Math Library

Version 9.1.0.1

Neil Toronto <ntoronto@racket-lang . org> Jens Axel Sggaard <jensaxel @soegaard . net>

January 10, 2026

(require math) package: math-1ib

The math library provides functions and data structures useful for working with numbers
and collections of numbers. These include

» math/base: Constants and elementary functions

* math/flonum: Flonum functions, including high-accuracy support

* math/special-functions: Special (i.e. non-elementary) functions

* math/bigfloat: Arbitrary-precision floating-point functions

* math/number-theory: Number-theoretic functions

* math/array: Functional arrays for operating on large rectangular data sets
e math/matrix: Linear algebra functions for arrays

e math/distributions: Probability distributions

e math/statistics: Statistical functions

With this library, we hope to support a wide variety of applied mathematics in Racket, in-
cluding simulation, statistical inference, signal processing, and combinatorics. If you find it
lacking for your variety of mathematics, please

* Visit the Math Library Features wiki page to see what is planned.

» Contact us or post to one of the mailing lists|to make suggestions or submit patches.

mailto:ntoronto@racket-lang.org
mailto:jensaxel@soegaard.net
https://pkgs.racket-lang.org/package/math-lib
https://github.com/plt/racket/wiki/Math-Library-Features
http://racket-lang.org/community.html

This is a Typed Racket library. It is most efficient to use it in Typed Racket, so that
contracts are checked statically. However, almost all of it can be used in untyped Racket.
Exceptions and performance warnings are in bold text.

1 Constants and Elementary Functions

(require math/base) package: math-1ib

For convenience, math/base re-exports racket/math as well as providing the values doc-
ument below.

In general, the functions provided by math/base are elementary functions, or those func-
tions that can be defined in terms of a finite number of arithmetic operations, logarithms,
exponentials, trigonometric functions, and constants. For others, see math/special-
functions and math/distributions.

1.1 Constants

If you need more accurate approximations than the following flonums, see, for example,
phi.bf and bigfloat->rational.

phi.O : Positive-Flonum

An approximation of ¢, the igolden ratio.

> phi.O
1.618033988749895

euler.0 : Positive-Flonum

An approximation of e, or Euler’s number.

> euler.0
2.718281828459045
> (exp 1)
2.718281828459045

gamma.0 : Positive-Flonum

An approximation of y, the Euler-Mascheroni constant.

> gamma.O
0.5772156649015329

catalan.0 : Positive-Flonum

An approximation of G, or Catalan’s constant,

> catalan.O
0.915965594177219

https://pkgs.racket-lang.org/package/math-lib
http://en.wikipedia.org/wiki/Golden_ratio
http://en.wikipedia.org/wiki/E_(mathematical_constant)
http://en.wikipedia.org/wiki/Euler-Mascheroni_constant
http://en.wikipedia.org/wiki/Catalan's_constant

1.2 Functions

(float-complex? v) — Boolean
v : Any

Returns #t when v is of type Float-Complex. Analogous to flonum?.

(number->float-complex x) — Float-Complex
x : Number

Returns a new complex number with a flonum real part and a flonum imaginary part. Anal-
ogous to real->double-flonum.

(power-of-two? x) — Boolean
x : Real

Returns #t when x is an integer power of 2.

Examples:

> (power-of-two? 1.0)

#t

> (power-of-two? 1/2)

#t

> (power-of-two? (flnext 2.0))
#f

(asinh z) — Number
z : Number

(acosh z) — Number
z : Number

(atanh z) — Number
z : Number

The inverses of sinh, cosh, and tanh, which are defined in racket/math (and re-exported
by math/base).
(sum xs) — Real

xs : (Listof Real)

Like (apply + xs), but incurs rounding error only once when adding inexact numbers.
(In fact, the inexact numbers in xs are summed separately using f1sum.)

1.3 Random Number Generation

(random-natural k [p]) — Natural
k : Integer
p : Pseudo-Random-Generator
= (current-pseudo-random-generator)

Returns a random natural number less than k, which must be positive. Use (random-
natural k) instead of (random k) when k could be larger than 4294967087.

Uses p for the underlying generation of randomness.

(random-integer a b [p]) — Integer
a : Integer
b : Integer
p : Pseudo-Random-Generator
= (current-pseudo-random-generator)

Returns a random integer n such that (<= a n) and (< n b).

Uses p for the underlying generation of randomness.

(random-bits num [p]) — Natural
num : Integer
p : Pseudo-Random-Generator
= (current-pseudo-random-generator)

Returns a random natural smaller than (expt 2 num); num must be non-negative. For
powers of two, this is faster than using random-natural, which is implemented in terms of
random-bits, using biased rejection sampling.

As an example of use, the significands of the numbers returned by bfrandom are chosen by
(random-bits (bf-precision)).

Uses p for the underlying generation of randomness.

1.4 Measuring Error

(absolute-error x r) — Real
x : Real
r : Real

Usually computes (abs (- x r)) using exact rationals, but handles non-rational reals
such as +inf . 0 specially.

Examples:

> (absolute-error 1/2 1/2)

0

> (absolute-error 0.14285714285714285 1/7)
7.93016446160826e-18

> (absolute-error +inf.0 +inf.0)

0.0

> (absolute-error +inf.0 +nan.O0)
+inf.0

> (absolute-error 1e-20 0.0)
1le-20

> (absolute-error (- 1.0 (f1 4999999/5000000)) 1/5000000)
5.751132903242251e-18

(relative-error x r) — Real
x : Real
r : Real

Measures how close an approximation x is to the correct value r, relative to the magnitude
of r.

This function usually computes (abs (/ (- x r) r)) using exact rationals, but handles
non-rational reals such as +inf . 0 specially, as well as r = 0.

Examples:

(relative-error 1/2 1/2)

(relative-error 0.14285714285714285 1/7)
.5561115123125783e-17

(relative-error +inf.0 +inf.0)

.0

(relative-error +inf.0 +nan.0)

+inf.0

> (relative-error 1e-20 0.0)

+inf .0

> (relative-error (- 1.0 (£f1 4999999/5000000)) 1/5000000)
2.8755664516211255e-11

vV OV 01 v OV

In the last two examples, relative error is high because the result is near zero. (Compare
the same examples with absolute-error.) Because flonums are particularly dense near
zero, this makes relative error better than absolute error for measuring the error in a flonum
approximation. An even better one is error in ulps; see flulp-error.

2 Flonums

(require math/flonum) package: math-1ib

For convenience, math/f1lonum re-exports racket/flonum as well as providing the func-
tions document below.

2.1 Additional Flonum Functions

(f1 x) — Flonum
x : Real

Equivalent to (real->double-flonum x), but much easier to read and write.

Examples:

> (£f1 1/2)
0.5

> (f1 0.5)
0.5

> (f1 #i0.5)
0.5

Note that exact->inexact does not always convert a Real to a Flonum:

> (exact->inexact #i0.5)

0.5
> (flabs (exact->inexact #i0.5))

0.5

You should prefer £1 over exact->inexact, especially in Typed Racket code.

(flsgn x) — Flonum
x : Flonum

(fleven? x) — Boolean
x : Flonum

(flodd? x) — Boolean
x : Flonum

Like sgn, even? and odd?, but restricted to flonum input.

Examples:

https://pkgs.racket-lang.org/package/math-lib

> (map flsgn '(-2.0 -0.0 0.0 2.0))
'(-1.0 0.0 0.0 1.0)

> (map fleven? '(2.0 1.0 0.5))
'(#t #f #f)

> (map flodd? '(2.0 1.0 0.5))

"(#f #t #f)

(flrational? x) — Boolean
x : Flonum

(flinfinite? x) — Boolean
x : Flonum

(flnan? x) — Boolean
x : Flonum

(flinteger? x) — Boolean
x : Flonum

Like rational?, infinite?, nan? and integer?, but restricted to flonum input. In Typed
Racket, these are 2-3 times faster as well.

(flhypot x y) — Flonum
x : Flonum
y . Flonum

Computes (flsqrt (+ (x x x) (*x y y))) in way that overflows only when the an-
swer is too large.

Examples:

> (flsqrt (+ (* 1e+200 1e+200) (x 1e+199 1e+199)))
+inf.0

> (flhypot 1e+200 1e+199)

1.0049875621120889e+200

(flsum xs) — Flonum
xs : (Listof Flonum)

Like (apply + xs), but incurs rounding error only once.

Examples:

> (+ 1.0 1le-16)

1.0

> (+ (+ 1.0 1e-16) 1le-16)
1.0

> (flsum '(1.0 le-16 1le-16))
1.0000000000000002

The sum function does the same for heterogenous lists of reals.

Worst-case time complexity is O(n?), though the pathological inputs needed to observe
quadratic time are exponentially improbable and are hard to generate purposely. Expected

time complexity is O(n log(n)).
See flvector-sums for a variant that computes all the partial sums in xs.

(flsinh x) — Flonum
x : Flonum

(flcosh x) — Flonum
x : Flonum

(fltanh x) — Flonum
x : Flonum

Return the hyperbolic sine, cosine and tangent of x, respectively.
Example:

> (plot (list
(function (compose flsinh f1l) #:1label "flsinh x")
(function (compose flcosh fl) #:label "flcosh

x" #:color 2)
(function (compose fltanh fl) #:label "fltanh

x" #:color 3))

#:x-min -2 #:x-max 2 #:y-label #f #:legend-anchor 'bottom-

right)

http://en.wikipedia.org/wiki/Hyperbolic_function

0 £
2 4
flsinh x
+ ficosh x H
fitanh x
.] .] .] .
} | } | } | }
2 -1 0 1 2

X axis

Maximum observed error is 2 ulps, making these functions (currently) much more accu-
rate than their racket/math counterparts. They also return sensible values on the largest
possible domain.

(flasinh y) — Flonum
y : Flonum

(flacosh y) — Flonum
y @ Flonum

(flatanh y) — Flonum
y . Flonum

Return the [inverse hyperbolic sine, cosine and tangent|of y, respectively.
These functions are as robust and accurate as their corresponding inverses.

(flfactorial n) — Flonum
n : Flonum

10

http://en.wikipedia.org/wiki/Inverse_hyperbolic_function

(flbinomial n k) — Flonum
n : Flonum
k : Flonum

(flpermutations n k) — Flonum
n : Flonum
k : Flonum

(flmultinomial n ks) — Flonum
n : Flonum
ks : (Listof Flonum)

Like (f1 (factorial (fl->exact-integer n))) and so on, but computed in constant
time. Also, these return +nan. O instead of raising exceptions.

For factorial-like functions that return sensible values for non-integers, see gamma and beta.

(fllog+ a b) — Flonum
a : Flonum
b : Flonum
(fllog-quotient a b) — Flonum
a : Flonum
b : Flonum
(fllog-hypot a b) — Flonum
a : Flonum
b : Flonum

Like (fl1log (+ a b)), (fllog (/ a b)) and (fllog (flhypot a b)) but avoid-
ing over/underflow and accurate when the argument to f11og is near 1 (within 1 ulp).

(fllog-factorial n) — Flonum
n : Flonum
(fllog-binomial n k) — Flonum
n : Flonum
k : Flonum
(fllog-permutations n k) — Flonum
n : Flonum
k : Flonum
(fllog-multinomial n ks) — Flonum
n : Flonum
ks : (Listof Flonum)

Like (f1log (flfactorial n)) and so on, but more accurate and without unnecessary
overflow.

For log-factorial-like functions that return sensible values for non-integers, see log-gamma
and log-beta.

11

(flloglp x) — Flonum
x : Flonum

(flexpml x) — Flonum
x : Flonum

Like (f1log (+ 1.0 x)) and (- (flexp x) 1.0),butaccurate when x is small (within
1 ulp).

For example, one difficult input for (f1log (+ 1.0 x)) and (- (flexp x) 1.0) is x
= le-14, which f11loglp and flexpml compute correctly

(fllog (+ 1.0 1le-14))
.992007221626358e-15
(flloglp le-14)
.99999999999995e-15

(- (flexp le-14) 1.0)
.992007221626409e-15
(flexpml le-14)
.0000000000000049e-14

= VvV O V © V O V

These functions are mutual inverses:

> (plot (list
(function (4 (x) x) #:color O #:style 'long-dash)
(function (compose flloglp fl) #:label "flloglp x")
(function (compose flexpml fl) #:label "flexpml
x" #:color 2))
#:x-min -4 #:x-max 4 #:y-min -4 #:y-max 4)

12

y axis

Xis

X

o

Notice that both graphs pass through the origin. Thus, inputs close to 0.0, around which
flonums are particularly dense, result in outputs that are also close to 0.0. Further, both
functions are approximately the identity function near 0.0, so the output density is approxi-
mately the same.

Many flonum functions defined in terms of £11og and flexp become much more accurate
when their defining expressions are put in terms of f1loglp and flexpml. The functions
exported by this module and by math/special-functions use them extensively.

One notorious culprit is (flexpt (- 1.0 x) y), when x is near 0.0. Computing it di-
rectly too often results in the wrong answer:

> (flexpt (- 1.0 1e-20) 1e+20)
1.0

We should expect that multiplying a number just less than 1.0 by itself that many times
would result in something less than 1.0. The problem comes from subtracting such a small
number from 1.0 in the first place:

13

> (- 1.0 1e-20)
1.0

Fortunately, we can compute this correctly by putting the expression in terms of £11loglp,
which avoids the error-prone subtraction:

> (flexp (x 1e+20 (flloglp (- 1e-20))))
0.36787944117144233

But see flexpt1p, which is more accurate still.

(flexptlp x y) — Flonum
x : Flonum
y . Flonum

Like (flexpt (+ 1.0 x) y), butaccurate for any x and y.

(flexpt+ x1 x2 y) — Flonum
x1 : Flonum
x2 : Flonum
y . Flonum

Like (flexpt (+ x1 x2) y), but more accurate.

(flexp2 x) — Nonnegative-Flonum
x : Flonum

Equivalent to (flexpt 2.0 x), but faster when x is an integer.

(fllog2 x) — Flonum
x : Flonum

Computes the base-2 log of x more accurately than (/ (fllog x) (fllog 2.0)). In
particular, (f11og2 x) is correct for any power of two x.

Examples:

> (fllog2 4.5)

2.169925001442312

> (/ (fllog (flexp2 -1066.0)) (fllog 2.0))
-1066.0000000000002

> (fllog2 (flexp2 -1066.0))

-1066.0

14

Maximum observed error is 0.5006 ulps, but is almost always no more than 0.5 (i.e. it is
almost always correct).

(fllogb b x) — Flonum
b : Flonum
x : Flonum

Computes the base-b log of x more accurately than (/ (fllog x) (fllog b)), and
handles limit values correctly.

Example:

> (plot3d (contour-intervals3d (1 (b x) (fllogb (f1 b) (f1l x))) 0 4 0 4)
#:x-label "b" #:y-label "x"

20
8 —_0
" L
: ” 20
%0 L€
i ;
1 W 2
©
1
0 o

Maximum observed error is 2.1 ulps, but is usually less than 0.7 (i.e. near rounding error).

Except possibly at limit values (such as 0.0 and +inf .0, and b = 1.0) and except when
the inner expression underflows or overflows, f11logb approximately meets these identities
forb > 0.0:

15

e Leftinverse: (fllogb b (flexpt b y)) =y

* Rightinverse: (flexpt b (fllogb b x)) = x whenx > 0.0

Unlike with flexpt, there is no standard for f11logb’s behavior at limit values. Fortunately,
deriving the following rules (applied in order) is not prohibitively difficult.

Case Condition Value
(fllogb b 1.0) 0.0
(fllogb 1.0 x) +nan.0
(fllogb b x) b <0.0orx < 0.0 +nan.0
Double limits

(f1logb 0.0 0.0) +inf.0
(fllogb 0.0 +inf.0) -inf.0
(fllogb +inf.0 0.0) -inf.0
(fllogb +inf.0 +inf.0) +inf.0

Limits with respect to b

(f1logb 0.0 x) x < 1.0 0.0
(f1llogb 0.0 x) x > 1.0 -0.0
(fllogb +inf.0 x) x > 1.0 0.0
(fllogb +inf.0 x) x < 1.0 -0.0
Limits with respect to x

(fllogb b 0.0) b <1.0 +inf.0
(fllogb b 0.0) b > 1.0 -inf.0
(fllogb b +inf.0) b > 1.0 +inf.0
(fllogb b +inf.0) b <1.0 -inf.0

Most of these rules are derived by taking limits of the mathematical base-b log function.
Except for (f1logb 1.0 x), when doing so gives rise to ambiguities, they are resolved
using £lexpt’s behavior, which follows the IEEE 754 and C99 standards for pow.

For example, consider (f11ogb 0.0 0.0). Taking an interated limit, we get oo if the outer
limit is with respect to x, or 0 if the outer limit is with respect to b. This would normally
mean (fllogb 0.0 0.0) = +nan.0.

However, choosing +inf . O ensures that these additional left-inverse and right-inverse iden-
tities hold:

(fllogb 0.0 (flexpt 0.0 +inf.0)) = +inf.0
(flexpt 0.0 (fllogb 0.0 0.0)) = 0.0

Further, choosing 0.0 does not ensure that any additional identities hold.

(flbracketed-root f a b) — Flonum

16

f : (Flonum -> Flonum)
a : Flonum
b : Flonum

Uses the Brent-Dekker method to find a floating-point root of £ (an x :

Flonum for which

(£ x) is very near a zero crossing) between a and b. The values (f a) and (£ b) must

have opposite signs, but a and b may be in any order.

Examples:

> (define (f x) (+ 1.0 (x (+ x 3.0) (sqr (- x 1.0)))))
> (define x0 (flbracketed-root f -4.0 2.0))

> (plot (list (x-axis)
(function f -4 2)

(function-label f x0))

#:y-min -10)
4 |

10+

y axis

> (f (flprev x0))
-7.105427357601002e-15
> (f x0)

17

http://en.wikipedia.org/wiki/Brent%27s_method

6.661338147750939¢e-16
> (flbracketed-root f -1.0 2.0)
+nan.0

Caveats:

¢ There is no guarantee that f1bracketed-root will find any particular root. More-
over, future updates to its implementation could make it find different ones.

 There is currently no guarantee that it will find the closest x to an exact root.

e It currently runs for at most 5000 iterations.

It usually requires far fewer iterations, especially if the initial bounds a and b are tight.

(make-flexpt x) — (Flonum -> Flonum)
x : Real

Equivalent to (1 (y) (flexpt x y)) when x is a flonum, but much more accurate for
large y when x cannot be exactly represented by a flonum.

Suppose we want to compute 7Y, where y is a flonum. If we use flexpt with an approxi-
mation of the irrational base 7, the error is low near zero, but grows with distance from the
origin:

(bf-precision 128)

(define y 150.0)

(define pi~y (bigfloat->rational (bfexpt pi.bf (bf y))))
(flulp-error (flexpt pi y) pi~y)

43.12619934359266

vV V V V

Using make-flexpt, the error is near rounding error everywhere:

> (define flexppi (make-flexpt (bigfloat->rational pi.bf)))
> (flulp-error (flexppi y) pi~y)
0.8738006564073412

This example is used in the implementations of zeta and psi.

(flsqrtipml x) — Flonum
x : Flonum

Like (- (flsqrt (+ 1.0 x)) 1.0),butaccurate when x is small.

18

(flloglpmx x) — Flonum
x : Flonum

Like (- (flloglp x) x), butaccurate when x is small.

(flexpsqr x) — Flonum
x : Flonum

Like (flexp (* x x)),but accurate when x is large.

(flgauss x) — Flonum
x : Flonum

Like (flexp (- (x x x))), but accurate when x is large.

(flexplp x) — Flonum
x @ Flonum

Like (flexp (+ 1.0 x)), but accurate when x is near a power of 2.

(flsinpix x) — Flonum
x : Flonum

(flcospix x) — Flonum
x : Flonum

(fltanpix x) — Flonum
x : Flonum

Like (flsin (* pi x)), (flcos (* pi x)) and (fltan (* pi x)), respectively,
but accurate near roots and singularities. When x = (+ n 0.5) for some integer n,
(fltanpix x) = +nan.O.

(flcscpix x) — Flonum
x : Flonum

(flsecpix x) — Flonum
x : Flonum

(flcotpix x) — Flonum
x : Flonum

Like (/ 1.0 (flsinpix x)), (/ 1.0 (flcospix x)) and (/ 1.0 (fltanpix x)),
respectively, but the first two return +nan. O at singularities and f1lcotpix avoids a double
reciprocal.

19

2.2 Log-Space Arithmetic

It is often useful, especially when working with probabilities and probability densities, to
represent nonnegative numbers in log space, or as the natural logs of their true values. Gen-
erally, the reason is that the smallest positive flonum is roo large.

For example, say we want the probability density of the standard normal distribution (the
bell curve) at 50 standard deviations from zero:

> (require math/distributions)
> (pdf (normal-dist) 50.0)
0.0

Mathematically, the density is nonzero everywhere, but the density at 50 is less than +min. 0.
However, its density in log space, or its log-density, is representable:

> (pdf (normal-dist) 50.0 #t)
-1250.9189385332047

While this example may seem contrived, it is very common, when computing the density of
a vector of data, for the product of the densities to be too small to represent directly.

In log space, exponentiation becomes multiplication, multiplication becomes addition, and
addition becomes tricky. See 1g+ and 1gsum for solutions.

(1gx logx logy) — Flonum
logx : Flonum
logy : Flonum

(1g/ logx logy) — Flonum
logx : Flonum
logy : Flonum

(lgprod logxs) — Flonum
logxs : (Listof Flonum)

Equivalent to (f1+ logx logy), (f1- logx logy) and (flsum logxs), respectively.

(1g+ logx logy) — Flonum
logx : Flonum
logy : Flonum

(1g- logx logy) — Flonum
logx : Flonum
logy : Flonum

Like (fllog (+ (flexp logx) (flexp logy))) and (fllog (- (flexp logx)
(flexp logy))), respectively, but more accurate and less prone to overflow and under-
flow.

20

When logy > logx, lg- returns +nan.0O. Both functions correctly treat -inf .0 as log-
space 0.0.

To add more than two log-space numbers with the same guarantees, use 1gsum.

Examples:

> (1g+ (fllog 0.5) (fllog 0.2))
-0.35667494393873234

> (flexp (1g+ (fllog 0.5) (fllog 0.2)))
0.7000000000000001

> (1g- (fllog 0.5) (fllog 0.2))
-1.203972804325936

> (flexp (lg- (fllog 0.5) (fllog 0.2)))
0.30000000000000004

> (1lg- (fllog 0.2) (fllog 0.5))

+nan.0

Though more accurate than a naive implementation, both functions are prone to catastrophic
cancellation in regions where they output a value close to 0.0 (or log-space 1.0). While
these outputs have high relative error, their absolute error is very low, and when exponenti-
ated, nearly have just rounding error. Further, catastrophic cancellation is unavoidable when
logx and logy themselves have error, which is by far the common case.

These are, of course, excuses—but for floating-point research generally. There are currently
no reasonably fast algorithms for computing 1g+ and 1g- with low relative error. For now,
if you need that kind of accuracy, use math/bigfloat.

(lgsum logxs) — Flonum
logxs : (Listof Flonum)

Like folding 1g+ over 1ogxs, but more accurate. Analogous to f1lsum.

(1gl+ logx) — Flonum
logx : Flonum

(1gl- logx) — Flonum
logx : Flonum

Equivalent to (1g+ (fllog 1.0) logx) and (1g- (fllog 1.0) logx), respectively,
but faster.
(flprobability? x [log?]) — Boolean
x : Flonum
log? : Any = #f

When log? is #f, returns #t when (<= 0.0 x 1.0). When log? is #t, returns #t when
(<= -inf.0 x 0.0).

21

Examples:

> (flprobability? -0.1)

#E

> (flprobability? 0.5)

#t

> (flprobability? +nan.0 #t)
#f

2.3 Debugging Flonum Functions

The following functions and constants are useful in authoring and debugging flonum func-
tions that must be accurate on the largest possible domain.

Suppose we approximate f1lexp using its Taylor series centered at 1. O, truncated after three
terms (a second-order polynomial):

(define (exp-taylor-1 x)
(let ([x (- x1.00D)
(x (flexp 1.0) (+ 1.0 x (* 0.5 x x)))))

We can use plot and flstep (documented below) to compare its output to that of flexp
on very small intervals:

> (plot (list (function exp-taylor-1 #:label "exp-taylor-1 x")
(function exp #:color 2 #:label "exp x"))
#:x-min (flstep 1.00002 -40)
#:x-max (flstep 1.00002 40)
#:width 480)

22

4 4 4

exp-taylor-1 x
T lexp x -

2.71833619463929 +—

2.71833619463928 —
7 2.71833619463927 1

2.71833619463926+

2.71833619463925

I R S — e e S
1.000019999999995 1.00002 1.000020000000005

X axis

Such plots are especially useful when centered at a boundary between two different approx-
imation methods.

For larger intervals, assuming the approximated function is fairly smooth, we can get a better
idea how close the approximation is using flulp-error:

> (plot (function (A (x) (flulp-error (exp-taylor-1 x) (exp x))))
#:x-min 0.99998 #:x-max 1.00002 #:y-label "Error (ulps)")

23

Error (ulps)

N
I
|

!

1T A

99998 99999 1.00001

X axis

We can infer from this plot that our Taylor series approximation has close to rounding error
(no more than an ulp) near 1.0, but quickly becomes worse farther away.

To get a ground-truth function such as exp to test against, compute the outputs as accurately
as possible using exact rationals or high-precision bigfloats.

