dtd">
<plist version="0.9">
<dict>
<key>first-key</key>
<string>just a string with some whitespace</string>
<key>second-key</key>

<false />
<key>third-key</key>
<dict />
<key>fourth-key</key>
<dict>

<key>inner-key</key>
<real>3.432</real>

20

</dict>
<key>fifth-key</key>
<array>
<integer>14</integer>
<string>another string</string>
<true />
</array>
<key>sixth-key</key>
<array />
<key>seventh-key</key>
<data>some data</data>
<key>eighth-key</key>
<date>2013-05-10T20:29:55Z</date>
</dict>
</plist>

21

7 Simple X-expression Path Queries

(require xml/path) package: [base

This library provides a simple path query library for X-expressions.

se-path? : contract?

A sequence of symbols followed by an optional keyword.

The prefix of symbols specifies a path of tags from the leaves with an implicit any sequence
to the root. The final, optional keyword specifies an attribute.

(se-path*/list p xe) — (listof any/c)
p : se-path?
xe : xexpr?

Returns a list of all values specified by the path p in the X-expression xe.

(se-path* p xe) — any/c
p : se-path?
xe : xexpr?

Returns the first answer from (se-path*/list p xe).
Examples:

> (define some-page
"(html (body (p ([class "awesome"]) "Hey") (p "Bar"))))
> (se-pathx*/list '(p) some-page)
'("Hey" "Bar")
> (se-path* '(p) some-page)
’lHeyll
> (se-path* '(p #:class) some-page)
"awesome"
> (se-pathx*/list '(body) some-page)
"((p ((class "awesome")) "Hey") (p "Bar"))
> (se-path*/list '() some-page)
"((html (body (p ((class "awesome")) "Hey") (p "Bar")))
(body (p ((class "awesome")) "Hey") (p "Bar"))
(p ((class "awesome")) "Hey")
llHey n
(p "Bar")
I’Bar n)

22

https://pkgs.racket-lang.org/package/base

	1 Datatypes
	1.1 Structures
	1.2 Exceptions
	1.3 X-expressions

	2 X-expression Predicate and Contract
	3 Reading and Writing XML
	4 XML and X-expression Conversions
	5 Parameters
	6 PList Library
	7 Simple X-expression Path Queries