2.3.1 Measuring Floating-Point Error

(flulp x) — Flonum
x @ Flonum

Returns x’s ulp, or unit in last place: the magnitude of the least significant bit in x.
Examples:

> (flulp 1.0)

24

2.220446049250313e-16

> (flulp 1le-100)
1.2689709186578246e-116
> (flulp 1e+200)
1.6996415770136547e+184

(flulp-error x r) — Flonum
x : Flonum
r : Real

Returns the absolute number of ulps difference between x and r.

For non-rational arguments such as +nan.0, flulp-error returns 0.0 if (eqv? x r);
otherwise it returns +inf . 0.

A flonum function with maximum error 0.5 ulps exhibits only rounding error; it is cor-
rect. A flonum function with maximum error no greater than a few ulps is accurate. Most
moderately complicated flonum functions, when implemented directly, seem to have over a
hundred thousand ulps maximum error.

Examples:

(flulp-error 0.5 1/2)

.0

(flulp-error 0.14285714285714285 1/7)
.2857142857142857

(flulp-error +inf.0 +inf.0)

.0

(flulp-error +inf.0 +nan.0)

+inf.0

> (flulp-error 1e-20 0.0)

+inf.0

> (flulp-error (- 1.0 (f1 4999999/5000000)) 1/5000000)
217271.6580864

vV O Vv OV OV

The last example subtracts two nearby flonums, the second of which had already been
rounded, resulting in horrendous error. This is an example of catastrophic cancellation.
Avoid subtracting nearby flonums whenever possible.*

See relative-error for a similar way to measure approximation error when the approxi-
mation is not necessarily represented by a flonum.

2.3.2 Flonum Constants

25

* You can make an
exception when the
result is to be
exponentiated. If x
has small
absolute-error,
then (exp x) has
small
relative-error
and small
flulp-error.

-max.0 : Flonum
-min.0 : Flonum
+min.0 : Flonum
+max.0 : Flonum

The nonzero, rational flonums with maximum and minimum magnitude.
Example:

> (list -max.0 -min.0 +min.0 +max.0)
'(-1.7976931348623157e+308 -5e-324 5e-324 1.7976931348623157e+308)

epsilon.0 : Flonum

The smallest flonum that can be added to 1.0 to yield a larger number, or the magnitude of
the least significant bitin 1.0.

Examples:

> epsilon.0
2.220446049250313e-16
> (flulp 1.0)
2.220446049250313e-16

Epsilon is often used in stopping conditions for iterative or additive approximation methods.
For example, the following function uses it to stop Newton’s method to compute square
roots. (Please do not assume this example is robust.)

(define (newton-sqrt x)
(let loop ([y (x 0.5 x)1)
(define dy (/ (- x (sqr y)) (x 2.0 y)))
(if ((abs dy) . <= . (abs (* 0.5 epsilon.0 y)))
(+ y dy)
(loop (+ y dy)))))

When (<= (abs dy) (abs (* 0.5 epsilon.O y))), adding dy to y rarely results in a
different flonum. The value 0.5 can be changed to allow looser approximations. This is a
good idea when the approximation does not have to be as close as possible (e.g. it is only a
starting point for another approximation method), or when the computation of dy is known
to be inaccurate.

Approximation error is often understood in terms of relative error in epsilons. Number of
epsilons relative error roughly corresponds with error in ulps, except when the approximation
is subnormal.

26

2.3.3 Low-Level Flonum Operations

(flonum->bit-field x) — Natural
x : Flonum

Returns the bits comprising x as an integer. A convenient shortcut for composing integer-
bytes->integer with real->floating-point-bytes.
Examples:

> (number->string (flonum->bit-field -inf.0) 16)

"£££0000000000000"

> (number->string (flonum->bit-field +inf.0) 16)
"7££0000000000000"

> (number->string (flonum->bit-field -0.0) 16)
"8000000000000000"

> (number->string (flonum->bit-field 0.0) 16)

n O n

> (number->string (flonum->bit-field -1.0) 16)
"b££0000000000000"

> (number->string (flonum->bit-field 1.0) 16)
"3££0000000000000"

> (number->string (flonum->bit-field +nan.0) 16)
"7££8000000000000"

(bit-field->flonum i) — Flonum
i : Integer

The inverse of flonum->bit-field.

(flonum->ordinal x) — Integer
x : Flonum

Returns the signed ordinal index of x in a total order over flonums.

When inputs are not +nan.O0, this function is monotone and symmetric; i.e. if (fl<=
x y) then (<= (flonum->ordinal x) (flonum->ordinal y)), and (= (flonum-
>ordinal (- x)) (- (flonum->ordinal x))).

Examples:

> (flonum->ordinal -inf.0)
-9218868437227405312

> (flonum->ordinal +inf.0)
9218868437227405312

27

> (flonum->ordinal -0.0)
0
> (flonum->ordinal 0.0)
0
>

(flonum->ordinal -1.0)
-4607182418800017408
> (flonum->ordinal 1.0)
4607182418800017408
> (flonum->ordinal +nan.0)
9221120237041090560

These properties mean that £1onum->ordinal does not distinguish -0.0 and 0. 0.

(ordinal->flonum i) — Flonum
i : Integer

The inverse of flonum->ordinal.

(flonums-between x y) — Integer
x : Flonum
y . Flonum

Returns the number of flonums between x and y, excluding one endpoint. Equivalent to (-
(flonum->ordinal y) (flonum->ordinal x)).

Examples:

> (flonums-between 0.0 1.0)
4607182418800017408

> (flonums-between 1.0 2.0)
4503599627370496

> (flonums-between 2.0 3.0)
2251799813685248

> (flonums-between 1.0 +inf.0)
4611686018427387904

(flstep x n) — Flonum
x @ Flonum
n : Integer

Returns the flonum n flonums away from x, according to flonum->ordinal. If x is
+nan. O, returns +nan. 0.

Examples:

28

> (flstep 0.0 1)

5e-324

> (flstep (flstep 0.0 1) -1)
0.0

> (flstep 0.0 -1)

-5e-324

> (flstep +inf.0 1)

+inf.0

> (flstep +inf.0 -1)
1.7976931348623157e+308
> (flstep -inf.0 -1)
-inf.0

> (flstep -inf.0 1)
-1.7976931348623157e+308
> (flstep +nan.0 1000)
+nan.0

(flnext x) — Flonum
x : Flonum
(flprev x) — Flonum
x : Flonum
Equivalent to (f1step x 1) and (flstep x -1), respectively.
(flsubnormal? x) — Boolean
x : Flonum

Returns #t when x is asubnormal number.

Though flonum operations on subnormal numbers are still often implemented by software
exception handling, the situation is improving. Robust flonum functions should handle sub-
normal inputs correctly, and reduce error in outputs as close to zero ulps as possible.

-max-subnormal.0 : Flonum

+max-subnormal.O : Flonum
The maximum positive and negative subnormal flonums. A flonum x is subnormal when it
is not zero and (<= (abs x) +max-subnormal.O).

Example:

> +max-subnormal.O
2.225073858507201e-308

29

http://en.wikipedia.org/wiki/Denormal_number

2.4 Double-Double Operations

For extra precision, floating-point computations may use two nonoverlapping flonums to
represent a single number. Such pairs are often called double-double numbers. The exact
sum of the pair is the number it represents. (Because they are nonoverlapping, the floating-
point sum is equal to the largest.)

For speed, especially with arithmetic operations, there is no data type for double-double
numbers. They are always unboxed: given as two arguments, and received as two values. In
both cases, the number with higher magnitude is first.

Inputs are never checked to ensure they are sorted and nonoverlapping, but outputs are guar-
anteed to be sorted and nonoverlapping if inputs are.

(f12 x) — (Values Flonum Flonum)
x : Real

(f12 x y) — (Values Flonum Flonum)
x : Flonum
y : Flonum

Converts a real number or the sum of two flonums into a double-double.

Examples:

(f1 1/7)

.14285714285714285

(relative-error (f1 1/7) 1/7)

.551115123125783e-17

(define-values (x2 x1) (f12 1/7))

(1ist x2 x1)

(0.14285714285714285 7.93016446160826e-18)

> (fl1 (relative-error (+ (inexact->exact x2)
(inexact->exact x1))

1/7))
3.0814879110195774e-33

-V Vv Oorv OV

Notice that the exact sum of x2 and x1 in the preceeding example has very low relative error.

If x is not rational, £12 returns (values x 0.0).

(fl2->real x2 x1) — Real
x2 : Flonum
x1 : Flonum

Returns the exact sum of x2 and x1 if x2 is rational, x2 otherwise.

Examples:

30

> (define-values (x2 x1) (£f12 1/7))
> (fl2->real x2 x1)
46359793379775246683308002939465/324518553658426726783156020576256

(f12? x2 x1) — Boolean
x2 : Flonum
x1 : Flonum

When x2 is rational, returns #t when (flabs x2) > (flabs x1) and x2 and x1 are
nonoverlapping. When x2 is not rational, returns (f1= x1 0.0).

Examples:

> (define-values (x2 x1) (£f12 1/7))

> (£f127 x2 x1)

#t

> (£f127 0.14285714285714285 0.07692307692307693)
#f

> (f127 +inf.0 0.0001)

#f

This function is quite slow, so it is used only for testing.

(fl+/error x y) — (Values Flonum Flonum)
x : Flonum
y : Flonum

(fl-/error x y) — (Values Flonum Flonum)
x : Flonum
y : Flonum

(flx/error x y) — (Values Flonum Flonum)
x : Flonum
y : Flonum

(f1//error x y) — (Values Flonum Flonum)
x : Flonum
y : Flonum

(flsqr/error x) — (Values Flonum Flonum)
x : Flonum

(flsqrt/error x) — (Values Flonum Flonum)
x : Flonum

(flexp/error x) — (Values Flonum Flonum)
x @ Flonum

(flexpml/error x) — (Values Flonum Flonum)
x : Flonum

Compute the same values as (f1+ x y), (f1- x y), (f1*x x y), (f1/ x y), (f1%
x x), (flsqrt x), (flexp x) and (flexpml x), but return the normally rounded-off
low-order bits as the second value. The result is an unboxed double-double.

31

Use these functions to generate double-double numbers directly from the results of floating-
point operations.

Examples:

V © V V V V

For

(define x1 (f1 1/7))

(define x2 (£f1 1/13))

(define z* (bigfloat->real (bfexp (bf* (bf x1) (bf x2)))))
(relative-error (flexp (fl* x1 x2)) z%)

.755408946378402e-17

(let*-values ([(y2 y1) (fl*/error x1 x2)]
[(z2 z1) (fl2exp y2 y1)1)
(f1 (relative-error (f12->real z2 zl) z*)))

.890426935548821e-33

flexp/error and flexpml/error, the largest observed error is 3 ulps. (See £12ulp.)

For the rest, the largest observed error is 0.5 ulps.

(fl2zero? x2 x1) — Boolean

x2 . Flonum
x1 : Flonum

(fl2rational? x2 x1) — Boolean
x2 : Flonum
x1 : Flonum

(f12positive? x2 x1) — Boolean
x2 : Flonum
x1 : Flonum

(f12negative? x2 x1) — Boolean
x2 : Flonum
x1 : Flonum

(fl2infinite? x2 x1) — Boolean

x2 : Flonum
x1 : Flonum

(fl2nan? x2 x1) — Boolean

x2 : Flonum
x1 : Flonum

Like zero?, rational?, positive?, negative?, infinite? and nan?, but for double-
double flonums.

(f12+ x2 x1 y2 [y1]) — (Values Flonum Flonum)

x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum = 0.0

32

(f12- x2 x1 y2 [y1]) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum = 0.0
(f12*% x2 x1 y2 [y1]) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum = 0.0
(f12/ x2 x1 y2 [y1]) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum = 0.0
(fl2abs x2 [x1]) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum = 0.0
(f12sqr x2 [x1]) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum = 0.0
(f12sqrt x2 [x1]) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum = 0.0

Arithmetic and square root for double-double flonums.

For arithmetic, error is less than 8 ulps. (See £12ulp.) For £12sqr and £12sqrt, error is
less than 1 ulp, and £12abs is exact.

(f12= x2 x1 y2 y1) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum
(f12> x2 x1 y2 y1) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum
(f12< x2 x1 y2 y1) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum

33

(f12>= x2 x1 y2 y1) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum
(f12<= x2 x1 y2 y1) — (Values Flonum Flonum)

x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum

Comparison functions for double-double flonums.

(fl2exp x2 x1) — (Values Flonum Flonum)
x2 : Flonum

x1 : Flonum
(f121log x2 x1) — (Values Flonum Flonum)
x2 : Flonum

x1 : Flonum
(f12expml x2 x1) — (Values Flonum Flonum)

x2 : Flonum
x1 : Flonum
(f12loglp x2 x1) — (Values Flonum Flonum)

x2 : Flonum
x1 : Flonum

Like flexp, f1log, flexpml and £11loglp, but for double-double flonums.

For £12exp and fl2expml, error is less than 3 ulps. (See f12ulp.) For £f12log and
£121oglp, error is less than 2 ulps.

24.1 Debugging Double-Double Functions

(f12ulp x2 x1) — Flonum
x2 : Flonum
x1 : Flonum
(f12ulp-error x2 x1 r) — Flonum
x2 : Flonum
x1 : Flonum
r : Real

Like £1ulp and flulp-error, but for double-double flonums.

The unit in last place of a double-double is that of the higher-order of the pair, shifted 52 bits
right.

34

Examples:

> (£f12ulp 1.0 0.0)

4.930380657631324e-32

> (let-values ([(x2 x1) (£f12 1/7)1)
(fl2ulp-error x2 x1 1/7))

0.07142857142857142

+max.hi : Flonum
+max.lo : Flonum
-max.hi : Flonum
-max.lo : Flonum

The maximum-magnitude, unboxed double-double flonums.

+max-subnormal .hi : Flonum
-max-subnormal.hi : Flonum

The high-order flonum of the maximum-magnitude, subnormal double-double flonums.

> +max-subnormal.O
2.225073858507201e-308
> +max-subnormal.hi
1.0020841800044864e-292

Try to avoid computing with double-doubles in the subnormal range in intermediate compu-
tations.

24.2 Low-Level Double-Double Operations

The following syntactic forms are fast versions of functions like £1+/error. They are fast
because they make assumptions about the magnitudes of and relationships between their
arguments, and do not handle non-rational double-double flonums properly.

(fast-mono-fl+/error x y)
(fast-mono-fl-/error x y)

Return two values: (fl1+ x y) or (fl1- x y), and its rounding error. Both assume
(flabs x) > (flabs y). The values are unspecified when x or y is not rational.

(fast-fl+/error x y)
(fast-fl-/error x y)

35

Like fast-mono-fl+/error and fast-mono-fl-/error, but do not assume (flabs x)
> (flabs y).

(fast-fl*/error x y)
(fast-fl//error x y)
(fast-flsqr/error x)

Like f1*/error, £1//error and flsqr/error, but faster, and may return garbage when
an argument is subnormal or nearly infinite.

(flsplit x)
Returns nonoverlapping (values y2 y1), each with 26 bits precision, with

(flabs y2) > (flabs y1), such that (f1+ y2 y1) = x. For (flabs x) >
1.3393857490036326e+300, returns (values +nan.0 +nan.0).

Used to implement double-double multiplication.

2.5 Additional Flonum Vector Functions

(build-flvector n proc) — FlVector
n : Integer
proc : (Index -> Flonum)

Creates a length-n flonum vector by applying proc to the indexes from 0 to (- n 1).
Analogous to build-vector.

Example:

> (build-flvector 10 f1)
(flvector 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0)

(inline-build-flvector n proc)

n : Integer

proc : (Index -> Flonum)

Like build-flvector, but always inlined. This increases speed at the expense of code size.

(flvector-map proc xs xss ...) — FlVector
proc : (Flonum Flonum ... -> Flonum)
xs @ FlVector
xss : FlVector

36

Applies proc to the corresponding elements of xs and xss. Analogous to vector-map.

The proc is meant to accept the same number of arguments as the number of its following
flonum vector arguments. However, a current limitation in Typed Racket requires proc
to accept any number of arguments. To map a single-arity function such as £1+ over the
corresponding number of flonum vectors, for now, use inline-flvector-map.

(inline-flvector-map proc xs xss ...)

proc : (Flonum Flonum ... -> Flonum)
xs : FlVector

xss : FlVector

Like flvector-map, but always inlined.

(flvector-copy! dest
dest-start
src
[src-start
src-end]) — Void
dest : FlVector
dest-start : Integer
src : FlVector
src-start : Integer = 0
src-end : Integer = (flvector-length src)

Like vector-copy!, but for flonum vectors.

(1ist->flvector vs) — FlVector
vs : (Listof Real)
(flvector->list xs) — (Listof Flonum)
xs : FlVector
(vector->flvector vs) — FlVector
vs : (Vectorof Real)
(flvector->vector xs) — (Vectorof Flonum)
xs : FlVector

Convert between lists and flonum vectors, and between vectors and flonum vectors.

(flvector+ xs ys) — FlVector
xs : FlVector
ys : FlVector

(flvector* xs ys) — FlVector
xs : FlVector
ys : FlVector

37

(flvector- xs) — FlVector
xs : FlVector

(flvector- xs ys) — FlVector
xs : FlVector
ys : FlVector

(flvector/ xs) — FlVector
xs : FlVector

(flvector/ xs ys) — FlVector
xs : FlVector
ys : FlVector

(flvector-scale xs y) — FlVector
xs : FlVector
y : Flonum

(flvector-abs xs) — FlVector
xs : FlVector

(flvector-sqr xs) — FlVector
xs : FlVector

(flvector-sqrt xs) — FlVector
xs : FlVector

(flvector-min xs ys) — FlVector
xs : FlVector
ys : FlVector

(flvector-max xs ys) — FlVector
xs : FlVector
ys : FlVector

Arithmetic lifted to operate on flonum vectors.
(flvector-sum xs) — Flonum

xs : FlVector

Like f1sum, but operates on flonum vectors. In fact, f1sumis defined in terms of f1vector-
sum.

(flvector-sums xs) — FlVector
xs . FlVector

Computes the partial sums of the elements in xs in a way that incurs rounding error only
once for each partial sum.
Example:

> (flvector-sums
(flvector 1.0 le-16 1le-16 le-16 1le-16 1e+100 -1e+100))
(flvector

38

o O O

.0000000000000002
.0000000000000002
1.0000000000000004
1e+100
1.0000000000000004)

1
1
1
1

Compare the same example computed by direct summation:

> (rest
(reverse
(foldl (1 (x xs) (cons (+ x (first xs)) xs))
(1list 0.0)
'(1.0 1le-16 1e-16 le-16 1e-16 1e+100 -1e+100))))
'(1.0 1.0 1.0 1.0 1.0 1e+100 0.0)

39

3 Special Functions

(require math/special-functions) package: math-1ib

The term “special function” has no formal definition. However, for the purposes of the math
library, a special function is one that is not elementary.

The special functions are split into two groups: [§3.1 “Real Functions”| and [§3.2 “Flonum|
Functions that accept real arguments are usually defined in terms of their flonum
counterparts, but are different in two crucial ways:

* Many return exact values for certain exact arguments.

e When applied to exact arguments outside their domains, they raise an
exn:fail:contract instead of returning +nan. 0.

Currently, math/special-functions does not export any functions that accept or return
complex numbers. Mathematically, some of them could return complex numbers given real
numbers, such hurwitz-zeta when given a negative second argument. In these cases, they
raise an exn:fail:contract (for an exact argument) or return +nan.O (for an inexact
argument).

Most real functions have more than one type, but they are documented as having only one.
The documented type is the most general type, which is used to generate a contract for uses
in untyped code. Use :print-type to see all of a function’s types.

A function’s types state theorems about its behavior in a way that Typed Racket can under-
stand and check. For example, 1ambert has these types:

(case-> (Zero -> Zero)
(Flonum -> Flonum)
(Real -> (U Zero Flonum)))

Because lambert : Zero -> Zero, Typed Racket proves during typechecking that one of
its exact cases is (lambert 0) = O.

Because the theorem lambert : Flonum -> Flonum is stated as a type and proved by
typechecking, Typed Racket’s optimizer can transform the expressions around its use into
bare-metal floating-point operations. For example, (+ 2.0 (lambert 3.0)) is trans-
formed into (unsafe-f1+ 2.0 (lambert 3.0)).

The most general type Real -> (U Zero Flonum) is used to generate lambert’s contract

when it is used in untyped code. Except for this discussion, this the only type documented
for lambert.

40

https://pkgs.racket-lang.org/package/math-lib

3.1 Real Functions

(gamma x) — (U Positive-Integer Flonum)
x : Real

Computes the gamma function, a generalization of the factorial function to the entire real
line, except nonpositive integers. When x is an exact integer, (gamma x) is exact.

Examples:

> (plot (list (function (1 (x) (gamma (+ 1 x))) 0 4.5
#:1label "gamma(x+1)")

(function (1 (x) (factorial (truncate x))) #:color 2
#:labell "factoriall(floor(x))")I))

f | f f
f 1 f 1 f 1 f T
50 4| gamma(x+1) _— |
factorial(floor(x)) ———
40—+ -
30+ -
> [[
20—+ £
10+ -
. 1 | \ | , |
—t 1 ¥ 1 t 1 t I
0 1 2 3 4

X axis

> (plot (function gamma -2.5 5.5) #:y-min -50 #:y-max 50)

41

http://en.wikipedia.org/wiki/Gamma_function

20+

y axis
=)
|
I

20+

2 0 2

X axis

> (gamma 5)

24

> (gamma 5.0)

24.0

> (factorial 4)

24

> (gamma -1)

gamma: contract violation
expected: Real, not Zero or Negative-Integer
given: -1

> (gamma -1.0)

+nan.0

> (gamma 0.0)

+inf.0

> (gamma -0.0)

-inf.0

> (gamma 172.0)

+inf.0

> (bf (gamma 172))

42

(bf "1.241018070217667823424840524103103992618e309")

Error is no more than 10 ulps everywhere that has been tested, and is usually no more than 4
ulps.

(log-gamma x) — (U Zero Flonum)
x : Real

Like (log (abs (gamma x))), but more accurate and without unnecessary overflow. The
only exact cases are (log-gamma 1) = O and (log-gamma 2) = O.

Examples:

> (plot (list (function log-gamma -5.5 10.5 #:label "log-
gamma (x) ")
(function (1 (x) (log (abs (gamma x))))
#:color 2 #:style 'long-dash #:width 2
#:1label "log(abs(gamma(x)))")))
] | | | |] | | | |] | | | |]
1 ' ' ' ' 1 ' ' ' ' l ' ' ' ' l
1 |log-gamma(x) _— 1
log(abs(gamma(x))) = =

10+ —+

y axis

-5 0 5 10

43

> (log-gamma 5)
3.1780538303479458
> (log (abs (gamma 5)))
3.1780538303479458
> (log-gamma -1)
log-gamma: contract violation
expected: Real, not Zero or Negative-Integer

given: -1
> (log-gamma -1.0)
+inf.0
> (log-gamma 0.0)
+inf.0
> (log (abs (gamma 172.0)))
+inf.0

> (log-gamma 172.0)
711.71472580229

Error is no more than 11 ulps everywhere that has been tested, and is usually no more than 2
ulps. Error reaches its maximum near negative roots.

(psi0 x) — Flonum
x : Real

Computes the ldigamma function, the logarithmic derivative of the gamma function.
Examples:

> (plot (function psiO -2.5 4.5) #:y-min -5 #:y-max 5)

44

http://en.wikipedia.org/wiki/Digamma_function

y axis
=
|
]

44

2 0

> (psi0 0)

psi0: contract violation
expected: Real, not Zero or Negative-Integer
given: 0

> (psiO 1)

-0.5772156649015329

> (- gamma.O)

-0.5772156649015329

Except near negative roots, maximum observed error is 2 ulps, but is usually no more than
1.

Near negative roots, which occur singly between each pair of negative integers, psiO ex-
hibits catastrophic cancellation from using the reflection formula, meaning that relative
error is effectively unbounded. However, maximum observed absolute-error is (* 5
epsilon.0). This is the best we can do for now, because there are currently no reasonably
fast algorithms for computing psiO near negative roots with low relative error.

If you need low relative error near negative roots, use bfpsio.

45

(psi m x) — Flonum
m : Integer
x . Real

Computes a polygamma function, or the mth logarithmic derivative of the gamma function.
The order m must be a natural number, and x may not be zero or a negative integer. Note
that (psi 0 x) = (psiO x).

Examples:

> (plot (for/list ([m (in-range 4)])
(function (4 (x) (psi m x)) -2.5 2.5
#:color m #:style m #:label (format "psi~a(x)" m)))
#:y-min -300 #:y-max 300 #:legend-anchor 'top-right)
| |

psiO(x)
psil(x) -------e- 1
psi2(x) ———--—

|
I
|
|
!
' psi3(x) ------- £

T
|
\
|
|
|
|
|
|
|
\
\

]
I
]
1
]
|
]
]
]
]
]

P

]
."
200+

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|)
|)
) !

i]

y axis

-200—+

> (psi -1 2.3)

psi: contract violation
expected: Natural
given: -1

46

http://en.wikipedia.org/wiki/Polygamma_function

argument position: 1st
other arguments...:
2.3
> (psi 0 -1.1)
10.154163959143848
> (psi0 -1.1)
10.154163959143848

From spot checks with m > 0, error appears to be as with psiO: very low except near
negative roots. Near negative roots, relative error is apparently unbounded, but absolute
error is low.

(erf x) — Real

x : Real
(erfc x) — Real
x : Real

Compute the error function and complementary error function, respectively. The only exact
cases are (erf 0) = Oand (erfc 0) = 1.

Examples:

> (plot (list (function erf -2 2 #:label "erf(x)")
(function erfc #:color 2 #:label "erfc(x)")))

47

http://en.wikipedia.org/wiki/Error_function

y axis

Xis

>
o

(erf 0)

(erf 1)
.8427007929497148
(- 1 (erfc 1))
.8427007929497148
(erf -1)
-0.8427007929497149
> (- (erfc 1) 1)
-0.8427007929497148

vV O Vv OV OV

Mathematically, erfc(x) = 1 - erf(x), but having separate implementations can help maintain
accuracy. To compute an expression containing erf, use erf for x near 0. 0. For positive x
away from 0.0, manipulate (- 1.0 (erfc x)) and its surrounding expressions to avoid
the subtraction:

> (define x 5.2)
> (bf-precision 128)
> (define log-erf-x (bigfloat->rational (bflog (bferf (bf x)))))

48

> (flulp-error (log (erf x)) log-erf-x)
873944876280.6095

> (flulp-error (log (- 1.0 (erfc x))) log-erf-x)
873944876280.6095

> (flulp-error (flloglp (- (erfc x))) log-erf-x)
1.609486456125461

For negative x away from 0.0, do the same with (- (erfc (- x)) 1.0).

For erf, error is no greater than 2 ulps everywhere that has been tested, and is almost always
no greater than 1. For erfc, observed error is no greater than 4 ulps, and is usually no greater
than 2.

(lambert x) — (U Zero Flonum)

x : Real
(lambert- x) — Flonum
x : Real

Compute the Lambert W function, or the inverse of x = (* y (exp y)).

This function has two real branches. The 1ambert variant computes the upper branch, and is
defined for x >= (- (exp -1)). The lambert- variant computes the lower branch, and
is defined for negative x >= (- (exp -1)). The only exact case is (Lambert 0) = 0.

Examples:

> (plot (list (function lambert (- (exp -1)) 1)
(function lambert- (- (exp -1)) -min.0 #:color 2))
#:y-min -4)

49

http://en.wikipedia.org/wiki/Lambert_W_function

<
>
oL
34
4 | | | |
-25 0 25 5 75
X axis

> (lambert 0)

0

> (lambert (- (exp -1)))

-1.0

> (lambert -1/2)

lambert: contract violation
expected: Real >= (- (exp -1))
given: -1/2

> (lambert- 0)

lambert-: contract violation
expected: Negative-Real >= (- (exp -1))
given: 0

> (define yO (lambert -0.1))

> (define y1 (lambert- -0.1))

> y0

-0.11183255915896297

>yl

-3.577152063957297

> (x yO (exp y0))

50

-0.1
> (x y1 (exp y1))
-0.10000000000000002

The Lambert W function often appears in solutions to equations that contain n log(n), such
as those that describe the running time of divide-and-conquer algorithms.

For example, suppose we have a sort that takest = (x ¢ n (log n)) time, and we mea-
sure the time it takes to sort an n = 10000-element list at t = 0.245 ms. Solving for c,
we get

(define n 10000)

(define t 0.245)

(define ¢ (/ t (x n (log n))))
c

.6600537016574172e-6

NV V V Vv

Now we would like to know how many elements we can sort in 100ms. We solve for n and
use the solution to define a function time->sort-size:

> (define (time->sort-size t)
(exact-floor (exp (lambert (/ t c)))))

> (time->sort-size 100)

2548516

Testing the solution, we get

> (define 1st2 (build-list 2548516 values))

> (time (sort 1st2 <))

cpu time: 80 real time: 93 gc time: O
For both branches, error is no more than 2 ulps everywhere tested.

(zeta x) — Real

x : Real

Computes the Riemann zeta function. If x is a nonpositive exact integer, (zeta x) is exact.
Examples:

> (plot (function zeta -2 10) #:y-min -4 #:y-max 4)

51

http://en.wikipedia.org/wiki/Riemann_zeta_function

y axis
=)
|

| | | |
-4 T T T T

0 25 5 7.5

X axis

> (plot (function zeta -14 -2))

52

10

-025+1

y axis

-.075

-14

> (zeta 0)

-1/2

> (zeta 1)

zeta: contract violation
expected: Real, not One

given: 1
> (zeta 1.0)
-inf.0
> (zeta -1)
-1/12

> (define num 1000000)
> (define num-coprime

(for/sum ([_ (in-range num)])

(if (coprime? (random-bits 16) (random-bits 16)) 1 0)))

(f1 (/ num-coprime num))
.607901
(/ 1 (zeta 2))
.6079271018540264

O Vv OV

53

When s is an odd, negative exact integer, (zeta s) computes (bernoulli (- 1 s)),
which can be rather slow.

Maximum observed error is 6 ulps, but is usually 3 or less.
(eta x) — Real
x : Real
Computes the Dirichlet eta function. If x is a nonpositive exact integer, (eta x) is exact.

Examples:

> (plot (function eta -10 6))

y axis

> (eta 0)

1/2

> (eta -1)

1/4

> (eta 1)
0.6931471805599453

54

http://en.wikipedia.org/wiki/Dirichlet_eta_function

> (log 2)
0.6931471805599453

When s is an odd, negative exact integer, (eta s) computes (bernoulli (- 1 s)),
which can be rather slow.

Maximum observed error is 11 ulps, but is usually 4 or less.

(hurwitz-zeta s gq) — Real
s : Real
q : Real

Computes the Hurwitz zeta function/for s > 1andq > 0. Whens = 1.00rq = 0.0,
(hurwitz-zeta s q) = +inf.0.

Examples:

> (plot (list (function zeta 1.5 5)
(function (1 (s) (hurwitz-zeta s 1))
#:color 2 #:style 'long-dash #:width 2)))
|] |] |
1 ' 1 ' 1 ']

2.5 -

y axis

15+ —+

X axis

55

http://en.wikipedia.org/wiki/Hurwitz_zeta_function

> (hurwitz-zeta 1 1)
hurwitz-zeta: contract violation

expected: Real > 1

given: 1

argument position: 1st

other arguments...:

)

> (hurwitz-zeta 1.0 1.0)
+inf .0
> (hurwitz-zeta 2 1/4)
17.197329154507113
> (+ (sqr pi) (* 8 catalan.0))
17.19732915450711

While hurwitz-zeta currently raises an exception for s < 1, it may in the future return
real values.

Maximum observed error is 6 ulps, but is usually 2 or less.

(beta x y) — (U Exact-Rational Flonum)
x : Real
y : Real

Computes the beta function| for positive real x and y. Like (/ (* (gamma x) (gamma
y)) (gamma (+ x y))),but more accurate.

Examples:

> (plot3d (contour-intervals3d beta 0.25 2 0.25 2) #:angle 250)

56

http://en.wikipedia.org/wiki/Beta_function

> (beta 0 0)

beta: contract violation
expected: positive Real
given: 0
argument position: 1st
other arguments...:

0

> (beta 1 5)

1/5

> (beta 1.0 5.0)

0.2

(log-beta x y) — (U Zero Flonum)
x . Real
v : Real

Like (log (beta x y)), but more accurate and without unnecessary overflow. The only
exact case is (log-beta 1 1) = O.

57

(gamma-inc k x [upper? regularized?]) — Flonum
k : Real
x . Real
upper? : Any = #f
regularized? : Any = #f

Computes the [incomplete gamma integral for k > 0 and x >= 0. When upper? = #f, it
integrates from zero to x; otherwise it integrates from x to infinity.

If you are doing statistical work, you should probably use gamma-dist instead, which is
defined in terms of gamma-inc and is more flexible (e.g. it allows negative x).

The following identities should hold:

¢ (gamma-inc k 0) = 0
¢ (gamma-inc k +inf.0) = (gamma k)

¢ (+ (gamma-inc k x #f) (gamma-inc k x #t)) = (gamma k) (approxi-
mately)

* (gamma-inc k x upper? #t) = (/ (gamma-inc k x upper? #f) (gamma
k)) (approximately)

e (gamma-inc k +inf.0 #t #t) = 1.0

* (+ (gamma-inc k x #f #t) (gamma-inc k x #t #t)) = 1.0 (approxi-
mately)

Examples:

> (list
(plot3d (contour-intervals3d gamma-inc 0.1 4.5 0 10)
#:x-label "k" #:y-label "x" #:width 210 #:height 210)
(plot3d (contour-intervals3d
(1 (k x) (gamma-inc k x #t)) 0.1 4.5 0 10)
#:x-label "k" #:y-label "x" #:width 210 #:height 210))

58

http://en.wikipedia.org/wiki/Incomplete_gamma_function

XS
S5
KX
K55S
K3
X
N

s
S5
KN

";Zﬁy ///////I/
447
o

o
X
R

S
XX
KIS
SR 8K
RN

S
559

S
S

X
5
%
R

X

X
N
R

S
&5

X
5K
S
S
X
X
R

%%
355

S8
S “":‘
S

> (plot3d (contour-intervals3d
(1 (k x) (gamma-inc k x #f #t)) 0.1 20 0 20)
#:x-label "k" #:y-label "x")

> (gamma 4.0)

59

+ (gamma-inc 4.0 0.5 #f) (gamma-inc 4.0 0.5 #t))

gamma-inc 4.0 +inf.0)

DV OO VO
O~ O ~ O

> (/ (gamma-inc 200.0 50.0 #f) (gamma 200.0))
+nan.0
> (gamma-inc 200.0 50.0 #f #t)
2.0247590148473565e-57
> (gamma-inc 0 5.0)
gamma-inc: contract violation
expected: Positive-Real
given: 0
argument position: 1st
other arguments...:
5.0
> (gamma-inc 0.0 5.0)
+inf .0

(log-gamma-inc k x [upper? regularized?]) — Flonum
k : Real
x : Real
upper? : Any = #f
regularized? : Any = #f

Like (log (gamma-inc k x upper? regularized?)), but more accurate and without
unnecessary overflow.

(beta-inc a b x [upper? regularized?]) — Flonum

a : Real
b : Real
x : Real

upper? : Any = #f
regularized? : Any = #f

Computes thelincomplete beta integrallffora > 0,b > 0Oand0 <= x <= 1. When upper?
= #f, it integrates from zero to x; otherwise, it integrates from x to one.

If you are doing statistical work, you should probably use beta-dist instead, which is
defined in terms of beta-inc and is more flexible (e.g. it allows negative x).

Similar identities should hold as with gamma-inc.
Example:

> (plot3d (isosurfaces3d (1 (a b x) (beta-inc a b x #f #t))

60

http://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function

0.1 2.5 0.1 2.5 0 1 #:1abel "beta(a,b,x)")
#:x-label "a" #:y-label "b" #:z-label "x"
#:angle 20 #:altitude 20 #:legend-anchor 'top)

beta(abx)=.8 [|
1— beta(abx)=.6 [|
beta(a,bx)=4 []
1 beta(a,bx)=2 []

(log-beta-inc a b x [upper? regularized?]) — Flonum

a : Real
b : Real
X : Real

upper? : Any = #f
regularized? : Any = #f

Like (log (beta-inc a b x upper? regularized?)), but more accurate and with-
out unnecessary overflow.

While most areas of this function have error less than 5e-15, when a and b have very
dissimilar magnitudes (e.g. 1e-16 and 1e+16), it exhibits catastrophic cancellation. We are
working on it.

61

(Fresnel-S x) — Real

x : Real

(Fresnel-C x) — Real
x : Real

(Fresnel-RS x) — Real
x : Real

(Fresnel-RC x) — Real
x : Real

Compute the Fresnel integralsl Where

¢ (Fresnel-S x) calculates fsin(ntz/Z) [0->x
¢ (Fresnel-C x) calculates fcos(ﬂ'tZ/Z) |0->x
* (Fresnel-RS x) calculates [sin(t?) |0->x

* (Fresnel-RC x) calculates [cos(t?) [0->x

The first two are sometimes also referred to as the natural Fresnel integrals.
Examples:

> (plot (list (function Fresnel-RS 0 5 #:label "Fresnel-RS(x)")
(function Fresnel-RC O 5 #:color 2 #:label "Fresnel-
RC(x)")))

62

https://en.wikipedia.org/wiki/Fresnel_integral

: <~ } : } : }
Fresnel-RS(x) / ———
T | Fresnel-RC(x)
8+
66—
.g"; 1
>
4+
2+
0 —t—————————
0 1 2 3 4

X axis

> (plot (parametric (4 (t) (list (Fresnel-C t) (Fresnel-
S t))) -5 5 #:label "Euler spiral"))

63

Euler spiral

25+

y axis
=)
|

-.25+

> (Fresnel-RS 1)

0.31026830172338116

> (x (sqrt (/ pi 2)) (Fresnel-S (x (sqrt (/ 2 pi)) 1))
0.31026830172338116

Spot-checks within the region 0<=x<=150 sugest that the error is no greater than le-14
everywhere that has been tested, and usually is lower than 2e-15.

3.2 Flonum Functions

(flgamma x) — Flonum
x : Flonum

(fllog-gamma x) — Flonum
x : Flonum

64

(flpsi0 x) — Flonum
x : Flonum

(flpsi m x) — Flonum
m : Integer
x : Flonum

(flerf x) — Flonum
x : Flonum

(flerfc x) — Flonum
x : Flonum

(fllambert x) — Flonum
x : Flonum

(fllambert- x) — Flonum
x : Flonum

(flzeta x) — Flonum
x : Flonum

(fleta x) — Flonum
x : Flonum

(flhurwitz-zeta s q) — Flonum
s . Flonum
g : Flonum

(flbeta x y) — Flonum
x : Flonum
y . Flonum

65

(fllog-beta x y) — Flonum
x : Flonum
y : Flonum

(flgamma-inc k x upper? regularized?) — Flonum
k : Flonum
x : Flonum
upper? : Any
regularized? : Any

(fllog-gamma-inc k x upper? regularized?) — Flonum
k : Flonum
x : Flonum
upper? : Any
regularized? : Any

(flbeta-inc a b x upper? regularized?) — Flonum
a : Flonum
b : Flonum
x : Flonum
upper? : Any
regularized? : Any

(fllog-beta-inc a b x upper? regularized?) — Flonum
a : Flonum
b : Flonum
x : Flonum
upper? : Any
regularized? : Any

(f1Fresnel-S x) — Flonum
x : Flonum

(flFresnel-C x) — Flonum
x : Flonum

Flonum versions of the above functions. These return +nan. O instead of raising errors and
do not have optional arguments. They can be a little faster to apply because they check fewer
special cases.

66

4 Number Theory

(require math/number-theory) package: math-1ib

4.1 Congruences and Modular Arithmetic
Wikipedia: Divisor

(divides? m n) — Boolean
m : Integer
n : Integer

Returns #t if m divides n, #f otherwise.

Formally, an integer m divides an integer n when there exists a unique integer k such that (*
m k) = n.

Examples:

> (divides? 2 9)
#£f
> (divides? 2 8)
#t

Note that 0 cannot divide anything:

> (divides? 0 5)
#f
> (divides? 0 0)
#£f

Practically, if (divides? m n) is #t, then (/ n m) will return an integer and will not

raise exn:fail:contract:divide-by-zero. Wikipedia:
Bezout’s Identity

(bezout a b ¢ ...) — (Listof Integer)
a : Integer
b : Integer

c : Integer

Givenintegersa b ¢ ... returns a list of integers (1ist u v w ...) suchthat (gcd a
bc ...) = xau (xbv) (xcw ...).

Examples:

67

https://pkgs.racket-lang.org/package/math-lib
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/B%C3%A9zout's_identity

> (bezout 6 15)
"'(-2 1)

> (+ (x -2 6) (x 1 15))
3
> (ged 6 15)
3
(coprime? a b ...) — Boolean
a . Integer
b : Integer
Returns #t if the integers a b ... are coprime. Formally, a set of integers is considered

coprime (also called relatively prime) if their greatest common divisor is 1.
Example:

> (coprime? 2 6 15)
#t

(pairwise-coprime? a b ...) — Boolean
a : Integer
b : Integer

Returns #t if the integers a b ... are pairwise coprime, meaning that each pair of integers
is coprime.

The numbers 2, 6 and 15 are coprime, but not pairwise coprime, because 6 and 15 share the
factor 3:

> (pairwise-coprime? 2 6 15)
#E

(solve-chinese as ns) — Natural
as : (Listof Integer)
ns : (Listof Integer)

Given a length-k list of integers as and a length-k list of coprime moduli ns, (solve-
chinese as ns) returns the least natural number x that is a solution to the equations

X aq (mod n1)

ax (mod ny)

o]
1]

68

Wikipedia:
Coprime.

Wikipedia:
Pairwise Coprime

Wikipedia: Chinese
Remainder
Theorem

http://en.wikipedia.org/wiki/Coprime
http://en.wikipedia.org/wiki/Pairwise_coprime
http://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://en.wikipedia.org/wiki/Chinese_remainder_theorem

The solution x is less than (* ny ... ng).
The moduli ns must all be positive.

What is the least number x that when divided by 3 leaves a remainder of 2, when divided by
5 leaves a remainder of 3, and when divided by 7 leaves a remainder of 2?

> (solve-chinese '(2 3 2) '(3 5 7))
23
Wikipedia:
Quadratic Residue
(quadratic-residue? a n) — Boolean
a : Integer
n : Integer

Returns #t if a is a quadratic residue modulo n, otherwise #f. The modulus n must be
positive, and a must be nonnegative.

Formally, a is a quadratic residue modulo n if there exists a number x such that (x x x) =
a (mod n). In other words, (quadratic-residue? a n) is #t when a is a perfect square
modulo n.

Examples:

> (quadratic-residue? 0 4)
#E
> (quadratic-residue? 1 4)
#t
> (quadratic-residue? 2 4)
#f
> (quadratic-residue? 3 4)
#E
Wikipedia:
Legendre Symbol
(quadratic-character a p) — (U -1 0 1)
a : Integer
p : Integer

Returns the value of the quadratic character modulo the prime p. That is, for a non-zero
a the number 1 is returned when a is a quadratic residue, and -1 is returned when a is a
non-residue. If a is zero, then O is returned.

If a is negative or p is not positive, quadratic-character raises an error. If p is not
prime, (quadratic-character a p) is indeterminate.

This function is also known as the Legendre symbol.

69

http://en.wikipedia.org/wiki/Quadratic_residue
http://en.wikipedia.org/wiki/Legendre_symbol

> (quadratic-character 0 5)
0
> (quadratic-character 1 5)
1
>

(quadratic-character 2 5)
-1
> (quadratic-character 3 5)
-1
Wikipedia: Jacobi
Symbol

(jacobi-symbol a n) — (U -1 0 1)
a . Nonnegative-Integer
n : Positive-Integer

Computes the Jacobi symbol for any nonnegative integer a and any positive odd integer n.
If n is not an odd positive integer, (jacobi-symbol a n) throws an exception.

> (jacobi-symbol 1 1)
1
> (jacobi-symbol 8 11)
-1

(jacobi-symbol 39 27)

>
0
> (jacobi-symbol 22 59)
1
>

(jacobi-symbol 32 8)
jacobi: contract violation

expected: odd?

given: 8

argument position: 2nd

other arguments...:

32

Wikipedia:
Multiplicative

Inverse
(modular-inverse a n) — Natural

a : Integer
n : Integer

Returns the inverse of a modulo n if a and n are coprime, otherwise raises an error. The
modulus n must be positive, and a must be nonzero.

Formally, if a and n are coprime, b = (modular-inverse a n) is the unique natural
number less than n such that (* a b) = 1 (mod n).

70

http://en.wikipedia.org/wiki/Jacobi_symbol
http://en.wikipedia.org/wiki/Jacobi_symbol
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse

(modular-inverse 2 5)

(modulo (¥ 2 3) 5)

= VvV W Vv

(modular-expt a b n) — Natural
a : Integer
b : Integer
n : Integer

Computes (modulo (expt a b) n), but much more efficiently. The modulus n must be
positive.

Examples:

> (modulo (expt -6 523) 19)
13
> (modular-expt -6 523 19)
13
(modular-expt 9 158235208 19)

>
4
> (modular-expt 2 -1 11)
6
>

; don't try this at home!
(modulo (expt 9 158235208) 19)
4

4.1.1 Parameterized Modular Arithmetic
Wikipedia:
Modular Arithmetic
The math/number-theory library supports modular arithmetic parameterized on a current

modulus. For example, the code
(with-modulus n
((modexpt a b) . mod= . c))
corresponds with the mathematical statement ab =¢ (mod n).

The current modulus is stored in a parameter that, for performance reasons, can only be
set using with-modulus. (The basic modular operators cache parameter reads, and this
restriction guarantees that the cached values are current.)

(with-modulus n body ...)

n : Integer

71

http://en.wikipedia.org/wiki/Modular_arithmetic

Alters the current modulus within the dynamic extent of body. The expression n must
evaluate to a positive integer.

By default, the current modulus is 1, meaning that every modular arithmetic expression that
does not raise an error returns 0.

(current-modulus) — Positive-Integer

Returns the current modulus.
Examples:

(current-modulus)

>

1

> (with-modulus 5 (current-modulus))
5

(mod x) — Natural
x : Exact-Rational

Converts a rational number x to a natural number less than the current modulus.

If x is an integer, this is equivalent to (modulo x n). If x is a fraction, an integer input is
generated by multiplying its numerator by its denominator’s modular inverse.

Examples:

(with-modulus 7 (mod (* 218 7)))
(with-modulus 7 (mod 3/2))

(with-modulus 7 (mod/ 3 2))

gV o0 v OV

> (with-modulus 7 (mod 3/7))
modular-inverse: expected argument that is coprime to
modulus 7; given 7

(mod+ a ...) — Natural
a . Integer
(mod* a ...) — Natural

a : Integer

Equivalent to (modulo (+ a ...) (current-modulus)) and (modulo (x a ...)
(current-modulus)), respectively, but generate smaller intermediate values.

72

(modsqr a) — Natural
a : Integer

(modexpt a b) — Natural
a : Integer
b : Integer

Equivalent to (mod* a a) and (modular-expt a b (current-modulus)), respec-
tively.

(mod- a b ...) — Natural
a : Integer
b : Integer
Equivalent to (modulo (- a b ...) (current-modulus)), but generates smaller in-

termediate values. Note that (mod- a) = (mod (- a)).

(mod/ a b ...) — Natural
a : Integer
b : Integer

Divides a by (* b ...), by multiplying a by the multiplicative inverse of (* b ...).
The one-argument variant returns the modular inverse of a.

Note that (mod/ a b ...) is not equivalent to (modulo (/ a b ...) (current-
modulus)); see mod= for a demonstration.

(mod= a b ...) — Boolean
a : Integer
b : Integer
(mod< a b ...) — Boolean
a . Integer
b : Integer
(mod<= a b ...) — Boolean
a : Integer
b : Integer
(mod> a b ...) — Boolean
a : Integer
b : Integer
(mod>= a b ...) — Boolean
a : Integer
b : Integer
Each of these is equivalent to (op (mod a) (mod b) ...), where op is the correspond-

ing numeric comparison function. Additionally, when given one argument, the inequality
tests always return #t.

73

Suppose we wanted to know why 17/4 = 8 (mod 15), but 51/12 (mod 15) is undefined, even
though normally 51/12 = 17/4. In code,

> (with-modulus 15 (mod/ 17 4))

8

> (/ 51 12)

17/4

> (with-modulus 15 (mod/ 51 12))
modular-inverse: expected argument that is coprime to
modulus 15; given 12

We could try to divide by brute force: find, modulo 15, all the numbers a for which (mod*
a 4) is 17, then find all the numbers b for which (mod* a 12) is 51.

> (with-modulus 15
(for/list ([a (in-range 15)]
#:when (mod= (mod* a 4) 17))
a))
'(8)
> (with-modulus 15
(for/list ([b (in-range 15)]
#:when (mod= (mod* b 12) 51))
b))
'(3 8 13)

So the problem isn’t that b doesn’t exist, it’s that b isn’t unique.

4.2 Primes
Wikipedia: Prime
Number

(prime? z) — Boolean
z : Integer
Returns #t if z is a prime, #f otherwise.
Formally, an integer z is prime when the only positive divisors of z are 1 and (abs z).
The positive primes below 20 are:
> (filter prime? (range 1 21))

'(2 357 11 13 17 19)

The corresponding negative primes are:

74

http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Prime_number

> (filter prime? (range 1 -21 -1))
'(-2 -3 -5 -7 -11 -13 -17 -19)

(odd-prime? z) — Boolean
z : Integer

Returns #t if z is a odd prime, #f otherwise.

> (odd-prime? 2)
#f
> (odd-prime? 3)
#t

(nth-prime n) — Natural
n : Integer

Returns the nth positive prime; n must be nonnegative.

> (nth-prime 0)
2

> (nth-prime 1)
3

> (nth-prime 2)
5

(random-prime n) — Natural
n : Integer

Returns a random prime smaller than n, which must be greater than 2.
The function random-prime picks random numbers below n until a prime is found.

(random-prime 10)
(random-prime 10)

>
2
>
7
> (random-prime 10)
5

(next-prime z) — Integer
z . Integer

Returns the first prime larger than z.

75

(next-prime 4)

>
5
> (next-prime 5)
7

(prev-prime z) — Integer
z : Integer
Returns the first prime smaller than z.

(prev-prime 4)

>
3
> (prev-prime 5)
3

(next-primes z n) — (Listof Integer)
z . Integer
n : Integer

Returns list of the next n primes larger than z; n must be nonnegative.

> (next-primes 2 4)
'(3 57 11)

(prev-primes z n) — (Listof Integer)
z : Integer
n : Integer

Returns list of the next n primes smaller than z; n must be nonnegative.

> (prev-primes 13 4)
'(11 7 5 3)

(factorize n) — (Listof (List Natural Natural))
n : Natural

Returns the factorization of a natural number n. The factorization consists of a list of corre-
sponding primes and exponents. The primes will be in ascending order.
The prime factorization of 600 = 273 * 3/A1 * 5/2:

> (factorize 600)
"((2 3) (31) (52))

76

Wikipedia: Integer
Factorization

http://en.wikipedia.org/wiki/Integer_factorization
http://en.wikipedia.org/wiki/Integer_factorization

(defactorize f) — Natural
f : (Listof (List Natural Natural))

Returns the natural number, whose factorization is given by f. The factorization f is repre-
sented as described in factorize.

> (defactorize '((2 3) (3 1) (5 2)))
600

(divisors z) — (Listof Natural)
z : Integer

Returns a list of all positive divisors of the integer z. The divisors appear in ascending order.

> (divisors 120)
'(1 234568 10 12 15 20 24 30 40 60 120)
> (divisors -120)
'(1 234568 10 12 15 20 24 30 40 60 120)

(prime-divisors z) — (Listof Natural)
z : Natural

Returns a list of all positive prime divisors of the integer z. The divisors appear in ascending
order.

> (prime-divisors 120)
'(2 3 5)

(prime-exponents z) — (Listof Natural)
z : Natural

Returns a list of the exponents of in a factorization of the integer z.

> (define z (* 2 2 2 3 5 5))
> (prime-divisors z)

'(2 3 5)

> (prime-exponents z)
'(312)

4.3 Roots

(integer-root n m) — Natural
n : Natural
m : Natural

71

Returns the mth integer root of n. This is the largest integer r such that (expt r m) <= n.

(integer-root (expt 3 4) 4)

>
3
> (integer-root (+ (expt 3 4) 1) 4)
3

(integer-root/remainder n m) — Natural Natural
n : Natural
m : Natural

Returns two values. The first, r, is the mth integer root of n. The second is n-r~m.

> (integer-root/remainder (expt 3 4) 4)

3

0

> (integer-root/remainder (+ (expt 3 4) 1) 4)
3

1

4.4 Powers

(max-dividing-power a b) — Natural
a : Integer
b : Integer

Returns the largest exponent, n, of a power with base a that divides b.

That is, (expt a n) divides b but (expt a (+ n 1)) does not divide b.

(max-dividing-power 3 (expt 3 4))

>

4

> (max-dividing-power 3 5)

0

(perfect-power m) — (U (List Natural Natural) #f)
m : Integer

If m is a perfect power, a list with two elements b and n such that (expt b n) = m is
returned, otherwise #f is returned.

> (perfect-power (expt 3 4))

'(3 4)

> (perfect-power (+ (expt 3 4) 1))
#£

78

Wikipedia: Perfect
Power

(perfect-power? m) — Boolean
m : Integer

Returns #t if m is a perfect power, otherwise #f.

> (perfect-power? (expt 3 4))

#t

> (perfect-power? (+ (expt 3 4) 1))
#E

(prime-power m) — (U (List Natural Natural) #f)
m : Natural

If m is a power of the form (expt p n) where p is prime, then a list with the prime and the
exponent is returned, otherwise #f is returned.

> (prime-power (expt 3 4))
'(3 4)

> (prime-power (expt 6 4))
#f

(prime-power? m) — Boolean
m : Natural

Returns #t if m is a prime power, otherwise #f.

> (prime-power? (expt 3 4))
#t

> (prime-power? (expt 6 4))
#f

> (prime-power? 1)

#E

> (prime-power? 0)

#f

(odd-prime-power? m) — Boolean
m : Natural

Returns #t if m is a power of an odd prime, otherwise #f.

79

http://en.wikipedia.org/wiki/Perfect_power
http://en.wikipedia.org/wiki/Perfect_power

> (odd-prime-power? (expt 2 4))

#t
> (odd-prime-power? (expt 3 4))
#t
> (odd-prime-power? (expt 15 4))
#E

(as-power m) — Natural Natural
m : Positive-Integer

Returns two values b and n such thatm = (expt b n) and n is maximal.

> (as-power (x (expt 2 4) (expt 3 4)))
6

4

> (expt 6 4)

1296

> (x (expt 2 4) (expt 3 4))

1296

> (as-power (x (expt 2 4) (expt 3 5)))
3888

1

(perfect-square m) — (U Natural #f)
m : Natural

Returns (sqrt m) if m is perfect square, otherwise #f£.

> (perfect-square 9)
3
> (perfect-square 10)
#E

4.5 Multiplicative and Arithmetic Functions

The functions in this section are multiplicative (with exception of the Von Mangoldt func-
tion). In number theory, a multiplicative function is a function f such that (f (* a b)) =

(* (£ a) (£ b)) for all coprime natural numbers a and b. Wikipedia: [Euler’s
Totient

(totient n) — Natural
n : Natural

80

http://en.wikipedia.org/wiki/Euler%27s_totient_function
http://en.wikipedia.org/wiki/Euler%27s_totient_function

Returns the number of integers from 1 to n that are coprime with n.
This function is known as Eulers totient or phi function.

(totient 9)

>
6
> (length (filter (curry coprime? 9) (range 10)))
6

Wikipedia:
Moebius Function

(moebius-mu n) — (U -1 0 1)
n : Natural

Returns:

* 1if n is a square-free product of an even number of primes
e -1if n is a square-free product of an odd number of primes

e 0 if n has a multiple prime factor

> (moebius-mu (* 2 3 5))
-1
(moebius-mu (* 2 3 5 7))

>
1
> (moebius-mu (* 2 2 3 5 7))
0

Wikipedia: Divisor
Function

(divisor-sum n k) — Natural
n : Natural
k : Natural

Returns sum of the kth powers of all divisors of n.

> (divisor-sum 12 2)
210
> (apply + (map sqr (divisors 12)))
210
OEIS: Big Omega
(prime-omega n) — natural?
n : Natural

Counting multiplicities the number of prime factors of n is returned.

81

http://en.wikipedia.org/wiki/M%C3%B6bius_function
http://en.wikipedia.org/wiki/Divisor_function
http://en.wikipedia.org/wiki/Divisor_function
http://oeis.org/A001222
http://oeis.org/wiki/Omega(n),_number_of_prime_factors_of_n_(with_multiplicity)

> (prime-omega (* 2 2 2 3 3 5))

6
Wikipedia: ' Von
Mangoldt Function

(mangoldt-lambda n) — Real
n : Natural

The von Mangoldt function. If n=p~k for a prime p and an integer k>=1 then (log n) is
returned. Otherwise 0 is returned.

Note: The Von Mangoldt function is not multiplicative.

> (mangoldt-lambda (* 3 3))
1.0986122886681098

> (log 3)
1.0986122886681098

4.6 Number Sequences
Wikipedia:
Bernoulli Number

(bernoulli-number n) — Exact-Rational
n : Integer

Returns the nth Bernoulli number; n must be nonnegative.

> (map bernoulli-number (range 9))
‘(1 -1/2 1/6 0 -1/30 0 1/42 0 -1/30)

Note that these are the first Bernoulli numbers, since (bernoulli-number 1) = -1/2. MathWorld:
Eulerian Number

(eulerian-number n k) — Natural
n : Integer
k : Integer

Returns the Eulerian number <n, k>; both arguments must be nonnegative.

> (eulerian-number 5 2)

66
Wikipedia:
Fibonacci Number

(fibonacci n) — Natural
n : Integer

82

http://en.wikipedia.org/wiki/Von_Mangoldt_function
http://en.wikipedia.org/wiki/Von_Mangoldt_function
http://en.wikipedia.org/wiki/Bernoulli_number
http://mathworld.wolfram.com/EulerianNumber.html
http://en.wikipedia.org/wiki/Fibonacci_number

Returns the nth Fibonacci number; n must be nonnegative.
The ten first Fibonacci numbers.

> (map fibonacci (range 10))
(01123581321 34)

(make-fibonacci a b) — (Integer -> Integer)
a : Integer
b : Integer

Returns a function representing a Fibonacci sequence with the first two numbers a and b.

The fibonacci function is defined as (make-fibonacci 0 1). Wikipedia: Lucas
Number

The Lucas numbers are defined as a Fibonacci sequence starting with 2 and 1:

> (map (make-fibonacci 2 1) (range 10))
'(21 347 11 18 29 47 76)

(modular-fibonacci n m) — Natural
n : Integer
m : Integer
Returns the nth Fibonacci number modulo m; n must be nonnegative and m must be positive.

The ten first Fibonacci numbers modulo 5.

> (map (1 (n) (modular-fibonacci n 5)) (range 10))
'(0112303314)

(make-modular-fibonacci a b) — (Integer Integer -> Integer)
a : Integer
b : Integer

Like make-fibonacci, but makes a modular Fibonacci sequence. Wikipedia: [Farey
Sequence
(farey-sequence n) — (Listof Exact-Rational)
n : Integer
Returns a list of the numbers in the nth Farey sequence; n must be positive.
The nth Farey sequence is the sequence of all completely reduced rational numbers from 0

to 1 which denominators are less than or equal to n.

83

http://wikipedia.org/wiki/Lucas_number
http://wikipedia.org/wiki/Lucas_number
http://en.wikipedia.org/wiki/Farey_sequence
http://en.wikipedia.org/wiki/Farey_sequence

> (farey-sequence 1)

(0 1)
> (farey-sequence 2)
'(0 1/2 1)

> (farey-sequence 3)

'(0 1/3 1/2 2/3 1)
MathWorld:
Tangent Number

(tangent-number n) — Integer
n : Integer

Returns the nth tangent number; n must be nonnegative.
(tangent-number 1)
(tangent-number 2)
(tangent-number 3)

>
1
>
0
>
2

4.7 Combinatorics

Wikipedia:
Factorial
(factorial n) — Natural
n : Integer
Returns the factorial of n, which must be nonnegative. The factorial of n is the number (*
n (-n1) (-n2) ... 1).
> (factorial 3)
6
> (factorial 0)
1
Wikipedia:
Binomial
Coefficient

(binomial n k) — Natural
n : Integer
k : Integer

Returns the number of ways to choose a set of k items from a set of n items; i.e. the order
of the k items is not significant. Both arguments must be nonnegative.

When k > n, (binomial n k) = 0. Otherwise, (binomial n k) is equivalent

to (/ (factorial n) (factorial k) (factorial (- n k))), but computed more
quickly.

84

http://mathworld.wolfram.com/TangentNumber.html
http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Binomial_coefficient
http://en.wikipedia.org/wiki/Binomial_coefficient

> (binomial 5 3)
10
Wikipedia:
Permutations
(permutations n k) — Natural
n : Integer
k : Integer

Returns the number of ways to choose a sequence of k items from a set of n items; i.e. the
order of the k items is significant. Both arguments must be nonnegative.

When k > n, (permutations n k) = 0. Otherwise, (permutations n k) is equiva-
lentto (/ (factorial n) (factorial (- n k))).

> (permutations 5 3)

60
Wikipedia:
Multinomial
Coeffecient
(multinomial n ks) — Natural

n : Integer
ks : (Listof Integer)

A generalization of binomial to multiple sets of choices; e.g. (multinomial n (list
kO k1 k2)) is the number of ways to choose a set of kO items, a set of k1 items, and a set
of k2 items from a set of n items. All arguments must be nonnegative.

When (apply + ks) = n, thisis equivalent to (apply / (factorial n) (map fac-
torial ks)). Otherwise, multinomial returns O.

> (multinomial 5 '(3 2))

10

> (= (multinomial 8 '(5 3))
(binomial 8 5)
(binomial 8 3))

#t

> (multinomial 10 '(5 3 2))

2520

> (multinomial 0 '())

(multinomial 4 '(1 1))

OV o=

Wikipedia:
Partition

(partitions n) — Natural
n : Integer

85

http://en.wikipedia.org/wiki/Permutation#Permutations_in_combinatorics
http://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients
http://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients
http://en.wikipedia.org/wiki/Partition_(number_theory)

Returns the number of partitions of n, which must be nonnegative. A partition of a positive
integer n is a way of writing n as a sum of positive integers. The number 3 has the partitions
(+ 11 1),(+12)and (+ 3).

(partitions 3)

>
3
> (partitions 4)
5

4.8 Special Numbers

4.8.1 Polygonal Numbers

Wikipedia:
Polygonal Number
(triangle-number? n) — Boolean
n : Natural
(square-number? n) — Boolean
n : Natural
(pentagonal-number? n) — Boolean
n : Natural
(hexagonal-number? n) — Boolean
n : Natural
(heptagonal-number? n) — Boolean
n : Natural
(octagonal-number? n) — Boolean
n : Natural
These functions check whether the input is a polygonal number of the types triangle, square,
pentagonal, hexagonal, heptagonal and octogonal respectively.
(triangle-number n) — Natural
n : Natural
(sqr n) — Natural
n : Natural
(pentagonal-number n) — Natural
n : Natural
(hexagonal-number n) — Natural
n : Natural
(heptagonal-number n) — Natural
n : Natural
(octagonal-number n) — Natural
n : Natural
These functions return the nth polygonal number of the corresponding type of polygonal
number. Wikipedia: Mediant

86

http://en.wikipedia.org/wiki/Polygonal_number
http://en.wikipedia.org/wiki/Mediant_(mathematics)

4.9 Fractions

(mediant x y) — Exact-Rational
x @ Exact-Rational
y : Exact-Rational

Computes the mediant of the numbers x and y. The mediant of two fractions p/q and r/s
in their lowest term is the number (p+r)/(g+s).

> (mediant 1/2 5/6)
3/4

4.10 The Quadratic Equation

(quadratic-solutions a b ¢) — (Listof Real)

a : Real
b : Real
c : Real

Returns a list of all real solutions to the equationa x~2 + b x +c = 0.

> (quadratic-solutions 1 0 -1)
(-1 1)

> (quadratic-solutions 1 2 1)
'(-1)

> (quadratic-solutions 1 0 1)

'O

The implementation of quadratic-solutions handles cancellation and overflow intelli-
gently:

> (quadratic-solutions 1e+200 2e+200 1e+200)
"(-1.0)
> (quadratic-solutions 1e-200 -2e-200 1e-200)
'(1.0)

For exact inputs, if the output can be exactly represented, it will be:

> (quadratic-solutions -1 2/3 1/3)

"(1 -1/3)

(quadratic-integer-solutions a b ¢) — (Listof Integer)
a : Real
b : Real
c : Real

87

Returns a list of all integer solutions to the equationa x~2 + b x +c = 0.

> (quadratic-integer-solutions 1 0 -1)
(-1 1)
> (quadratic-integer-solutions 1 0 -2)

'O

(quadratic-natural-solutions a b ¢) — (Listof Natural)
a : Real
b : Real
c : Real

Returns a list of all natural solutions to the equation a x~2 + b x +c = 0.

> (quadratic-natural-solutions 1 0 -1)
“(1)
> (quadratic-natural-solutions 1 0 -2)

O]

(complex-quadratic-solutions a b ¢) — (Listof Complex)
a : Complex
b : Complex
c : Complex

Returns a list of all complex solutions to the equationa x~2 + b x +c = 0. This function
allows complex coeffecients.

> (complex-quadratic-solutions 1 0 1)

'(0-1i 0+11i)

> (complex-quadratic-solutions 1 0 (sqrt -1))

'(-0.7071067811865476+0.70710678118654751
0.7071067811865476-0.70710678118654751)

> (complex-quadratic-solutions 1 0 1)

'(0-1i 0+11i)

Added in version 1.1 of package math-1ib.

4.11 The group Zn and Primitive Roots
Wikipedia: The
Group Zn

The numbers 0, 1, ..., n-1 with addition and multiplication modulo n is a ring called

Zn.

The group of units in Zn with respect to multiplication modulo n is called Un.

88

http://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n
http://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n

The order of an element x in Un is the least k>0 such that x"k=1 mod n.

A generator the group Un is called a primitive root modulo n. Note that g is a primitive root
if and only if order (g)=totient(n). A group with a generator is called cyclic.

(unit-group n) — (Listof Positive-Integer)
n : Integer

Returns a list of all elements of Un, the unit group modulo n. The modulus n must be
positive.

> (unit-group 5)
'(1 2 3 4)

> (unit-group 6)
'(15)

(unit-group-order x n) — Positive-Integer
x : Integer
n : Integer

Returns the order of x in the group Un; both arguments must be positive. If x and n are not
coprime, (unit-group-order x n) raises an error.

> (unit-group-order 2 5)

4

> (unit-group-order 2 6)

unit-group-order: expected coprime arguments; given 2 and 6

(unit-group-orders n) — (Listof Positive-Integer)
n : Integer

Returns a list (1ist (unit-group-order x0 n) (unit-group-order x1 n) ...)
where x0, x1, ... are the elements of Un. The modulus n must be positive.

> (unit-group-orders 5)

'(1 44 2)

> (map (curryr unit-group-order 5) (unit-group 5))
'(1 4 4 2)

(primitive-root? x n) — Boolean
x . Integer
n : Integer

Returns #t if the element x in Un is a primitive root modulo n, otherwise #f is returned. An
error is signaled if x is not a member of Un. Both arguments must be positive.

&9

> (primitive-root? 1 5)

#t

> (primitive-root? 2 5)

#t

> (primitive-root? 5 5)

primitive-root?: expected coprime arguments; given 5 and 5

(exists-primitive-root? n) — Boolean
n : Integer

Returns #t if the group Un has a primitive root (i.e. it is cyclic), otherwise #f is returned. In
other words, #t is returned if n isone of 1, 2, 4, p~e, 2*p~e where p is an odd prime,
and #f otherwise. The modulus n must be positive.

> (exists-primitive-root? 5)
#t
> (exists-primitive-root? 6)
#t
> (exists-primitive-root? 12)
#f

(primitive-root n) — (Union Natural #f)
n : Integer

Returns a primitive root of Un if one exists, otherwise #£ is returned. The modulus n must
be positive.
(primitive-root 5)

>
2
> (primitive-root 6)
5

(primitive-roots n) — (Listof Natural)
n : Integer

Returns a list of all primitive roots of Un. The modulus n must be positive.

> (primitive-roots 3)
"(2)

> (primitive-roots 5)
(2 3)

> (primitive-roots 6)

'(5)

90

5 Arbitrary-Precision Floating-Point Numbers (Bigfloats)

(require math/bigfloat) package: math-1ib

This library provides a Typed Racket interface to MPFR, a C library that provides

* A C type of arbitrary-precision floating-point numbers.
* Elementary and special functions that are efficient and proved correct.
* Well-defined semantics that correspond with the latest IEEE 754 standard.

The arbitrary-precision floating-point numbers MPFR provides and operates on are repre-
sented by the Typed Racket type Bigfloat and identified by the predicate bigfloat?.

With a few noted exceptions, bigfloat functions regard their arguments as if they were exact,
regardless of their precision. Conceptually, they compute exact results using infinitely many
bits, and return results with (bf-precision) bits by rounding them using (bf-rounding-
mode). In practice, they use finite algorithms that have been painstakingly proved to be
equivalent to that conceptual, infinite process.

MPEFR is free and license-compatible with commercial software. It is distributed with Racket
for Windows and Mac OS X, is installed on most Linux systems, and is leasy to install| on
major Unix-like platforms.

5.1 Quick Start

1. Set the bigfloat function result precision using (bf-precision <some-number-of-
bits>).

2. Use bf to convert real values and well-formed strings to bigfloats.
3. Operate on bigfloats using bf-prefixed functions like bf+ and bfsin.

4. Convert bigfloats to real values using bigfloat->real, bigfloat->flonum, and
bigfloat->integer. Format them for display using bigfloat->string.

For examples, continue through the FAQ.

5.2 Fictionally Asked Questions

Why use math/bigfloat?

91

https://pkgs.racket-lang.org/package/math-lib
http://www.mpfr.org/
http://www.mpfr.org/ports.html

There are a few reasons.
Reason: Flonums have either too much or too little precision for your application.
Examples:

(flsqrt 3.0)

.7320508075688772

pi

.141592653589793

(bf-precision 16)

(bfsqrt (bf 3))

(bf #e1.73206)

> (bf-precision 179)

> pi.bf

(bf #e3.141592653589793238462643383279502884197169399375105819)

vV VWV YV

A flonum has a 53-bit significand (we’ll say it has 53 bits of precision) and an 11-bit expo-
nent. A bigfloat has an arbitrary precision of at least 2 bits and a 31-bit exponent.

Reason: To compute ridiculously large or small numbers with confidence.
Examples:

> (bf-precision 128)

> (bfexp (bfexp (bfexp (bf 3))))

(bf "2.050986436051648895105860942072054674579e229520860")
> (bflog (bflog (bflog (bfexp (bfexp (bfexp (bf 3)))))))
(bf 3)

Reason: To verify your floating-point hardware.

IEEE 754-2008 stipulates that conforming implementations must correctly round the results
of all operations. Roughly speaking, results can’t be more than half a bit off, where the bit
in question is the least significant in the significand.

Of course, implementations don’t always adhere to standards. For example, on my old
laptop, evaluating (exp 400) results in 5.221469689764346e+173. Note the last four
decimal digits in the significand: 4346. But they should be 4144:

> (bf-precision 53)
> (bigfloat->flonum (bfexp (bf 400)))
5.221469689764144e+173

My new laptop computes 5.221469689764144e+173 as it should.

92

http://en.wikipedia.org/wiki/IEEE_754-2008

Reason: To control rounding of the least significant bit.

IEEE 754 provides for different rounding modes for the smallest bit of a flonum result, such
as round to even and round toward zero. We might use this to implement interval arithmetic
correctly, by rounding lower bounds downward and upper bounds upward. But there isn’t a
portable way to set the rounding mode!

MPEFR allows the rounding mode to be different for any operation, and math/bigfloat
exposes this capability using the parameter bf -rounding-mode.

When shouldn’t I use math/bigfloat?

When you need raw speed. Bigfloat functions can be hundreds to thousands of times slower
than flonum functions.

That’s not to say that they’re inefficient. For example, bf1og implements the algorithm with
the best known asymptotic complexity. It just doesn’t run directly on hardware, and it can’t
take fixed-precision-only shortcuts.

Why are there junk digits on the end of (bf 1.1)?

That’s approximately the value of the flonum 1.1. Use (bf #el.1) or (bf "1.1") to
make the junk go away. In general, you should prefer to convert exact rationals and strings
to bigfloats.

Why is the last digit of pi.bf not rounded correctly?

All the bits but the last is exact, and the last bit is correctly rounded. This doesn’t guarantee
that the last digit will be.

A decimal digit represents at most log(10)/1og(2) ~ 3.3 bits. This is an irrational number, so
the decimal/bit boundary never lines up except at the decimal point. Thus, the last decimal
digit of any bigfloat must represent fewer than 3.3 bits, so it’s wrong more often than not.
But it’s the last bif that counts.

5.3 Type and Constructors

Bigfloat
(bigfloat? v) — Boolean
v : Any

An opaque type that represents an arbitrary-precision floating-point number, or a bigfloat,
and the opaque type’s predicate.

(bf x) — Bigfloat
x : (U String Real)

93

(bf sig exp) — Bigfloat
sig . Integer
exp . Integer

The one-argument variant converts a string or real x to a bigfloat.

> (bf-precision 128)

> (bf 4)

(bf 4)

> (bf 1/7)

(bf #e0.1428571428571428571428571428571428571426)

> (bf 41/10)

(bf #e4.099999999999999999999999999999999999995)

> (bf "not a number")

bf: expected a well-formed decimal number; given "not a number"
> (bf "15e200000000")

(bf "1.499999999999999999999999999999999999998e200000001")

In the last example, the result of (bf "15e200000000") is displayed as a string conversion
because the exact rational number would be very large.

Converting from flonum literals is usually a bad idea* because flonums have only 53 bits
precision. Prefer to pass exact rationals and strings to bf.

The two-argument variant converts a signed significand sig and a power of 2 exp to
a bigfloat. Generally, (bf sig exp) = (bf (x sig (expt 2 exp))), but the two-
argument variant is much faster, especially for large exp.

Examples:

> (bf 200 56)

(bf 14411518807585587200)
> (bf (* 200 (expt 2 56)))
(bf 14411518807585587200)

The bfrandom function generates random bigfloats between 0 and 1 using the two-argument
variant in this way:

> (require (only-in math/base random-bits))

> (bf-precision 64)

> (bf (random-bits 64) -64)
(bf #e0.416872969910248753552)

(bfrandom) — Bigfloat

94

* 1t can be a good
idea if you’re
testing a flonum
implementation of a
function against a
bigfloat
implementation.

Returns a uniformly distributed random bigfloat in the interval [0,1].

(bfcopy x) — Bigfloat
x : Bigfloat

Returns the (bf-precision)-bit bigfloat closest to x, under the current bf-rounding-
mode.

A common pattern to compute bigfloats in higher precision is

> (bf-precision 64)
> (bfcopy
(parameterize ([bf-precision (+ (bf-precision) 10)])
(bf/ (bf+ 1.bf (bfsqrt 5.bf)) 2.bf)))
(bf #e1.61803398874989484821)

This example computes the golden ratio (phi . bf) with 10 bits more than requested, to make
up for triple rounding error.

5.4 Accessors and Conversion Functions

(bigfloat-precision x) — Exact-Positive-Integer
x . Bigfloat

Returns the number of bits in the significand of x. This is almost always the value of (bf-
precision) when x was created.

(bigfloat-signbit x) — (U 0 1)
x . Bigfloat

Returns the sign bit of the significand of x.

Examples:

> (bigfloat-signbit -1.bf)
1

> (bigfloat-signbit 0.bf)

0

> (bigfloat-signbit -0.bf)
1

> (bigfloat-signbit -inf.bf)
1

95

(bigfloat-significand x) — Integer
x : Bigfloat

(bigfloat-exponent x) — Integer
x : Bigfloat

Return the signed significand or exponent of x.

To access the significand and exponent at the same time, use bigfloat->sig+exp.

(bigfloat->sig+exp x) — (Values Integer Integer)
x : Bigfloat

Returns the signed significand and exponent of x.

If (values sig exp) = (bigfloat->sig+exp x), its value as an exact rational is (*
sig (expt 2 exp)). Infact, bigfloat->rational converts bigfloats to rationals in ex-
actly this way, after ensuring that (bfrational? x) is #t.

This function and the two-argument variant of bf are mutual inverses.

(bigfloat->integer x) — Integer
x . Bigfloat
(bigfloat->rational x) — Exact-Rational
x : Bigfloat
(bigfloat->real x) — (U Exact-Rational Flonum)
x : Bigfloat
(bigfloat->flonum x) — Flonum
x . Bigfloat

Convert bigfloats to integer, exact rational, real and flonum values respectively.

bigfloat->integer, bigfloat->rational and bigfloat->real return values that can
be converted exactly back to x using bf. For the first two, this is done by raising an error if x
is not respectively integer or rational. On the other hand, bigfloat->real returns +inf .0,
-inf .0 or +nan.0 when x is not a rational bigfloat.

bigfloat->flonum rounds x to 53 bits precision to fit the value into a flonum, using the
current value of bf -rounding-mode.

> (bf-precision 64)
> (bigfloat->integer (bf 21/10))
bigfloat->integer: contract violation
expected: bfinteger?
given: (bf #¢2.0999999999999999999])
> (bigfloat->integer (bfround (bf 21/10)))

96

(define x (bf 1/7))

(bigfloat->flonum x)

.14285714285714285

(bigfloat->rational x)
10540996613548315209/73786976294838206464

> (rationalize (bigfloat->rational x) (expt 2 (- (bf-precision))))
1/7

> (bf= x (bf (bigfloat->rational x)))

#t

vV O V.V N

Be careful with exact conversions. Bigfloats with large exponents may not fit in memory
as integers or exact rationals. Worse, they might fit, but have all your RAM and swap space
for lunch.

(bigfloat->string x) — String
x : Bigfloat

(string->bigfloat s) — (U Bigfloat False)
s @ String

Convert a bigfloat x to a string s and back.

The string returned by bigfloat->string includes enough digits that string-
>bigfloat can reconstruct the bigfloat precisely. In other words, string->bigfloat isa
left inverse of bigfloat->string.

If s isn’t a well-formed decimal number with an optional exponent part, string-
>bigfloat returns #£f. (In contrast, (bf s) raises an error.)

Examples:

> (bf-precision 64)

> (bigfloat->string (bf 4))

l|4ll

> (bigfloat->string (bf 1/10000))
"1.00000000000000000001e-4"

> (string->bigfloat "0.14285714285714285714")
(bf #e0.142857142857142857141)

> (string->bigfloat "square root of two")

#f

> (string->bigfloat (bigfloat->string pi.bf))
(bf #e3.14159265358979323851)

> pi.bf

(bf #e3.14159265358979323851)

97

5.5 Parameters

(bf-precision) — Integer
(bf-precision bits) — void?
bits : Integer

A parameter that determines the precision of bigfloats returned from most bigfloat functions.
Exceptions are noted in the documentation for functions that do not use bf-precision.

For nonzero, rational bigfloats, the number of bits bits includes the leading one bit. For
example, to simulate 64-bit floating point, use (bf-precision 53) even though flonums
have a 52-bit significand, because the one bit is implicit in a flonum.

This parameter has a guard that ensures (bf-precision) is between bf-min-precision
and bf -max-precision.

(bf-rounding-mode) — (U 'nearest 'zero 'up 'down)
(bf-rounding-mode mode) — void?
mode : (U 'nearest 'zero 'up 'down)

A parameter that determines the mode used to round the results of most bigfloat func-
tions. Conceptually, rounding is applied to infinite-precision results to fit them into (bf-
precision) bits.

bf-min-precision : Exact-Positive-Integer

Equal to 2, because single-bit bigfloats can’t be correctly rounded.

bf-max-precision : Exact-Positive-Integer

The largest value of (bf-precision). This is platform-dependent, and probably much
larger than you’ll ever need.

5.6 Constants

Most bigfloat “constants” are actually identifier macros that expand to the application of a
zero-argument function. This allows, for example, pi.bf to depend on the current value of
bf-precision, and allows all of them to be constructed lazily. Most constants are memo-
ized, possibly at multiple precisions.

pi.bf : Bigfloat
phi.bf : Bigfloat
gamma.bf : Bigfloat
catalan.bf : Bigfloat
log2.bf : Bigfloat

98

Approximations of 7, ¢, ¥, G and log(2).
Examples:

> (bf-precision 10)

> pi.bf

(bf #e3.1406)

> (bf-precision 179)

> pi.bf

(bf #e3.141592653589793238462643383279502884197169399375105819)
> phi.bf

bf #e1.618033988749894848204586834365638117720309179805762863)

> gamma.bf

(bf #e0.5772156649015328606065120900824024310421593359399235988)
> catalan.bf

(bf #e0.9159655941772190150546035149323841107741493742816721343)
> log2.bf

(bf #e0.6931471805599453094172321214581765680755001343602552545)

-inf.bf : Bigfloat
-max.bf : Bigfloat
-min.bf : Bigfloat
-0.bf : Bigfloat
0.bf : Bigfloat
+min.bf : Bigfloat
+max.bf : Bigfloat
+inf.bf : Bigfloat
+nan.bf : Bigfloat
epsilon.bf : Bigfloat

Bigfloat constants corresponding to -inf .0, -max.0 -min.0, -0.0, 0.0, +min. 0, +max.0,
+inf .0, +nan.0 and epsilon.0.

The constants -inf .bf, -0.bf, 0.bf, +inf.bf, and +nan.bf have fixed precision.

-10.bf : Bigfloat
-9.bf : Bigfloat
-8.bf : Bigfloat
-7.bf : Bigfloat
-6.bf : Bigfloat
-5.bf : Bigfloat
-4.bf : Bigfloat
-3.bf : Bigfloat
-2.bf : Bigfloat
-1.bf : Bigfloat
1.bf : Bigfloat

99

.bf : Bigfloat
.bf : Bigfloat
.bf : Bigfloat
.bf : Bigfloat
.bf : Bigfloat
.bf : Bigfloat
.bf : Bigfloat
.bf : Bigfloat
10.bf : Bigfloat

© 00 N O O WN

More fixed-precision bigfloat constants.

5.7 Predicates

(bfzero? x) — Boolean

x : Bigfloat
(bfpositive? x) — Boolean
x : Bigfloat

(bfnegative? x) — Boolean
x @ Bigfloat
(bfinteger? x) — Boolean
x : Bigfloat
(bfeven? x) — Boolean
x : Bigfloat
(bfodd? x) — Boolean
x : Bigfloat
(bfrational? x) — Boolean
x : Bigfloat
(bfinfinite? x) — Boolean
x : Bigfloat
(bfnan? x) — Boolean
x : Bigfloat

Unary predicates corresponding to zero?, positive?, negative?, integer?, even?,
0dd?, rational?, infinite? and nan?.
(bf= x y) — Boolean
x @ Bigfloat

y : Bigfloat

(bf> x y) — Boolean
x : Bigfloat
y : Bigfloat

(bf< x y) — Boolean
x . Bigfloat
y : Bigfloat

100

(bf>= x y) — Boolean
x : Bigfloat
y : Bigfloat

(bf<= x y) — Boolean
x . Bigfloat
y : Bigfloat

Standard comparison functions. As is usual, infinities are either greater or less than any other
bigfloat, and every comparison returns #f when either argument is +nan.bf.

5.8 Rounding

(bftruncate x) — Bigfloat
x : Bigfloat

(bffloor x) — Bigfloat
x : Bigfloat

(bfceiling x) — Bigfloat
x : Bigfloat

(bfround x) — Bigfloat
x : Bigfloat

Like truncate, floor, ceiling and round, but for bigfloats.
Rounding is to the nearest integer, with ties broken by rounding to even.

Examples:

> (bfround (bf 1.5))
(bf 2)
> (bfround (bf 2.5))
(bf 2)
> (bfround (bf -1.5))
(bf -2)
> (bfround (bf -2.5))
(bf -2)

(bffrac x) — Bigfloat
x : Bigfloat

Returns the fractional part of x, with the same sign as x.

(bfrint x) — Bigfloat
x : Bigfloat

Rounds x to the nearest integer bigfloat, in the direction specified by (bf-rounding-
mode).

101

5.9 Mathematical Operations

(bfmax x ...) — Bigfloat
x : Bigfloat

(bfmin x ...) — Bigfloat
x : Bigfloat

Return the maximum and minimum of their arguments, respectively.

When given no arguments, bfmin returns +inf . bf, and bfmax returns -inf . bf.

(bf+ x ...) — Bigfloat
x @ Bigfloat
(bfx x ...) — Bigfloat

x : Bigfloat

(bf- x y ...) — Bigfloat
x : Bigfloat
y . Bigfloat

(bf/ x y ...) — Bigfloat
x : Bigfloat
y : Bigfloat

(bfsqr x) — Bigfloat
x : Bigfloat

(bfabs x) — Bigfloat
x : Bigfloat

(bfsgn x) — Bigfloat
x : Bigfloat

Standard arithmetic functions, corresponding to +, *, -, /, sqr, abs and sgn.

When bf+ and bf - are given more than two arguments, they compute the answers in a way
that incurs rounding error only once.

(bfsqrt x) — Bigfloat

x : Bigfloat
(bf1/sqrt x) — Bigfloat
x : Bigfloat

(bfcbrt x) — Bigfloat
x : Bigfloat
Return the square root, reciprocal square root, and cube root of x.

(bfroot x n) — Bigfloat
x : Bigfloat
n : Integer

102

Returns the nth root of x. n must be a nonnegative fixnum.

(bfhypot x y) — Bigfloat
x : Bigfloat
y : Bigfloat

Computes (bfsqrt (bf+ (bfsqr x) (bfsqr y))) without uncessary overflow, incur-
ring rounding error only once. See f1hypot for an example using flonums.

(bflog x) — Bigfloat
x : Bigfloat

(bflog2 x) — Bigfloat
x . Bigfloat

(bflogl0 x) — Bigfloat
x : Bigfloat

Return the log of x in base e, 2 and 10.

(bfexp x) — Bigfloat
x : Bigfloat

(bfexp2 x) — Bigfloat
x : Bigfloat

(bfexpl0 x) — Bigfloat
x . Bigfloat

Return the exponential of x in base e, 2 and 10.

(bfloglp x) — Bigfloat

x . Bigfloat
(bfexpml x) — Bigfloat
x : Bigfloat

Like (bflog (bf+ 1.bf x)) and (bf- (bfexp x) 1.bf), but correct when x is near

zero. See £11oglp for motivation and examples.

(bfexpt x y) — Bigfloat
x : Bigfloat
y : Bigfloat
Computes x7. See flexpt and expt.

(bfsin x) — Bigfloat

x @ Bigfloat
(bfcos x) — Bigfloat
x : Bigfloat

103

(bftan x) — Bigfloat
x : Bigfloat

(bfasin x) — Bigfloat
x : Bigfloat

(bfacos x) — Bigfloat

x : Bigfloat
(bfatan x) — Bigfloat
x : Bigfloat

(bfatan2 y x) — Bigfloat
y . Bigfloat
x : Bigfloat

Standard trigonometric functions and their inverses.

(bfsinh x) — Bigfloat
x : Bigfloat

(bfcosh x) — Bigfloat
x . Bigfloat

(bftanh x) — Bigfloat
x : Bigfloat

(bfasinh x) — Bigfloat
x : Bigfloat

(bfacosh x) — Bigfloat
x . Bigfloat

(bfatanh x) — Bigfloat
x : Bigfloat

Standard hyperbolic functions and their inverses.

(bfsec x) — Bigfloat
x . Bigfloat
(bfcsc x) — Bigfloat

x : Bigfloat
(bfcot x) — Bigfloat
x : Bigfloat

Standard reciprocal trigonometric functions. MPFR does not implement their inverses.

(bfsech x) — Bigfloat
x . Bigfloat

(bfcsch x) — Bigfloat
x : Bigfloat

(bfcoth x) — Bigfloat
x : Bigfloat

Standard reciprocal hyperbolic functions. MPFR does not implement their inverses.

104

(bfsintcos x) — (Values Bigfloat Bigfloat)
x @ Bigfloat

Simultaneously computes the sine and cosine of x.

(bfsinh+cosh x) — (Values Bigfloat Bigfloat)
x : Bigfloat

Simultaneously computes the hyperbolic sine and cosine of x.

(bffactorial x) — Bigfloat
x : Integer

Returns the factorial of x.

(bfremainder n m) — Bigfloat
n : Bigfloat
m : Bigfloat

Returns the remainder analogous to the Racket remainder function. When m is equal to
zero, +nan . bf is returned.

(bfgamma x) — Bigfloat
x : Bigfloat

Computes the gamma function, a generalization of the factorial function.

(bflog-gamma x) — Bigfloat
x @ Bigfloat

(bflog-gamma/sign x) — (Values Bigfloat (U -1 1))
x : Bigfloat

Computes the log-gamma function, or the log of the absolute value of the gamma function.
bflog-gamma/sign additionally returns the sign of (bfgamma x).

(bfpsi0 x) — Bigfloat
x : Bigfloat

Computes the digamma function, the logarithmic derivative of the gamma function.
(bfeint x) — Bigfloat
x . Bigfloat

Returns the exponential integral of x.

105

http://en.wikipedia.org/wiki/Gamma_function
http://mathworld.wolfram.com/LogGammaFunction.html
http://en.wikipedia.org/wiki/Digamma_function
http://en.wikipedia.org/wiki/Exponential_integral

(bf1li2 x) — Bigfloat
x @ Bigfloat

Returns the dilogarithm of x, or the polylogarithm of order 2.

(bfzeta x) — Bigfloat
x . Bigfloat

Computes the Riemann zeta function.

(bferf x) — Bigfloat
x : Bigfloat

(bferfc x) — Bigfloat
x : Bigfloat

Compute the error function and complementary error function, respectively.

(bfbesjO x) — Bigfloat
x : Bigfloat

(bfbesjl x) — Bigfloat
x : Bigfloat

(bfbesj n x) — Bigfloat
n : Integer
x : Bigfloat

(bfbesy0 x) — Bigfloat
x : Bigfloat

(bfbesyl x) — Bigfloat
x : Bigfloat

(bfbesy n x) — Bigfloat
n : Integer
x : Bigfloat

These compute Bessel functions.

A “j” in the name indicates that a function computes a Bessel function of the first kind. A
“y” indicates the second kind.
The “j” or “y” is followed by the order: zero, one, or n (user-specified).

(bfagm x y) — bigfloat
x : Bigfloat
y : Bigfloat

Returns the arithmetic-geometric mean of x and y. Typically, this isn’t directly useful, but
it’s used in some asymptotically fast algorithms such as the one that computes bflog.

106

http://en.wikipedia.org/wiki/Polylogarithm
http://en.wikipedia.org/wiki/Riemann_zeta_function
http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Bessel_function
http://en.wikipedia.org/wiki/Arithmetic-geometric_mean

5.10 Low-level Functions

(bigfloat->ordinal x) — Integer
x : Bigfloat

(ordinal->bigfloat n) — Bigfloat
n : Integer

(bigfloats-between x y) — Integer
x : Bigfloat
y : Bigfloat

(bfstep x n) — Bigfloat
x : Bigfloat
n : Integer

(bfnext x) — Bigfloat
x : Bigfloat

(bfprev x) — Bigfloat
x @ Bigfloat

Like flonum->ordinal, ordinal->flonum, flonums-between, flstep, flnext and
flprev, but for bigfloats.

The major difference is that these operate using (bf-precision) bits. Additionally, unlike
other bigfloat functions, all of these convert their bigfloat arguments to (bf-precision)
bits.

(bfshift x n) — Bigfloat
x : Bigfloat
n : Integer

Like arithmetic-shift, but for bigfloats. More precisely, this returns (bf* x (bfexpt
(bf 2) (bf n))), butis much faster.

(bfcanonicalize x) — Bigfloat
x . Bigfloat

If x is nonzero and rational, returns a new bigfloat with no more bits of precision than are
necessary to encode x exactly, by removing all low-order zeros from the significand and
adjusting the exponent.

For zero or non-rational x, returns -inf .bf, -0.bf, 0.bf, +inf.bf, or +nan.bf, depend-
ing on the value of x.

Two nonzero, rational bigfloats are equal? if and only if their canonicalized significands
and exponents are equal. Two zero or non-rational bigfloats are equal? if and only if their
canonicalizations are eq?.

Canonicalizing bigfloats won’t change answers computed from them.

107

Bigfloats are
canonicalized
before hashing, to
ensure that equality
implies an equal
hash.

Examples:

> (bf-precision 64)

> (define x (bf 1 -2))

> X

(bf #e0.25)

> (bfcanonicalize x)

(bf #e0.25)

> (bigfloat-precision x)

64

> (bigfloat-precision (bfcanonicalize x))
2

108

6 Arrays

Performance Warning: Indexing the elements of arrays created in untyped Racket is cur-
rently 25-50 times slower than doing the same in Typed Racket, due to the overhead of
checking higher-order contracts. We are working on it.

For now, if you need speed, use the typed/racket language.
(require math/array) package: math-1ib

One of the most common ways to structure data is with an array: a rectangular grid of ho-
mogeneous, independent elements. But an array data type is usually absent from functional
languages’ libraries. This is probably because arrays are perceived as requiring users to op-
erate on them using destructive updates, write loops that micromanage array elements, and
in general, stray far from the declarative ideal.

Normally, they do. However, experience in Python, and more recently Data-Parallel Haskell,
has shown that providing the right data types and a rich collection of whole-array operations
allows working effectively with arrays in a functional, declarative style. As a bonus, doing
so opens the possibility of parallelizing nearly every operation.

6.1 Quick Start

Arrays can be created from expressions denoting each element’s value using the array
macro:

> (array #[0 1 2 3 4])
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[0 1 2 3 4])
> (array #[#['first 'row 'datal] #['second 'row 'datall)
- : #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)

109

https://pkgs.racket-lang.org/package/math-lib

(-> Indexes (U 'data 'first 'row 'second)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#['first 'row 'datal #['second 'row 'datall)
> (array "This array has zero axes and one element")
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array "This array has zero axes and one element")

They can also be created using build-array to specify a shape and procedure:

> (define arr
(build-array #(4 5) (d: ([js : Indexes])
(match-define (vector jO j1) js)
(+ 30 1))
> arr
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Nonnegative-Fixnum))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[0 1 2 3 4] #[1 2 3 4 5] #[2 3 4 5 6] #[3 4 5 6 7]])

110

Other ways to create arrays are to convert them from lists and vectors using list->array,
list*->array, vector->array and vector*->array, and to generate them in a loop
using for/array: and for*/array:.

Arrays can be indexed using array-ref, and settable arrays can be mutated using array-
set!:

\

(array-ref arr #(2 3))
Integer [more precisely: Nonnegative-Fixnum]

(define brr (array->mutable-array arr))
(array-set! brr #(2 3) -1000)
brr
: #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)

(mutable-array #[#[0 1 2 3 4] #[1 2 3 4 5] #[2 3 4 -1000 6] #[3 4
56 711)

vV V. Vv o1

However, both of these activities are discouraged in favor of functional, whole-array opera-
tions.

Arrays can be mapped over and otherwise operated on pointwise:

> (array-map (1: ([n : Naturall) (x 2 n)) arr)
- @ #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Nonnegative-Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-

111

lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 2 4 6 8] #[2 4 6 8 10] #[4 6 8 10 12] #[6 8 10 12
1411)
> (array+ arr arr)
- @ #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Nonnegative-Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 2 4 6 8] #[2 4 6 8 10] #[4 6 8 10 12] #[6 8 10 12
1411)

When arrays have different shapes, they can often be broadcast, or stretched, to be the same
shape before applying the pointwise operation:

> (array* arr (array 2))
- @ #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Nonnegative-Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 2 4 6 8] #[2 4 6 8 10] #[4 6 8 10 12] #[6 8 10 12
141D
> (array* arr (array #[0 2 0 2 0]))
- : #(struct:Array

112

(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Nonnegative-Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 2 0 6 0] #[0 4 0 8 0] #[0 6 O 10 0] #[0 8 O 12 0]11)

By default, zero-dimensional arrays like (array 2) can be broadcast to any shape. See
[§6.3 “Broadcasting”] for details.

Arrays can be sliced to yield sub-arrays, using a list of slice specifications that correspond
to array axes. For example, keeping every row of arr and every even-numbered column:

> (array-slice-ref arr (list (::) (:: 0 5 2)))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Nonnegative-Fixnum))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[0 2 4] #[1 3 5] #[2 4 6] #[3 5 71]1)

Here, : : has semantics almost, but not quite, entirely unlike in-range. See[§6.4 “Slicing”]
for details.

Functional code that uses whole-array operations often creates many short-lived, intermedi-
ate arrays whose elements are referred to only once. The overhead of allocating and filling
storage for these arrays can be removed entirely by using nonstrict arrays, sometimes at the
cost of making the code’s performance more difficult to reason about. Another bonus is that
computations with nonstrict arrays have fewer synchronization points, meaning that they

113

will be easier to parallelize as Racket’s support for parallel computation improves. See[§6.5]
[*Nonstrict Arrays”|for details.

6.2 Definitions

An array’s domain is determined by its shape, a vector of nonnegative integers such as # (4
5), #(10 1 5 8) or #(). The shape’s length is the number of array dimensions, or axes.
The shape’s contents are the length of each axis.

The product of the axis lengths is the array’s size. In particular, an array with shape # () has
one element.

Indexes are a vector of nonnegative integers that identify a particular element. Indexes are
in-bounds when there are the same number of them as axes, and each is less than its corre-
sponding axis length.

An array’s contents are determined by its procedure, which returns an element when applied
to in-bounds indexes. By default, most arrays’ procedures look up elements in memory.
Others, such as those returned by make-array, return computed values.

A pointwise operation is one that operates on each array element independently, on each cor-
responding pair of elements from two arrays independently, or on a corresponding collection
of elements from many arrays independently. This is usually done using array-map.

When a pointwise operation is performed on arrays with different shapes, the arrays are
broadcast so that their shapes match. See[§6.3 “Broadcasting”| for details.

6.3 Broadcasting

It is often useful to apply a pointwise operation to two or more arrays in a many-to-one
manner. Library support for this, which math/array provides, is called broadcasting.

Creating a 6 x 6 identity matrix:

> (define diag (diagonal-array 2 6 1 0))
> (array-shape diag)
- : Indexes
'#(6 6)
> diag
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (U One
Zero)))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13

114

prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array

#[#[1 0000 0]
#[0 1 0 0 0 0]
#[0 0 1 0 0 0]
#[0 0 0 1 0 0]
#[0 0 0 0 1 0]
#[0 0 0 0 0 111D

Multiplying each element by 10:

> (array-shape (array 10))
- : Indexes
"#0
> (array* diag (array 10))
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

Adding (array #[0 1 2 3 4 5]) pointwise to every row:
> (array+ (array* diag (array 10))

(array #[0 1 2 3 4 5]))
- : #(struct:Array

115

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Nonnegative-Fixnum))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[10 1 2
#[0 11 2
#[0 1 12

#[0 1
#[0 1
#[0 1

6.3.1 Broadcasting Rules

Suppose we have two array shapes ds = (vector d0 d1 ...) and es = (vector e0
el ...). Broadcasting proceeds as follows:

1. The shorter shape is padded on the left with 1 until it is the same length as the longer
shape.

2. For each axis k, dk and ek are compared. If dk = ek, the result axis is dk; if one axis
is length 1, the result axis is the length of the other; otherwise fail.

3. Both arrays’ axes are stretched by (conceptually) copying the rows of axes with length
1.

Example: Suppose we have an array drr with shape ds = #(4 1 3) and another array err
with shape es = #(3 3). Following the rules:

1. esispaddedto get#(1 3 3).
2. The result axis is derived from #(4 1 3) and #(1 3 3) toget#(4 3 3).

3. drr’s second axis is stretched to length 3, and err’s new first axis (which is length 1
by rule 1) is stretched to length 4.

116

The same example, but more concrete:

> (define drr
(array #[#[#["00" "01" "02"]]

#[#["10" "11" "12"]]
#[#["20" "21" "22"]]
#[#["30" "31" "32"11]1))

> (array-shape drr)

- : Indexes

'#(4 1 3)

> (define err

(array #[#["aa" "ab" "ac"]

#["ba" "bb" "bc"]
#["ca" "cb" "cc"11))

> (array-shape err)

- : Indexes

'#(3 3)

> (define drr+err (array-map string-append drr err))

> (array-shape drr+err)

- : Indexes

'#(4 3 3)

> drr+err

- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#["00aa" "Olab" "0O2ac"]
#["00ba" "O1bb" "02bc"]
#["00ca" "O1lcb" "02cc"]]
#[#["10aa" "1lab" "12ac"]
#["10ba" "11bb" "12bc"]
#["10ca" "11cb" "12cc"]]
#[#["20aa" "21lab" "22ac"]
#["20ba" "21bb" "22bc"]
#["20ca" "21cb" "22cc"]]
#[#["30aa" "31lab" "32ac"]
#["30ba" "31bb" "32bc"]

117

#["30ca" "31cb" "32cc"]11)

Notice how the row #["00" "01" "02"] in drr is repeated in the result because drr’s
second axis was stretched during broadcasting. Also, the column #[#["aa"] #["ba"]
#["ca"]] in err is repeated because err’s first axis was stretched.

For the above example, array-map does this before operating on drr and err:

> (define ds (array-shape-broadcast (list (array-shape drr)
(array-shape err))))

> ds

- : Indexes

'#(4 3 3)

> (array-broadcast drr ds)

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#L#[#["00" "O1" "02"]
#[uoou nqn |vo2u]
#[uoon " "02"]]
##["10" 11" "12"]
#L"10" "11v "12"]
#L"10" "11" "12"]]
#[#["20" "21" "22"]
#["20" "21" "22"]
#["20" "21" "22"]]
#[#["30" "31" "32"]
#["30" "31" "32"]
#["30" "31" "32"11])
> (array-broadcast err ds)
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

118

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#[uaau nap" "ac"]
#["ba" "bb" "bc"]
#["ca" "cb" "cc"]]
#[#["aa" "ab" "ac"]
#["ba" "bb" "bc"]
#["Ca" "Cb" "CC"]]
#[#["aa" "ab" "ac"]
#["ba" "bb" "bc"]
#["ca" "cb" "cc"]]
#[#["aa" "ab" "ac"]
#["ba" "bb" "bC"]
#[I’ca’l "cbll "CC"]]])

6.3.2 Broadcasting Control

The parameter array-broadcasting controls how pointwise operations broadcast arrays.
Its default value is #t, which means that broadcasting proceeds as described in @
|*"Broadcasting Rules”} Another possible value is #f, which allows pointwise operations
to succeed only if array shapes match exactly:

> (parameterize ([array-broadcasting #f])

(array* (index-array #(3 3)) (array 10)))
array-shape-broadcast: incompatible array shapes
(array-broadcasting #f): '#(3 3), #()

Another option is R-style permissive broadcasting, which allows pointwise operations to
always succeed, by repeating shorter axes’ rows instead of repeating just singleton axes’
TOWS:

> (define arr10 (array-map number->string (index-array #(10))))
> (define arr3 (array-map number->string (index-array #(3))))
> arrl0
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

119

http://www.r-project.org

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #["0" "1" m2m n3m ngn wgn g nyn ngn wgnj)
> arr3
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #["O0" "1" "2"])

> (array-map string-append arrl0 (array #["+" "-"]) arr3)

array-shape-broadcast: incompatible array shapes

(array-broadcasting #t): '#(10), #(2), '#3)

> (parameterize ([array-broadcasting 'permissive])
(array-map string-append arrl0 (array #["+" "-"]) arr3))

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #["0+0" "1-1" "2+2" "3-Q" "4+1" "5-2" "E+Q" "7-1" "8+2"
ug_on])

Notice that (array #["+" "-"1) was repeated five times, and that arr3 was repeated
three full times and once partially.

120

6.4 Slicing

One common array transformation is slicing: extracting sub-arrays by picking rows from
each axis independently.

Slicing is done by applying array-slice-ref or array-slice-set! to an array and a list
of slice specifications corresponding to array axes. There are five types of slice specification:

¢ (Sequenceof Integer): pick rows from an axis by index.

e Slice: pick rows from an axis as with an in-range sequence.
* Slice-Dots: preserve remaining adjacent axes

* Integer: remove an axis by replacing it with one of its rows.

* Slice-New-Axis: insert an axis of a given length.

Create Slice objects using :: and Slice-New-Axis objects using ::new. There is only

When slicing an array with n axes, unless a list of slice specifications contains :: ..., it
must contain exactly n slice specifications.

The remainder of this section uses the following example array:

> (define arr
(build-array
#(2 3 4)
(A1: ([js : Indexes])
(string-append* (map number->string (vector->list js))))))
> arr
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#["000" "001" "002" "003"]

121

#["010" "011" "012" "013"]
#["020" "021" "022" "023"1]
#[#["100" "101" "102" "103"]
#["110" "111" "112" "113"]
#["120" "121" "122" "123"11])

6.4.1 (Sequenceof Integer): pick rows

Using a sequence of integers as a slice specification picks rows from the corresponding axis.
For example, we might use lists of integers to pick every row from every axis:

> (array-slice-ref arr (list '(0 1) '(0 1 2) '(0 1 2 3)))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#["000" "001" "002" "003"]
#["010" "O11" "012" "013"]
#[|1020n 21" "o n023n]]
#[#["100" "101" "102" "103"]
#"110" "111" "112" "113"]
#["120" "121" "122" "123"111)

This simply copies the array.
More usefully, we can use sequences to swap rows on the same axis:

> (array-slice-ref arr (list '(1 0) '(0 1 2) '(0 1 2 3)))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-

122

lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array
#[#[#["100" "101" "102" "103"]

#["110" ||111|l "112" ll113"]

#["120" "121" "122" "123"]]

#[#["000" "001" "002" "003"]
#["010" "011" "012" "013"]
#["020" "021" "022" "023"111)

We can also remove rows:

> (array-slice-ref arr (list '(0 1) '(0 2) '(0 2)))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[#["000" "002"] #["020" "022"]] #[#["100" "102"] #["120"
"122"111)

> (array-slice-ref arr (list '(0 1) '(0 1 2) 'O))

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[#[1 #[1 #011 #[#0 #0 #[111)

Or duplicate rows:

123

> (array-slice-ref arr (list '(0 1) '(0 1 2) '(0 012 2 3)))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#["000" "000" "0O1" "002" "002" "003"]
#["010" "010" "O11" "012" "012" "013"]
#["020" "020" "021" "022" "022" "023"]1]
#[#["100" ||100|l l|101|| ll102ll "102" ||103|l]
#["110" ||110H "111" ll112" |’112|’ l|113|l]
#["120" "120" "121" "122" 122" "123"]1]])

However, a sequence slice specification cannot alter the number of axes.
Using sequence constructors like in-range, we can pick every even-indexed row in an axis:

> (array-slice-ref arr (list '(1 0) '(0 1 2) (in-range 0 4 2)))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#["100" "102"]
#["110" "112"]
#["120" "122"]]
[# [uooon u002n]
#["010" "012"]
#["020" "022"]111)

124

We could also use in-range to pick every row instead of enumerating their indexes in a list,
but that would require another kind of tedium:

> (define ds (array-shape arr))

> (array-slice-ref arr (list (in-range (vector-ref ds 0))
(in-range (vector-ref ds 1))
(in-range (vector-ref ds 2))))

- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#["000" "001" "002" "003"]
#["010" 11" Q12" n013n]
#["020" "021" "022" "023"]1]
#[#["100" "101" "102" "103"]
#["110" "111" "112" "113"]
#["120" "121" "122" "123"111)

The situation calls for an in-range-like slice specification that is aware of the lengths of
the axes it is applied to.

6.4.2 Slice: pick rows in a length-aware way

As a slice specification, a S1ice object acts like the sequence object returned by in-range,
but either start or end may be #f.

If start is #£, it is interpreted as the first valid axis index in the direction of step. If end is
#f, it is interpreted as the last valid axis index in the direction of step.

Possibly the most common slice is (::), equivalent to (:: #f #f 1). With a positive
step = 1, start is interpreted as O and end as the length of the axis. Thus, (::) picks all
rows from any axis:

> (array-slice-ref arr (list (::) (::) (::)))
- @ #(struct:Array

125

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#[uooon "0o1" "Q02" "003"]
#["010" "011" "012" "013"]
#["020" "021" "022" "023"]]
##["100" "101" "102" "103"]
#["110" "111" "112" "113"]
#[n120n n{oqn nq9on n123n]]])

The slice (:: #f #f -1) reverses an axis:

> (array-slice-ref arr (list (::) (::) (:: #f #f -1)))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#["003" "002" "001" "000"]
#["013" "012" "011" "010"]
#["023" "022" "021" "020"]1]
#[#[n103n 102" "101" "100"]
#["113" ||112H "111“ ll110"]
#["123" "122" "121" "120"111)

The slice (:: 2 #f 1) picks every row starting from index 2:

> (array-slice-ref arr (list (::) (::) (:: 2 #f 1)))

126

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#["002" "003"]
#["012" "013"]
#["022" "023"]]
#[#["102" "103"]
#[n112n ||113n]
#["122" "123"111)

The slice (:: 1 #f 2) picks every odd-indexed row:

> (array-slice-ref arr (list (::) (::) (:: 1 #f 2)))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#["001" "003"]
#["011" "013"]
#["021" "023"]]
#l#["101" "103"]
#["111" "113"]
#["121" |I123|l]]])

Notice that every example starts with two (: :). In fact, slicing only one axis is so common
that there is a slice specification object that represents any number of (::).

127

6.4.3 Slice-Dots: preserve remaining axes

As a slice specification, a Slice-Dots object represents any number of leftover, adjacent
axes, and preserves them all.

For example, picking every odd-indexed row of the last axis can be done by

> (array-slice-ref arr (list ::... (:: 1 #f 2)))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#["001" "003"]
#["011" "013"]
#[n021n ||023n]]
#[#["101" "103"]
#L"111" "113"]
#["121" "123"]111)

For arr specifically, : : ... represents two (::).
Slicing only the first axis while preserving the rest can be done by

> (array-slice-ref arr (list '(0) ::...))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

128

(array
[# [# [nooon "0o1" "002" n003n]
#["010" |I011H l|012|| ll013"]
[IIO2OII ||021|l l|022|| Il023l|] :l])

> (array-slice-ref arr (list ::... '(1) ::...))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[#["001"] #["011"]1 #["021"1] #[#["101"] #["111"]
#["121"111)

> (array-slice-ref arr (list ::... '(1)))

- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[#["001"] #["011"] #["021"]1] #[#["101"] #["111"]
#["121"111)

If there are no leftover axes, : : ... does nothing when placed in any position:

> (array-slice-ref arr (list ::... '(1) '(1) '(1)))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13

129

prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[#["111"11]1)
> (array-slice-ref arr (list '(1) ::... '(1) '(1)))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[#["111"]111)
> (array-slice-ref arr (list '(1) '(1) ::... '(1)))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[#["111"11]1)
> (array-slice-ref arr (list '(1) '(1) '(1) ::...))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

130

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[#["111"111)

6.4.4 Integer: remove an axis

All of the slice specifications so far preserve the dimensions of the array. Removing an axis
can be done by using an integer as a slice specification.

This example removes the first axis by collapsing it to its first row:

> (array-slice-ref arr (list O ::...))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array

#[#["000" "001" "002" "003"]
#["010" "O011" "012" "013"]
#["020" "021" "022" "023"]11)

Removing the second axis by collapsing it to the row with index 1:

> (array-slice-ref arr (list (::) 1 ::...))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

131

(array #[#["010" o1 "Q12" ||013u] #["110" n{1q" "q11o" ||113||]])

Removing the second-to-last axis (which for arr is the same as the second):

> (array-slice-ref arr (list ::... 1 (::)))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#["O10" "O11" "012" "013"] #["110" "111" "112" "113"]1]1)

All of these examples can be done using array-axis-ref. However, removing an axis
relative to the dimension of the array (e.g. the second-to-last axis) is easier to do using
array-slice-ref, and it is sometimes convenient to combine axis removal with other
slice operations.

6.4.5 Slice-New-Axis: add an axis

As a slice specification, (::new dk) inserts dk into the resulting array’s shape, in the cor-
responding axis position. The new axis has length dk, which must be nonnegative.

For example, we might conceptually wrap another # [] around an array’s data:

> (array-slice-ref arr (list (::mew) ::...))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

132

(array
#[#[#[#["000" "001" "002" "003"]
#[llolOll "o11" "Q12" u013n]
[IIO20|I o1 "p22" ||023u]]
#[#["100" 101" "102" ||103n]
#["110" n{q4qn" n"q4o" ||113n]
#[|I120II n{oq" nqQo"n II123II]]]])

Or duplicate the array twice, within two new outer rows:

> (array-slice-ref arr (list (::new 2) ::...))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#[#["000" "001" "002" "003"]
#["010" "O11" "012" "013"]
#["020" "021" "022" "023"]]
#[#["100" "101" "102" "103"]
#["110" l|111l| "112" ||113|’]
#["120" "121" "122" "123"]1]]
#[#[#["000" "001" "002" "003"]
#["010" "O11" "012" "013"]
#["020" "021" "022" "023"]]
#[#["100" "101" "102" "103"]
#["110" ll111’| "112" ||113|’]
#["120" "121" 122" "123"1111)

Of course, dk = 0 is a valid new axis length, but is usually not very useful:

> (array-slice-ref arr (list (::) (::new 0) ::...))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

133

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[] #[11)

Inserting axes can also be done using array-axis-insert.

6.5 Nonstrict Arrays

With few exceptions, by default, the functions exported by math/array return strict arrays,
which are arrays whose procedures compute elements by looking them up in a vector.

This conservative default often wastes time and space. In functional code that operates on
arrays, the elements in most intermediate arrays are referred to exactly once, so allocating
and filling storage for them should be unnecessary. For example, consider the following
array:

> (define (make-hellos)
(array-map string-append
(array-map string-append
(array #["Hello " "Hallo " "Jb napot "])
(array #["Ada" "Edsger" "John"]))
(make-array #(3) "!")))
> (define arr (make-hellos))
> (array-strict? arr)
- : Boolean
#t
> arr
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #["Hello Ada!" "Hallo Edsger!" "J6 napot John!"])

134

By default, the result of the inner array-map has storage allocated for it and filled with
strings such as "Hello Ada", even though its storage will be thrown away at the next
garbage collection cycle.

An additional concern becomes even more important as Racket’s support for parallel com-
putation improves. Allocating storage for intermediate arrays is a synchronization point in
long computations, which divides them into many short computations, making them difficult
to parallelize.

A solution is to construct nonstrict arrays*, which are arrays whose procedures can do more
than simply look up elements. Setting the parameter array-strictness to #f causes
almost all math/array functions to return nonstrict arrays:

> (define arr (parameterize ([array-strictness #f])
(make-hellos)))
> (array-strict? arr)
- : Boolean
#f
> arr
- : #(struct:Array
(Indexes Index (Boxof Boolean)
String))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #["Hello Ada!" "Hallo Edsger!" "J6 napot John!"])

(-> Void) (-> Indexes

In arr, the first element is the computation (string-append (string-append "Hello
" "Ada") "!"), not the value "Hello Ada!". The value "Hello Ada!" is recomputed
every time the first element is referred to.

To use nonstrict arrays effectively, think of every array as if it were the array’s procedure
itself. In other words,

An array is just a function with a finite, rectangular domain.

Some arrays are mutable, some are lazy, some are strict, some are sparse, and most do not
even allocate contiguous space to store their elements. All are functions that can be applied
to indexes to retrieve elements.

135

* Regular, shape-
polymorphic,
parallel arrays in
Haskell, Gabriele
Keller, Manuel
Chakravarty,
Roman
Leshchinskiy,
Simon Peyton
Jones, and Ben
Lippmeier. ICFP
2010. (PDF)

http://research.microsoft.com/en-us/um/people/simonpj/papers/ndp/RArrays.pdf

The two most common kinds of operations, mapping over and transforming arrays, are com-
positions. Mapping f over array arr is nothing more than composing £ with arr’s pro-
cedure. Transforming arr using g, a function from new indexes to old indexes, is nothing
more than composing arr’s procedure with g.

6.5.1 Caching Nonstrict Elements

Nonstrict arrays are not lazy. Very few nonstrict arrays cache computed elements, but like
functions, recompute them every time they are referred to. Unlike functions, they can have
every element computed and cached at once, by making them strict.

To compute and store an array’s elements, use array-strict! or array-strict:

> (array-strict? arr)
- : Boolean

#t

> (array-strict! arr)
> (array-strict? arr)
- : Boolean

#t

> (array-strict arr)
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #["Hello Ada!" "Hallo Edsger!" "J6 napot John!"])

If the array is already strict, as in the last example above, array-strict! and array-
strict do nothing.

To make a strict copy of an array without making the original array strict, use array-
>mutable-array.

136

6.5.2 Performance Considerations

One downside to nonstrict arrays is that it is more difficult to reason about the performance
of operations on them. Another is that the user must decide which arrays to make strict.
Fortunately, there is a simple rule of thumb:

Make arrays strict when you must refer to most of their elements more
than once or twice.

Having to name an array is a good indicator that it should be strict. In the following example,
which computes (+ (expt x x) (expt x x)) for x from 0 to 2499, each element in xrr
is computed twice whenever its corresponding element in res is referred to:

(define xrr (array-map expt
(index-array #(50 50))
(index-array #(50 50))))
(define res (array+ xrr xrr))

Having to name xrr means we should make it strict:

(define xrr (array-strict
(array-map expt
(index-array #(50 50))
(index-array #(50 50)))))
(define res (array+ xrr xrr))

Doing so halves the time it takes to compute res’s elements.

When returning an array from a function, return nonstrict arrays as they are, to allow the
caller to decide whether the result should be strict.

When writing library functions that may be called with either (array-strictness #t)
or (array-strictness #f), operate on nonstrict arrays and wrap the result with array-
default-strict to return what the user is expecting. For example, if make-hellos is a
library function, it should be written as

(define (make-hellos)
(array-default-strict
(parameterize ([array-strictness #f])
(array-map string-append
(array-map string-append
(array #["Hello " "Hallo " "J& napot
"1)
(array #["Ada" "Edsger" "John"]))
(make-array #(3) "!")))))

137

If you cannot determine whether to make arrays strict, or are using arrays for so-called
“dynamic programming,” you can make them lazy using array-lazy.

6.6 Types, Predicates and Accessors

(Array A)

The parent array type. Its type parameter is the type of the array’s elements.

The polymorphic Array type is covariant, meaning that (Array A) is a subtype of (Array
B) if 4 is a subtype of B:

> (define arr (array #[1 2 3 4 5]))
> arr
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[1 2 3 4 5])
> (ann arr (Array Real))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Real))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[1 2 3 4 5])
> (ann arr (Array Any))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Any))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13

138

prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[1 2 3 4 5])

Because subtyping is transitive, the (Array A) in the preceeding subtyping rule can be
replaced with any of (Array A)’s subtypes, including descendant types of Array. For
example, (Mutable-Array 4) is a subtype of (Array B) if 4 is a subtype of B:

> (define arr (mutable-array #[1 2 3 4 5]))
> arr
- : #(struct:Mutable-Array

(Indexes

Index

(Boxof Boolean)

(-> Void)

(-> Indexes Integer)

(-> Indexes Integer Void)

(Vectorof Integer))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)

(mutable-array #[1 2 3 4 5])
> (ann arr (Array Real))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Real))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(mutable-array #[1 2 3 4 5])
> (ann arr (Array Any))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Any))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

139

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(mutable-array #[1 2 3 4 5])

(Settable-Array A)

The parent type of arrays whose elements can be mutated. Functions like array-set! and
array-slice-set! accept arguments of this type. Examples of subtypes are Mutable-
Array, FlArray and FCArray.

This type is invariant, meaning that (Settable-Array A) is notasubtype of (Settable-
Array B) if A and B are different types, even if 4 is a subtype of B:

> (define arr (mutable-array #[1 2 3 4 5]))
> arr
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array #[1 2 3 4 5])
> (ann arr (Settable-Array Integer))
- : #(struct:Settable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)))
(mutable-array #[1 2 3 4 5])
> (ann arr (Settable-Array Real))
eval:93:0: Type Checker: type mismatch
expected: #(struct:Settable-Array
(Indexes
Index

140

(Boxof Boolean)
(-> Void)
(-> Indexes Real)
(-> Indexes Real Void)))
given: #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-lib/math/priv
ate/array/typed-mutable-array.rkt:14:13 prop:custom-write>)
in: Real

(Mutable-Array 4A)

The type of mutable arrays. Its type parameter is the type of the array’s elements.

Arrays of this type store their elements in a (Vectorof 4):

> (define arr (mutable-array #[#[1 2] #[3 4]]))
> (vector-set! (mutable-array-data arr) 0 -10)
> arr
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array #[#[-10 2] #[3 41])

Mutable arrays are always strict.

Indexes

The type of array shapes and array indexes produced by math/array functions. Defined as
(Vectorof Index).

Example:

141

> (array-shape (array #[#[#[0]1]]))
- : Indexes
"#(1 1 1)

In-Indexes

The type of array shapes and array indexes accepted by math/array functions. Defined as
(U Indexes (Vectorof Integer)).

Examples:

> (define ds #(3 2))
> ds
- : (Immutable-Vector Positive-Byte Positive-Byte)
"#(3 2)
> (make-array ds (void))
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Void))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[#<void> #<void>] #[#<void> #<void>] #[#<void>
#<void>11)

This makes indexes-accepting functions easier to use, because it is easier to convince Typed
Racket that a vector contains Integer elements than that a vector contains Index elements.

In-Indexes is not defined as (Vectorof Integer) because mutable container types like
Vector and Vectorof are invariant. In particular, (Vectorof Index) is not a subtype of
(Vectorof Integer):

> (define js ((inst vector Index) 3 4 5))
> js
- : (Mutable-Vectorof Index)
'#(3 4 5)
> (ann js (Vectorof Integer))
eval:103:0: Type Checker: type mismatch
expected: (Vectorof Integer)
given: (Mutable-Vectorof Index)

142

in: Integer
> (ann js In-Indexes)
- : In-Indexes
'#(3 4 5)

(array? v) — Boolean

v : Any

(settable-array? v) — Boolean
v : Any

(mutable-array? v) — Boolean
v : Any

Predicates for the types Array, Settable-Array, and Mutable-Array.

Because Settable-Array and its descendants are invariant, settable-array? and its
descendants’ predicates are generally not useful in occurrence typing. For example, if we
know we have an Array but would like to treat it differently if it happens to be a Mutable-
Array, we are basically out of luck:

> (: maybe-array-data (A1l (A) ((Array A) -> (U #f (Vectorof A)))))
> (define (maybe-array-data arr)
(cond [(mutable-array? arr) (mutable-array-data arr)]
[else #f1))

eval:106:0: Type Checker: Polymorphic function
‘mutable-array-data’ could not be applied to arguments:
Argument 1:

Expected: (Mutable-Array A)

Given: (Struct Mutable-Array)

in: #f

In general, predicates with a Struct filter do not give conditional branches access to a
struct’s accessors. Because Settable-Array and its descendants are invariant, their predi-
cates have Struct filters:

> array?

- ¢ (-> Any Boolean : (Array Any))
#<procedure:Array?>

> settable-array?

- ¢ (-> Any Boolean : (Struct Settable-Array))
#<procedure:Settable-Array?>

> mutable-array?

- : (-> Any Boolean : (Struct Mutable-Array))
#<procedure:Mutable-Array?>

143

(array-shape arr) — Indexes
arr : (Array A)

Returns arr’s shape, a vector of indexes that contains the lengths of arr’s axes.

Examples:

> (array-shape (array 0))

- : Indexes

"#0

> (array-shape (array #[0 11))
- : Indexes

"#(2)

> (array-shape (array #[#[0 1]]))
- : Indexes

"#(1 2)

> (array-shape (array #[1))

- : Indexes

"#(0)

(array-size arr) — Index
arr : (Array A)
Returns the number of elements in arr, which is the product of its axis lengths.

Examples:

> (array-size (array 0))
: Integer [more precisely: Index]

1

> (array-size (array #[0 11))

- : Integer [more precisely: Index]
2

> (array-size (array #[#[0 11]))

- : Integer [more precisely: Index]
2

> (array-size (array #[]))

- : Integer [more precisely: Index]
0

(array-dims arr) — Index
arr : (Array A)

Returns the number of arr’s dimensions. Equivalent to (vector-length (array-shape
arr)).

144

(mutable-array-data arr) — (Vectorof A)
arr : (Mutable-Array A)

Returns the vector of data that arr contains.

6.7 Construction
(array #[#[...] ...] maybe-type-ann)

maybe-type-ann =
| : type

Creates an Array from nested rows of expressions.

The vector syntax #[. . .] delimits rows. These may be nested to any depth, and must have
a rectangular shape. Using square parentheses is not required, but is encouraged to help
visually distinguish array contents from array indexes and other vectors. (See the examples
for indexes-array for an illustration.)

Examples:

> (array 0)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Zero))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array 0)
> (array #[0 1 2 31)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

145

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[0 1 2 31)
> (array #[#[1 2 3] #[4 5 611)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[1 2 3] #[4 5 611)
> (array #[#[1 2 3] #[4 5]1)
eval:121:0: array: expected rectangular data
at: ##(1 2 3) #4 5))
in: (array/syntax array list unsafe-list->array ##(1 2 3)
#(45)))

As with the 1ist constructor, the type chosen for the array is the narrowest type all the
elements can have. Unlike 1ist, because array is syntax, instantiating array with the
desired element type is a syntax error:

> (list 1 2 3)

- : (List One Positive-Byte Positive-Byte)
'(123)

> (array #[1 2 3])

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[1 2 31)
> ((inst list Real) 1 2 3)

146

- : (Listof Real)

(12 3)

> ((inst array Real) #[1 2 3])

eval:125:0: array: not allowed as an expression
in: array

There are two easy ways to annotate the element type:

> (array #[1 2 3] : Real)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Real))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[1 2 3])
> (ann (array #[1 2 3]) (Array Real))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Real))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[1 2 3]1)

Annotating should rarely be necessary because the Array type is covariant.

Normally, the datums within literal vectors are implicitly quoted. However, when used
within the array form, the datums must be explicitly quoted.

> #(this is okay)

- : (Immutable-Vector 'this 'is 'okay)
'#(this is okay)

> (array #[not okayl)

eval:129:0: Type Checker: missing type for top-level

147

identifier;
either undefined or missing a type annotation
identifier: okay
in: #(not okay)
> (array #['this 'is 'okay])
- @ #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes (U 'is 'okay 'this)))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #['this 'is 'okay])
> (array #['#(an) '#(array) '#(of) '#(vectors)])
- @ #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes
(U (Immutable-Vector 'an)
(Immutable-Vector 'array)
(Immutable-Vector 'of)
(Immutable-Vector 'vectors))))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #['#(an) '#(array) '#(of) '#(vectors)])

Arrays returned by array are strict. Another way to create immutable, strict arrays from
literal data is to use 1ist->array.

148

(mutable-array #[#[...] ...] maybe-type-ann)

maybe-type-ann =
| : type

Creates a Mutable-Array from nested rows of expressions.
The semantics are almost identical to array’s, except the result is mutable:

> (define arr (mutable-array #[0 1 2 3]))
> arr
- @ #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array #[0 1 2 3])
> (array-set! arr #(0) 10)
> arr
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array #[10 1 2 3])

Because mutable arrays are invariant, this form additionally accepts a type annotation for the
array’s elements:

> (define arr (mutable-array #[0 1 2 3] : Real))
> arr
- @ #(struct:Mutable-Array

(Indexes

149

Index
(Boxof Boolean)
(-> Void)
(-> Indexes Real)
(-> Indexes Real Void)
(Vectorof Real))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array #[0 1 2 3])
> (array-set! arr #(0) 10.0)
> arr
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Real)
(-> Indexes Real Void)
(Vectorof Real))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array #[10.0 1 2 3])

Another way to create mutable arrays from literal data is to use vector->array.

(make-array ds value) — (Array A)
ds : In-Indexes
value : A

Returns an array with shape ds, with every element’s value as value. Analogous to make-
vector.

Examples:

> (make-array #() 5)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

150

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array 5)
> (make-array #(1 2) 'sym)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes 'sym))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#['sym 'sym]])
> (make-array #(4 0 2) "Invisible")
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[1 #[1 #[1 #[11)

The arrays returned by make-array do not allocate storage for their elements and are strict.

(build-array ds proc) — (Array A)
ds : In-Indexes
proc : (Indexes -> A)

Returns an array with shape ds and procedure proc. Analogous to build-vector.

(array->mutable-array arr) — (Mutable-Array A)
arr : (Array A)

Returns a mutable array with the same elements as arr. The result is a copy of arr, even
when arr is mutable.

151

(mutable-array-copy arr) — (Mutable-Array A)
arr : (Mutable-Array A)

Like (array->mutable-array arr), but restricted to mutable arrays. It is also faster.

(indexes-array ds) — (Array Indexes)
ds : In-Indexes

Returns an array with shape ds, with each element set to its position in the array.
Examples:

> (indexes-array #())
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes In-
dexes))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array '#0))
> (indexes-array #(4))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes In-
dexes))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #['#(0) '#(1) '#(2) '#(3)1)
> (indexes-array #(2 3))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes In-

dexes))

152

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#['#(0 0) '#(0 1) '#(0 2)] #['#(1 0) '#(1 1) '#(1 2)11)
> (indexes-array #(4 0 2))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes In-
dexes))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[1 #[1 #[1 #0111

The resulting array does not allocate storage for its return value’s elements, and is strict. (It
is essentially the identity function for the domain ds.)

(index-array ds) — (Array Index)
ds : In-Indexes

Returns an array with shape ds, with each element set to its row-major index in the array.

Examples:

> (index-array #(2 3))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-

153

print-quotable>)
(array #[#[0 1 2] #[3 4 51])
> (array-flatten (index-array #(2 3)))
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[0 1 2 3 4 5])

As with indexes-array, the result does not allocate storage for its elements, and is strict.

(axis-index-array ds axis) — (Array Index)
ds : In-Indexes
axis : Integer

Returns an array with shape ds, with each element set to its position in axis axis. The axis
number axis must be nonnegative and less than the number of axes (the length of ds).

Examples:

> (axis-index-array #(3 3) 0)
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 0 0] #[1 1 1] #[2 2 2]])
> (axis-index-array #(3 3) 1)
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

154

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[0 1 2] #[0 1 2] #[0 1 211)
> (axis-index-array #() 0)
axis-index-array: contract violation

expected: Index < 0

given: 0

argument position: 2nd

other arguments...:

#)

As with indexes-array, the result does not allocate storage for its elements, and is strict.

(diagonal-array dims
axes-length
on-value
off-value) — (Array A)
dims : Integer
axes-length : Integer
on-value : A
off-value : A

Returns an array with dims axes, each with length axes-Ilength. (For example, the re-
turned array for dims = 2 is square.) The elements on the diagonal (i.e. at indexes of the
form (vector j j ...) for j < axes-Ilength) have the value on-value; the rest have
off-value.

Example:

> (diagonal-array 2 7 1 0)
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (U One
Zero)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

155

(array

#[#[1 0 0 0 0 0 0]
#[0 1 0 0 0 0 0]
#[0 01 0 0 0 0]
#[0 0 0 1 0 0 0]
#[0 0 0 0 1 0 0]
#[0 0 0 0 0 1 0]
#[0 0 0 0 0 0 111)

As with indexes-array, the result does not allocate storage for its elements, and is strict.

6.8 Conversion

(Listof* A)

Equivalent to (U A (Listof A) (Listof (Listof A4)) ...) if infinite unions were
allowed. This is used as an argument type to list*->array and as the return type of
array->listx*

(Vectorof* A)

Like (Listof* A), but for vectors. See vector*->array and array->vectorx.

(list->array Ist) — (Array A)
1st : (Listof A)

(list->array ds 1lst) — (Array A)
ds : In-Indexes
1st : (Listof A)

(array->list arr) — (Listof A)
arr : (Array A)

Convert lists to immutable arrays and back.

The two-argument variant of 1ist->array assumes the elements in 1st are in row-major
order.

For array->1list, if arr has no axes or more than one axis, it is (conceptually) flattened
before being converted to a list.

Examples:

> (list->array '(1 2 3))

156

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[1 2 31)
> (list->array '((1 2 3) (4 5)))
- @ #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes
(U (List One Positive-Byte Positive-Byte)
(List Positive-Byte Positive-Byte))))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #['(1 2 3) '(4 B)1)
> (list->array #(2 2) '(1 2 3 4))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[1 2] #[3 4]11)

157

> (array->list (array #[1 2 3]))

- : (Listof Positive-Byte)

'(123)

> (array->list (array 10))

- : (Listof Positive-Byte)

' (10)

> (array->list (array #[#[1 2 3] #[4 5 6]11))
- : (Listof Positive-Byte)

'(123456)

For conversion between nested lists and multidimensional arrays, see list*->array and
array->1list*. For conversion from flat values to mutable arrays, see vector->array.

The arrays returned by 1ist->array are always strict.

(vector->array vec) — (Mutable-Array A)
vec : (Vectorof A)

(vector->array ds vec) — (Mutable-Array A)
ds : In-Indexes
vec : (Vectorof A)

(array->vector arr) — (Vectorof A)
arr : (Array A)

Like 1list->array and array->1ist, but for vectors.
Examples:

> (vector->array #(1 2 3))
- @ #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array #[1 2 3])
> (vector->array #((1 2 3) (4 5)))
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)

158

(-> Indexes
(U (List One Positive-Byte Positive-Byte)
(List Positive-Byte Positive-Byte)))
(-> Indexes
(U (List One Positive-Byte Positive-Byte)
(List Positive-Byte Positive-Byte))
Void)
(Vectorof
(U (List One Positive-Byte Positive-Byte)
(List Positive-Byte Positive-Byte))))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array #['(1 2 3) '(4 5)1)
> (vector->array #(2 2) #(1 2 3 4))
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array #[#[1 2] #[3 411)
> (array->vector (array #[1 2 3]))
- ¢ (Vectorof Integer)
"#(1 2 3)
> (array->vector (array 10))
- : (Vectorof Integer)
"#(10)
> (array->vector (array #[#[1 2 3] #[4 5 6]]))
- : (Vectorof Integer)
'#(1 2 3 4 5 6)

For conversion between nested vectors and multidimensional arrays, see vector*->array
and array->vector.

(list*->array lsts pred?) — (Array A)
1sts : (Listof* A)
pred? : ((Listof* A) -> Any : A)

Converts a nested list of elements of type A to an array. The predicate pred? identifies
elements of type A. The shape of 1sts must be rectangular.

159

Examples:

> (listx*->array 'singleton symbol?)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Sym-
bol))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array 'singleton)
> (list*->array '(0 1 2 3) byte?)
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(mutable-array #[0 1 2 3])
> (listx->array (list (list (list 5) (list 2 3))
(1ist (list 4.0) (list 1.4 0.2 9.3)))
(make-predicate (Listof Nonnegative-Real)))
- : #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes (Listof Nonnegative-Real)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-

160

print-quotable>)
(mutable-array #[#['(5) '(2 3)] #['(4.0) '(1.4 0.2 9.3)]11)

There is no well-typed Typed Racket function that behaves like 1ist*->array but does not
require pred?. Without an element predicate, there is no way to prove to the type checker
that 1ist*->array’s implementation correctly distinguishes elements from rows.

The arrays returned by 1ist*->array are always strict.

(array->list* arr) — (Listof* A)
arr : (Array A)

The inverse of list*->array

(vector*->array vecs pred?) — (Mutable-Array A)
vecs : (Vectorofx* A)
pred? : ((Vectorof* A) -> Any : A)

Like 1ist*->array, but accepts nested vectors of elements.

Examples:

> (vector*->array 'singleton symbol?)
- @ #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Symbol)
(-> Indexes Symbol Void)
(Vectorof Symbol))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array 'singleton)
> ((inst vector*->array Byte) #(0 1 2 3) byte?)
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Byte)
(-> Indexes Byte Void)
(Vectorof Byte))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)

161

(mutable-array #[0 1 2 3])

As in the last example, Typed Racket often needs help inferring vector*->array’s type
parameters.

(array->vector* arr) — (Vectorofx* A)
arr : (Array A)

Like array->1ist*, but produces nested vectors of elements.

(array-list->array arrs [axis]) — (Array A)
arrs : (Listof (Array A))
axis : Integer = 0

Concatenates arrs along axis axis to form a new array. If the arrays have different shapes,
they are broadcast first. The axis number axis must be nonnegative and no greater than the
number of axes in the highest dimensional array in arrs.

Examples:

> (array-list->array (list (array 0) (array 1) (array 2) (array 3)))
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[0 1 2 31)
> (array-list->array (list (array 0) (array 1) (array 2) (array 3)) 1)
array-list->array: expected axis Index <= 0; given I
> (array-list->array (list (array #[0 1 2 3]) (array #['a 'b 'c 'd])))
- @ #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes (U 'a 'b 'c 'd Byte)))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

162

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[0 1 2 3] #['a 'b 'c 'dl])
> (array-list->array (list (array #[0 1 2 3]) (array '!)))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (U '!
Byte)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[0 1 2 3] #['! '! 't "11])
> (array-list->array (list (array #[0 1 2 3]) (array '!)) 1)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (U '!
Byte)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[0 ''] #[1 ''] #[2 '] #[3 '"'1])

This function is a left inverse of array->array-1list. (It cannot be a right inverse because
broadcasting cannot be undone.)

For a similar function that does not increase the dimension of the broadcast arrays, see
array-appendx*

(array->array-list arr [axis]) — (Listof (Array A))
arr : (Array A)
axis : Integer = 0

163

Turns one axis of arr into a list of arrays. Each array in the result has the same shape. The
axis number axis must be nonnegative and less than the number of arr’s axes.

Examples:

> (array->array-list (array #[0 1 2 3]))
- : (Listof
#(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))
#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13
prop:custom-write>
#<syntax:.../array/typed-array-struct.rkt:54:13
prop:custom-print-quotable>))
(1ist (array 0) (array 1) (array 2) (array 3))
> (array->array-list (array #[#[1 2] #[10 20]]1))
- : (Listof
#(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))
#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13
prop:custom-write>
#<syntax:.../array/typed-array-struct.rkt:54:13
prop:custom-print-quotable>))
(list (array #[1 2]) (array #[10 20]))
> (array->array-list (array #[#[1 2] #[10 20]]) 1)
- : (Listof
#(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))
#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13
prop:custom-write>
#<syntax:.../array/typed-array-struct.rkt:54:13
prop:custom-print-quotable>))
(list (array #[1 10]) (array #[2 20]))
> (array->array-list (array 10))
array->array-list: expected axis Index < 0; given 0

6.8.1 Printing

164

(array-custom-printer) — (A1l (A) ((Array A)
Symbol
Output-Port
(U Boolean 0 1) -> Any))
(array-custom-printer print-array) — void?
print-array : (A1l (A) ((Array A)
Symbol
Output-Port
(U Boolean 0 1) -> Any))

A parameter whose value is used to print subtypes of Array.

(print-array arr name port mode) — Any
arr : (Array A)
name : Symbol
port : Output-Port
mode : (U Boolean 0 1)

Prints an array using array syntax, using name instead of 'array as the head form. This
function is set as the value of array-custom-printer when math/array is first required.

Well-behaved Array subtypes do not call this function directly to print themselves. They
call the current array-custom-printer:

> ((array-custom-printer)
(array #[0 1 2 31)
'my-cool-array
(current-output-port)
#t)

(my-cool-array #[0 1 2 3])

See prop: custom-write for the meaning of the port and mode arguments.

6.9 Comprehensions and Sequences

Sometimes sequential processing is unavoidable, so math/array provides loops and se-
quences.

(for/array: maybe-shape maybe-fill (for:-clause ...) maybe-type-ann
body ...+)

165

(for*/array: maybe-shape maybe-fill (for:-clause ...) maybe-type-ann
body ...+)

maybe-shape

| #:shape ds
maybe-fill =
| #:£i11 £i11
maybe-type-ann =
| : body-type

ds : In-Indexes

fill : body-type

Creates arrays by generating elements in a for-loop or for*-loop. Unlike other Typed
Racket loop macros, these accept a body annotation, which declares the type of elements.
They do not accept an annotation for the entire type of the result.

Examples:

> (for/array: ([x (in-range 3)] [y (in-range 3)]) : Integer
+ x y))
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array #[0 2 4])
> (for*/array: ([x (in-range 3)] [y (in-range 3)]) : Integer
+ x y))
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-

166

lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)

(mutable-array #[0 1 2 1 2 3 2 3 4])

The shape of the result is independent of the loop clauses: note that the last example does
not have shape # (3 3), but shape # (9). To control the shape, use the #: shape keyword:

> (for*/array: #:shape #(3 3) ([x (in-range 3)]
[y (in-range 3)]) : Integer
+ x y))
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array #[#[0 1 2] #[1 2 3] #[2 3 4]])

If the loop does not generate enough elements, the rest are filled with the first generated
value:

> (forx/array: #:shape #(4) ([x (in-range 1 3)]) x)
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Any)
(-> Indexes Any Void)
(Vectorof Any))
#<syntax:build/docs/share/pkgs/math-

lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)

(mutable-array #[1 2 1 1])
To change this behavior, use the #:£i11 keyword:
> (for*/array: #:shape #(4) #:£fi11 -1 ([x (in-range 1 3)]) x)

- @ #(struct:Mutable-Array
(Indexes

167

Index

(Boxof Boolean)

(-> Void)

(-> Indexes Any)

(-> Indexes Any Void)
(Vectorof Any))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)

(mutable-array #[1 2 -1 -1])

In the last two examples, the array’s type is (Mutable-Array Any) because a body anno-
tation was not given.

(for/array maybe-shape maybe-fill (for-clause ...)

body ...+)
(for*/array maybe-shape maybe-fill (for-clause ...)
body ...+)

Untyped versions of the loop macros.
(in-array arr) — (Sequenceof A)
arr : (Array A)
Returns a sequence of arr’s elements in row-major order.
Examples:

> (define arr (array #[#[1 2] #[10 20]1))

> (for/list: : (Listof Integer) ([x (in-array arr)]) x)
- : (Listof Integer)
"(1 2 10 20)

(in-array-axis arr [axis]) — (Sequenceof (Array A))
arr : (Array A)
axis : Integer = 0
Like array->array-1list, but returns a sequence.

Examples:

> (define arr (array #[#[1 2] #[10 20]1))
> (sequence->list (in-array-axis arr))

168

- : (Listof
#(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (->
Positive-Byte))

#<syntax:.../array/typed-array-struct.rkt:56:

prop:equal+hash>

#<syntax:.../array/typed-array-struct.rkt:55:

prop:custom-write>

#<syntax:.../array/typed-array-struct.rkt:54:

prop:custom-print-quotable>))
(1ist (array #[1 2]1) (array #[10 20]))
> (sequence->list (in-array-axis arr 1))
- : (Listof
#(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (->
Positive-Byte))

#<syntax:.../array/typed-array-struct.rkt:56:

prop:equal+hash>

#<syntax:.../array/typed-array-struct.rkt:55:

prop:custom-write>

#<syntax:.../array/typed-array-struct.rkt:54:

prop:custom-print-quotable>))
(list (array #[1 10]) (array #[2 20]))

(in-array-indexes ds) — (Sequenceof Indexes)
ds : In-Indexes

Returns a sequence of indexes for shape ds, in row-major order.
Examples:

> (for/array: #:shape #(3 3) ([js (in-array-
indexes #(3 3))]) : Indexes
js)
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Indexes)
(-> Indexes Indexes Void)
(Vectorof Indexes))
#<syntax:build/docs/share/pkgs/math-

Indexes

13

13

13

Indexes

13

13

13

lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-

write>)

169

(mutable-array
#[#['#(0 0) '#(0 1) '#(0 2)]
#'#(1 0) '#(1 1) '#(1 2)]
#'#(2 0) '#(2 1) '#(2 2)1D)
> (for*/array: #:shape #(3 3) ([jO (in-range 3)]
[j1 (in-range 3)]) : In-Indexes
(vector jO j1))
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes In-Indexes)
(-> Indexes In-Indexes Void)
(Vectorof In-Indexes))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)

(mutable-array

#[#['#(0 0) '#(0 1) '#(0 2)]
#['#(1 0) '#(1 1) '#(1 2)]
#'#(2 0) '#(2 1) '#(2 2)11)

> (indexes-array #(3 3))

- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes In-
dexes))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array

#[#0'#(0 0) '#(0 1) '#(0 2)]
#['#(1 0) '#(1 1) '#(1 2)]
#['#(2 0) '#(2 1) '#(2 2)11)

6.10 Pointwise Operations

Most of the operations documented in this section are simple macros that apply array-map
to a function and their array arguments.

170

(array-map f) — (Array R)

£ : (->R)
(array-map f arr0) — (Array R)
f: (A ->R)
arr0 : (Array A)
(array-map f arr0O arrl arrs ...) — (Array R)
f: (ABTs ... ->R)

arr0 : (Array A)
arrl : (Array B)
arrs : (Array Ts)

Composes f with the given arrays’ procedures. When the arrays’ shapes do not match, they
are broadcast to the same shape first. If broadcasting fails, array-map raises an error.

Examples:

> (array-map (A: ([x : String]) (string-append x "!"))
(array #[#["Hello" "I"] #["Am" "Shouting"]]))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#["Hello!" "I!"] #["Am!" "Shouting!"]])

> (array-map string-append
(array #[#["Hello" "I"] #["Am" "Shouting"]])
(array "!"))

- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-

171

print-quotable>)

(array #[#["Hello!" "I!"] #["Am!" "Shouting!"]])
> (array-map + (index-array #(3 3 3)) (array 2))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Fixnum))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[#[#[2 3 4]
#[5 6 7]
#[8 9 10]]
##[11 12 13]
#[14 15 16]
#[17 18 19]]
#[#[20 21 22]
#[23 24 25]
#[26 27 28111)
> (array-map + (index-array #(2 2)) (index-array #(3 3)))
array-shape-broadcast: incompatible array shapes
(array-broadcasting #t): '#(2 2), '#3 3)

Typed Racket can often derive fairly precise element types for the resulting array:

> (array-map * (array #[-4.3 -1.2 -0.2]) (array -2.81))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Nonnegative-Flonum))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[12.083 3.372 0.562])

172

How precise the result type is depends on the type of f. Preserving precise result types for
lifted arithmetic operators is the main reason most pointwise operations are macro wrappers
for array-map.

Unlike map, array-map can map a zero-argument function:

> (array-map (1 () "Whoa, Nelly!"))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
String))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array "Whoa, Nelly!")

If the resulting zero-dimensional array is used in a pointwise operation with other arrays, it
will be broadcast to their shape:

> (array-map + (array #[1 2 3]) (array-map (1 () -10)))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Fixnum))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[-9 -8 -71)

When explicitly instantiating array-map’s types using inst, instantiate R (the return type’s
element type) first, then the arguments’ element types in order.

(inline-array-map f arrs ...)

Like array-map, but possibly faster. Inlining a map operation can allow Typed Racket’s
optimizer to replace £ with something unchecked and type-specific (for example, replace *
with unsafe-f1%), at the expense of code size.

173

(array+ arrs ...)

(array* arrs ...)

(array- arr0 arrs ...)
(array/ arr0 arrs ...)
(array-min arr0 arrs ...)
(array-max arr0 arrs ...)

Equivalent to mapping arithmetic operators over arrays. Note that because (array-map f)
returns sensible answers, so do (array+) and (arrayx*).

Examples:

> (array+ (array #[#[0.0 1.0] #[2.0 3.0]]) (array 200))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Flonum))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[200.0 201.0] #[202.0 203.0]1)
> (array+)
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Zero))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array 0)
> (array*)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes One))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

174

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array 1)
> (array/ (array #[2 1/2]))
- @ #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Positive-Exact-Rational))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[1/2 21)

(array-scale arr x)

Equivalent to (array* arr (array x)), but faster.

(array-abs arr)
(array-sqr arr)
(array-sqrt arr)
(array-conjugate arr)

Equivalent to (array-map f arr), where f is respectively abs, sqr, sqrt, or conju-
gate.

(array-real-part arr)
(array-imag-part arr)
(array-make-rectangular arr(0 arrl)
(array-magnitude arr)

(array-angle arr)
(array-make-polar arr0O arrl)

Conversions to and from complex numbers, lifted to operate on arrays.

175

(array< arr0O arrl arrs ...)

(array<= arr0 arrl arrs ...)

(array> arr0O arrl arrs ...)

(array>= arr0 arrl arrs ...)

(array= arr0 arrl arrs ...)
Equivalent to (array-map f arr0O arrl arrs ...), where f is respectively <, <=, >,
>=, or =.

(array-not arr)

(array-and arr ...)

(array-or arr ...)

(array-if cond-arr true-arr false-err)

Boolean operators lifted to operate on arrays.

When given nonstrict arrays, the short-cutting behavior of array-and, array-or and
array-if can keep their elements from being referred to (and thus computed). However,
these macros cannot be used to distinguish base and inductive cases in a recursive function,
because the array arguments are eagerly evaluated. For example, this function never returns,
even when array-strictness is #£:

(: array-factorial ((Array Integer) -> (Array Integer)))
(define (array-factorial arr)
(array-if (array<= arr (array 0))
(array 1)
(array* arr (array-factorial (array-
arr (array 1))))))

6.10.1 Broadcasting
(array-broadcasting) — (U Boolean 'permissive)

(array-broadcasting broadcasting) — void?
broadcasting : (U Boolean 'permissive)

Determines the rules used when broadcasting arrays for pointwise operations. See [§6.3.2]
[*Broadcasting Control™|

(array-shape-broadcast dss [broadcasting]) — Indexes
dss : (Listof Indexes)
broadcasting : (U Boolean 'permissive) = (array-broadcasting)

Determines the shape of the resulting array if some number of arrays with shapes dss were
broadcast for a pointwise operation using the given broadcasting rules. If broadcasting fails,
array-shape-broadcast raises an error.

176

Examples:

> (array-shape-broadcast '())

- : Indexes

#0

> (array-shape-broadcast (list (vector) ((inst vector Index) 10)))

- : Indexes

"#(10)

> (array-shape-broadcast (list ((inst vector Index) 2)
((inst vector Index) 10)))

array-shape-broadcast: incompatible array shapes

(array-broadcasting #t): '#(2), #(10)

> (array-shape-broadcast (list ((inst vector Index) 2)
((inst vector Index) 10))

'permissive)
- : Indexes
"#(10)

(array-broadcast arr ds) — (Array A)
arr : (Array A)
ds : Indexes

Returns an array with shape ds made by inserting new axes and repeating rows. This is used
for both (array-broadcasting #t) and (array-broadcasting 'permissive).

Examples:

> (array-broadcast (array 10) ((inst vector Index) 10))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[10 10 10 10 10 10 10 10 10 10])

> (array-broadcast (array #[0 1]) #())

array-broadcast: cannot broadcast to a lower-dimensional

shape; given (array #[0 1]) and '#()

> (array-broadcast (array #[0 1]) ((inst vector Index) 5))

177

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (U One
Zero)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[0 1 0 1 0])

When array-strictness is #f, array-broadcast always returns a nonstrict array.

When array-strictness is #t, array-broadcast returns a strict array when arr is
nonstrict and the result has more elements than arr.

6.11 Indexing and Slicing

(array-ref arr js) — A
arr : (Array A)
js : In-Indexes

Returns the element of arr at position js. If any index in js is negative or not less than its
corresponding axis length, array-ref raises an error.

(array-set! arr js value) — Void
arr : (Settable-Array A)
js : In-Indexes
value : A

Sets the element of arr at position js to value. If any index in js is negative or not less
than its corresponding axis length, array-set! raises an error.

(array-indexes-ref arr idxs) — (Array A)
arr : (Array A)
idxs : (Array In-Indexes)

High-level explanation: Returns multiple elements from arr in a new array.

Lower-level explanation: Returns an array with same shape as idxs, whose elements are
array-ref’d from arr using the indexes in idxs.

178

Examples:

> (define arr (array #[#[1 2] #[10 201]1))
> (define idxs (array #['#(0 0) '#(1 1)1))
> (array-indexes-ref arr idxs)

- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[1 20]1)

Implementation-level explanation: (array-indexes-ref arr idxs) is equivalent to

> (build-array (array-shape idxs)
(A: ([js : Indexes])
(array-ref arr (array-ref idxs js))))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[1 20])

but faster.

(array-indexes-set! arr idxs vals) — Void
arr : (Settable-Array A)
idxs : (Array In-Indexes)
vals : (Array A)

Indexes arr in the same way that array-indexes-ref does, but mutates elements. If
idxs and vals do not have the same shape, they are broadcast first.

179

Examples:

> (define arr (mutable-array #[#[1 2] #[10 20]1))
> (define idxs (array #['#(0 0) '#(1 1)1))
> (array-indexes-set! arr idxs (array -1))
> arr
: #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array #[#[-1 2] #[10 -111)

When two indexes in idxs are the same, the element at that index is mutated more than once
in some unspecified order.

(array-slice-ref arr specs) — (Array A)
arr : (Array A)
specs : (Listof Slice-Spec)

Returns a transformation of arr according to the list of slice specifications specs. See[§6.4]

[FSTicing™| for a discussion and examples.

(array-slice-set! arr specs vals) — Void
arr : (Settable-Array A)
specs : (Listof Slice-Spec)
vals : (Array A)

Like array-indexes-set!, but for slice specifications. Equivalent to

(let ([idxs (array-slice-ref (indexes-array (array-
shape arr)) specs)])
(array-indexes-set! arr idxs vals))

Examples:
> (define arr (array->mutable-array (axis-index-array #(5 5) 1)))

> (array-slice-set! arr (list (:: 1 #f 2) (::)) (array 1))
> arr

180

- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array
#[#[0 1 2 3 4]
#1111 1]
#[0 1 2 3 4]
#1111 1]
#[0 1 2 3 4]11)
> (array-slice-set!
arr (list (::) (:: 1 #f 2))
(array-scale (array-slice-ref arr (list (::) (:: 1 #f 2))) -1))
> arr
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-mutable-array.rkt:14:13 prop:custom-
write>)
(mutable-array
#[#[0 -1 2 -3 4]
#[1 -1 1 -1 1]
#[0 -1 2 -3 4]
#[1 -1 1 -1 1]
#[0 -1 2 -3 4]11)

When a slice specification refers to an element in arr more than once, the element is mutated
more than once in some unspecified order.
Slice-Spec

The type of a slice specification. Currently defined as

181

(U (Sequenceof Integer) Slice Slice-Dots Integer Slice-New-Axis)

A (Sequenceof Integer) slice specification causes array-slice-ref to pick rows from
an axis. An Integer slice specification causes array-slice-ref to remove an axis by
replacing it with one of its rows.

See[§6.4 “Slicing”| for an extended example.

Slice
(:: [end]) — Slice
end : (U #f Integer) = #f
(:: start end [step]) — Slice
start : (U #f Integer)
end : (U #f Integer)
step : Integer =1
(slice? v) — Boolean

v : Any
(slice-start s) — (U #f Fixnum)
s : Slice
(slice-end s) — (U #f Fixnum)
s : Slice
(slice-step s) — Fixnum
s : Slice

The type of in-range-like slice specifications, its constructor, predicate, and accessors.

array-slice-ref interprets a Slice like an in-range sequence object. When start or
end is #f£, it is interpreted as an axis-length-dependent endpoint.

(slice->range-values s dk) — (Values Fixnum Fixnum Fixnum)
s : Slice
dk : Index

Given a slice s and an axis length dk, returns the arguments to in-range that would produce
an equivalent slice specification.

This is used internally by array-slice-ref to interpret a Slice object as a sequence of
indexes.

Slice-Dots

::... : Slice-Dots

(slice-dots? v) — Boolean
v : Any

The type of greedy, multiple-axis-preserving slice specifications, its singleton value, and
predicate.

182

Slice-New-Axis
(::new [dk]) — Slice-New-Axis
dk : Integer =1
(slice-new-axis? v) — Boolean
v : Any
(slice-new-axis-length s) — Index
s : Slice-New-Axis

The type of slice specifications that indicate inserting a new axis, its constructor, predicate,
and accessor. The axis length dk must be nonnegative.

6.12 Transformations

(array-transform arr ds proc) — (Array A)
arr : (Array A)
ds : In-Indexes
proc : (Indexes -> In-Indexes)

Returns an array with shape ds and elements taken from arr, by composing arr’s proce-
dure with proc.

Possibly the most useless, but simplest example of proc disregards its input indexes and
returns constant indexes:

> (define arr (array #[#[0 1] #[2 'threel]))
> (array-transform arr #(3 3) (Ad: ([js : Indexes]) #(1 1)))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (U
"three Byte)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array

#[#['three 'three 'three]
#['three 'three 'three]
#['three 'three 'threell)

Doubling an array in every dimension by duplicating elements:

183

> (define arr (index-array #(3 3)))
> arr
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 1 2] #[3 4 5] #[6 7 811)
> (array-transform
arr
(vector-map (A: ([d : Index]) (* d 2)) (array-shape arr))
(1: ([js : Indexes])
(vector-map (A: ([j : Index]) (quotient j 2)) js)))
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array

##[00 112 2]
#0011 2 2]
#[3 34 4 5 5]
#[(3 34 4 5 5]
#[6 6 7 7 8 8]
#[6 6 7 7 8 8]1)

When array-strictness is #f, the above result takes little more space than the original
array.

Almost all array transformations, including are implemented using array-
transform or its unsafe counterpart.

(array-append* arrs [k]) — (Array A)
arrs : (Listof (Array A))

184

k : Integer = 0O

Appends the arrays in arrs along axis k. If the arrays’ shapes are not the same, they are
first broadcast along all axes (except the kth).

Examples:

(define arr (array #[#[0 1] #[2 3]11))
(define brr (array #[#['a 'b] #['c 'dl]l))
(array-append* (list arr brr))
: #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes (U 'a 'b 'c 'd Byte)))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 1] #[2 3] #['a 'b] #['c 'dl])
> (array-append* (list arr brr) 1)
- @ #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes (U 'a 'b 'c 'd Byte)))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 1 'a 'b] #[2 3 'c 'dll)
> (array-append* (list arr (array 'x)))
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (U 'x

vV V V

185

Byte)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[0 1] #[2 3] #['x 'x]])

For an append-like operation that increases the dimension of the broadcast arrays, see
array-list->array.

(array-axis-insert arr k [dk]) — (Array A)
arr : (Array A)
k : Integer
dk : Integer = 1

Inserts an axis of length dk before axis number k, which must be no greater than the dimen-
sion of arr.

Examples:

> (define arr (array #[#[0 1] #[2 311))
> (array-axis-insert arr 0)
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[#[0 1] #[2 3111)
> (array-axis-insert arr 1)
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

186

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[#[0 111 #[#[2 3]111)
> (array-axis-insert arr 2)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[#[0] #[11]1 #[#[2] #[311D)
> (array-axis-insert arr 1 2)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[#[0 1] #[0 111 #[#[2 3] #[2 3111)

(array-axis-ref arr k jk) — (Array A)
arr : (Array A)
k : Integer
Jjk : Integer

Removes an axis from arr by keeping only row jk in axis k, which must be less than the

dimension of arr.

Examples:

> (define arr (array #[#[0 1] #[2 31]))
> (array-axis-ref arr 0 0)

187

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[0 1])
> (array-axis-ref arr 0 1)
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[2 3])
> (array-axis-ref arr 1 0)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[0 2])

(array-axis-swap arr kO k1) — (Array A)
arr : (Array A)
kO : Integer
k1 : Integer

Returns an array like arr, but with axes k0 and k1 swapped. In two dimensions, this is
called a transpose.

188

Examples:

> (array-axis-swap (array #[#[0 1] #[2 3]1) 0 1)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[0 2] #[1 311)

> (define arr (indexes-array #(2 2 2)))
> arr

- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes In-
dexes))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[##0'#(0 0 0) '#(0 0 1)]
#['#(0 1 0) '#(0 1 1)]]
#[#['#(1 0 0) '#(1 0 1]
#['#(1 1 0) '#(1 1 DIID
> (array-axis-swap arr 0 1)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes In-
dexes))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-

189

print-quotable>)

(array

#[#[#['#(0 0 0) "#(0 0 1]
#['#(1 0 0) '#(1 0 1D]]

#[#['#(0 1 0) '#(0 1 1)]

#['#(1 1 0) '#(1 1 DIID

> (array-axis-swap arr 1 2)

- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes In-
dexes))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
#[##0'#(0 0 0) '#(0 1 0)]
#['#(0 0 1) '#(0 1 1)]]
##['#(1 0 0) '#(1 1 0)]
#['#(1 0 1) '#(1 1 DIID

(array-axis-permute arr perm) — (Array A)
arr : (Array A)
perm : (Listof Integer)

Returns an array like arr, but with axes permuted according to perm.

The list perm represents a mapping from source axis numbers to destination axis numbers:
the source is the list position, the destination is the list element. For example, the permutation
"(0 1 2) is the identity permutation for three-dimensional arrays, ' (1 0) swaps axes O
and 1,and ' (3 1 2 0) swaps axes 0 and 3.

The permutation must contain each integer from O to (- (array-dims arr) 1) exactly
once.

Examples:

> (array-axis-swap (array #[#[0 1] #[2 3]]) 0 1)
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

190

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[0 2] #[1 3]11)
> (array-axis-permute (array #[#[0 1] #[2 3]]1) '(1 0))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[0 2] #[1 3]11)

(array-reshape arr ds) — (Array A)
arr : (Array A)
ds : In-Indexes

Returns an array with elements in the same row-major order as arr, but with shape ds. The
product of the indexes in ds must be (array-size arr).

Examples:

> (define arr (indexes-array #(2 3)))
> arr
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes In-
dexes))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#['#(0 0) '#(0 1) '#(0 2)] #['#(1 0) '#(1 1) '#(1 2)11)
> (array-reshape arr #(3 2))

191

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes In-
dexes))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#['#(0 0) '#(0 1)1 #['#(0 2) '#(1 0)] #['#(1 1) '#Q1
21D

> (array-reshape (index-array #(3 3)) #(9))

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[0 1 2 3456 7 8])

(array-flatten arr) — (Array A)
arr : (Array A)

Returns an array with shape (vector (array-size arr)), with the elements of arr in
row-major order.

Examples:

> (array-flatten (array 10))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

192

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[10])
> (array-flatten (array #[#[0 1] #[2 3]1))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[0 1 2 3])

6.13 Folds, Reductions and Expansions

6.13.1 Acxis Folds

(array-axis-fold arr k f) — (Array A)
arr : (Array A)
k : Integer
f: (AA->A4)
(array-axis-fold arr k f init) — (Array B)
arr : (Array A)

k . Integer
f: (AB ->B)
init : B

Folds a binary function f over axis k of arr. The result has the shape of arr but with axis
k removed.

The three-argument variant uses the first value of each row in axis k as init. It therefore
requires axis k to have positive length.

Examples:

> (define arr (index-array #(3 4)))
> arr
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))

193

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[0 1 2 3] #[4 5 6 7] #[8 9 10 1111)
> (array-axis-fold arr 0 +)
- @ #(struct:Array

(Indexes

Index

(Boxof Boolean)

(-> Void)

(-> Indexes Nonnegative-Integer))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[12 15 18 21])
> (array-axis-fold arr 1 (inst cons Index (Listof Index)) empty)
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (Listof
Index)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #['(3 21 0) '(7 6 54) '(11 10 9 8)1)

Notice that the second example returns an array of reversed lists. This is therefore a left fold;
see foldl.

194

If you need control over the order of evaluation in axis k’s rows, see array-axis-reduce.

(array-axis-sum arr k)
(array-axis-sum arr k init)
(array-axis-prod arr k)
(array-axis-prod arr k init)

arr : (Array Number)
k : Integer

init : Number

(array-axis-min arr k)
(array-axis-min arr k init)
(array-axis-max arr k)
(array-axis-max arr k init)

arr : (Array Real)
k : Integer

init : Real

Some standard per-axis folds, defined in terms of array-axis-fold. The two-argument
variants require axis k to have positive length.

Examples:

> (define arr (index-array #(3 4)))
> arr
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 1 2 3] #[4 5 6 7] #[8 9 10 11]11)
> (array-axis-fold arr 1 +)
- @ #(struct:Array
(Indexes
Index
(Boxof Boolean)

195

(-> Void)
(-> Indexes Nonnegative-Integer))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[6 22 38])
> (array-axis-sum arr 1)
- : #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Nonnegative-Integer))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[6 22 38])
> (array-axis-sum arr 0 0.0)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Nonnegative-Flonum))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[12.0 15.0 18.0 21.0])

(array-axis-count arr k pred?) — (Array Index)
arr : (Array A)

196

k : Integer
pred? : (A -> Any)

Counts the elements x in rows of axis k for which (pred? x) is true.

Examples:

> (define arr (index-array #(3 3)))
> arr
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 1 2] #[3 4 5] #[6 7 81])
> (array-axis-count arr 1 odd?)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[1 2 11)

(array-axis-and arr k) — (Array (U A Boolean))
arr : (Array A)
k : Integer
(array-axis-or arr k) — (Array (U A #f))
arr : (Array A)
k : Integer

Apply and or or to each row in axis k of array arr. Evaluation is short-cut as with the and
and or macros, which is only observable if arr is nonstrict.

In the following example, computing the second array element sets second? to #t:

197

> (define second? (ann #f Boolean))
> (define arr
(parameterize ([array-strictness #f])
(build-array #(2) (d: ([js : Indexes])
(cond [(zero? (vector-ref js 0)) #f]
[else (set! second? #t)

#t1)))))

Printing arr causes (set! second? #t) to be evaluated, but applying array-axis-and
does not:

> (array-axis-and arr 0)
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Boolean))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #f)
> second?

- : Boolean
#t

However, if arr were strict, (set! second? #t) would be evaluated when arr was cre-
ated.

6.13.2 Whole-Array Folds

(array-fold arr g) — (Array A)
arr : (Array A)
g ¢ ((Array A) Index -> (Array A))

Folds g over each axis of arr, in reverse order. The arguments to g are an array (initially
arr) and the current axis. It should return an array with one fewer dimension than the array
given, but does not have to.

Examples:

198

> (define arr (index-array #(3 4)))
> arr
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[0 1 2 3] #[4 5 6 7] #[8 9 10 1111)

> (array-fold arr (A: ([arr : (Array Integer)] [k : Index])
(array-axis-sum arr k)))

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Inte-
ger))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array 66)
> (apply + (array->list arr))
- : Integer [more precisely: Nonnegative-Integer]
66
> (array-ref (array-fold arr (inst array->list-
array (Listof* Integer)))
#0)
- ¢ (U (Listof (Rec g1390794 (U (Listof g1390794) Integer))) In-
dex)
'((0123) (4567) (8910 11))

(array-all-fold arr f) — A
arr : (Array A)
f:(AA >4
(array-all-fold arr f init) — A
arr : (Array A)
f: (AA >R
init : A

199

Folds f over every element of arr by folding f over each axis in reverse order. The two-
argument variant is equivalent to

(array-ref (array-fold arr (A: ([arr : (Array A)] [k : Index])
(array-axis-fold arr k f£)))

#0))

and the three-argument variant is similar. The two-argument variant requires every axis to
have positive length.

Examples:

> (define arr (index-array #(3 4)))
> arr
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 1 2 3] #[4 5 6 7] #[8 9 10 1111)
> (array-all-fold arr +)
- : Integer [more precisely: Nonnegative-Integer]
66
> (array-all-fold (array #[]) + 0.0)
: Flonum [more precisely: Nonnegative-Flonum]
0.0

Because f is folded over the last axis first, it receives arr’s elements (as its first argument)
in row-major order.

(array-all-sum arr)
(array-all-sum arr init)
(array-all-prod arr)
(array-all-prod arr init)

arr : (Array Number)

init : Number

200

(array-all-min arr)
(array-all-min arr init)
(array-all-max arr)
(array-all-max arr init)

arr : (Array Real)

init : Real

Some standard whole-array folds, defined in terms of array-all-fold. The one-argument
variants require each axis in arr to have positive length.

Examples:

> (define arr (index-array #(3 4)))
> arr
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 1 2 3] #[4 5 6 7] #[8 9 10 1111)
> (array-all-fold arr +)
- : Integer [more precisely: Nonnegative-Integer]
66
> (array-all-sum arr)
- : Integer [more precisely: Nonnegative-Integer]
66
> (array-all-sum arr 0.0)
- : Real [more precisely: Nonnegative-Real]
66.0

(array-all-and arr) — (U A Boolean)
arr : (Array A)

(array-all-or arr) — (U A #f)
arr : (Array A)

Apply and or or to arr’s elements using short-cut evaluation in row-major order.

Examples:

201

> (define arr (index-array #(3 3)))

> (array-all-and (array= arr arr))

- : Boolean

#t

> (define brr (array+ arr (array 1)))
> (array-all-and (array= arr brr))

- : Boolean

#f

> (array-all-or (array= arr (array 0)))
- : Boolean

#t

(array-all-and arr) is defined as

(parameterize ([array-strictness #f])
(array-ref (array-fold arr array-axis-and) #()))

and array-all-or is defined similarly, using array-axis-or.
(array-count pred? arrs ...)

arrs : (Array Ts)

pred? : (Ts ... -> Any)

When given one array arr, returns the number of elements x in arr for which (pred? x)
is true. When given multiple arrays, array-count does the same with the corresponding el-
ements from any number of arrays. If the arrays’ shapes are not the same, they are broadcast
first.

Examples:

> (array-count zero? (array #[#[0 1 0 2] #[0 3 -1 4]1))
: Integer [more precisely: Index]

v W

(array-count equal?
(array #[#[0 1] #[2 3] #[0 1] #[2 3]11)
(array #[0 11))

: Integer [more precisely: Index]

(array-count pred? arrs ...) islike

(array-all-sum (array-map (1 (x ...) (if (pred? x ...) 1 0)) arrs
0)

202

)

but does not create intermediate (strict) arrays, and always returns an Index.

(array-andmap pred? arrs ...)
(array-ormap pred? arrs ...)

arrs : (Array Ts)

pred? : (Ts ... -> Any)

Like andmap and ormap, but for arrays. Evaluation is short-cut, in row-major order. If the
arrays’ shapes are not the same, they are broadcast first.

Determining whether each row is equal to (array #[0 1]):

> (array-andmap equal?
(array #[#[0 1] #[0 1] #[0 1] #[0 111)
(array #[0 11))

- : Boolean

#t

Determining whether any row has 0 as its first element or 1 as its second:

> (array-ormap equal?
(array #[#[0 2] #[2 3] #[1 1] #[2 3]11)
(array #[0 11))

- : Boolean

#t

Determining whether any row is equal to (array #[0 1]):

> (array-ormap equal?
(array->list-array (array #[#[0 2] #[2 3] #[1 1] #[2 3]1]1))
(array->list-array (array #[0 1])))

- : Boolean

#f

(array-andmap pred? arrs ...) isdefined as
(parameterize ([array-strictness #f])

(array-all-and (array-map pred? arrs ...)))

and array-ormap is defined similarly, using array-all-or.

6.13.3 General Reductions and Expansions

203

(array-axis-reduce arr k h) — (Array B)
arr : (Array A)
k : Integer
h : (Index (Integer -> A) -> B)

Like array-axis-fold, but allows evaluation control (such as short-cutting and and or)
by moving the loop into h. The result has the shape of arr, but with axis k removed.

The arguments to h are the length of axis k and a procedure that retrieves elements from that
axis’s rows by their indexes in axis k. It should return the elements of the resulting array.

For example, summing the squares of the rows in axis 1:

> (define arr (index-array #(3 3)))
> arr
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 1 2] #[3 4 5] #[6 7 81]1)
> (array-axis-reduce

arr 1
(A: ([dk : Index] [proc : (Integer -> Real)])
(for/fold: ([s : Real 0]) ([jk (in-range dk)])
(+ s (sqr (proc jk))))))

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Real))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[5 50 149])
> (array-axis-sum (array-map sqr arr) 1)
- : #(struct:Array

204

(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Nonnegative-Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[5 50 149])

Transforming an axis into a list using array-axis-fold and array-axis-reduce

> (array-map (inst reverse Index)
(array-axis-fold arr 1
(inst cons Index (Listof Index))
empty))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (Listof
Index)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #['(0 1 2) '(345) '(67 8)1)
> (array-axis-reduce arr 1 (inst build-list Index))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (Listof
Index)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-

205

lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #['(0 1 2) '(345) '(67 8)1)

The latter is essentially the definition of array->list-array.

Every fold, including array-axis-fold, is ultimately defined using array-axis-reduce
or its unsafe counterpart.

(array-axis-expand arr k dk g) — (Array B)
arr : (Array A)
k : Integer
dk : Integer
g : (A Index -> B)

Inserts a new axis number k of length dk, using g to generate values; k must be no greater
than the dimension of arr, and dk must be nonnegative.

Conceptually, g is applied dk times to each element in each row of axis k, once for each
nonnegative index jk < dk.

Turning vector elements into rows of a new last axis using array-axis-expand and
vector-ref:

> (define arr (array #['#(a b c) '#(d e £) '#(g h 1)]1))
> (array-axis-expand arr 1 3 vector-ref)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Any))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#['a 'b 'c] #['d 'e 'f] #['g 'h 'ill)

Creating a vandermonde-matrix:
> (array-axis-expand (list->array '(1 2 3 4)) 1 5 expt)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Integer))

206

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[1 1 1 1 1] #[1 2 4 8 16] #[1 3 9 27 81] #[1 4 16 64
25611)

This function is a dual of array-axis-reduce in that it can be used to invert applications
of array-axis-reduce. To do so, g should be a destructuring function that is dual to
the constructor passed to array-axis-reduce. Example dual pairs are vector-ref and
build-vector, and list-ref and build-1list

(Do not pass list-ref to array-axis-expand if you care about performance, though.
See list-array->array for a more efficient solution.)

(array->list-array arr [k]) — (Array (Listof A))
arr : (Array A)
k : Integer = 0O

Returns an array of lists, computed as if by applying 1ist to the elements in each row of
axis k.

Examples:

> (define arr (index-array #(3 3)))
> arr
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 1 2] #[3 4 5] #[6 7 811)
> (array->list-array arr 1)
- @ #(struct:Array

207

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (Listof
Index)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #['(0 1 2) '(345) '(67 8)])

> (array-ref (array->list-array (array->list-array arr 1) 0) #())
- : (Listof (Listof Index))

'((012) (345) (67 8))

See mean for more useful examples, and array-axis-reduce for an example that shows
how array->list-array is implemented.

(list-array->array arr [k]) — (Array A)
arr : (Array (Listof A))
k : Integer = 0

Returns an array in which the list elements of arr comprise a new axis k. Equivalent to
(array-axis-expand arr k n list-ref) where n is the length of the lists in arr, but
with O(1) indexing.

Examples:

> (define arr (array->list-array (index-array #(3 3)) 1))
> arr
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (Listof
Index)))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #['(0 1 2) '(345) '(6 781
> (list-array->array arr 1)

208

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 1 2] #[3 4 5] #[6 7 8]])

For fixed k, this function and array->1ist-array are mutual inverses with respect to their
array arguments.

6.14 Other Array Operations

6.14.1 Fast Fourier Transform

(array-axis-fft arr k) — (Array Float-Complex)
arr : (Array Number)
k : Integer

Performs a discrete Fourier transform on axis k of arr. The length of k must be an in-
teger power of two. (See power-of-two?.) The scaling convention is determined by the
parameter dft-convention, which defaults to the convention used in signal processing.

The transform is done in parallel using max-math-threads threads.

(array-axis-inverse-fft arr k) — (Array Float-Complex)
arr : (Array Number)
k : Integer

The inverse of array-axis-fft, performed by parameterizing the forward transform on
(dft-inverse-convention).
(array-fft arr) — FCArray

arr : (Array Number)

Performs a discrete Fourier transform on each axis of arr using array-axis-fft.

209

Wikipedia: Discrete
Fourier Transform

http://wikipedia.org/wiki/Discrete_Fourier_transform
http://wikipedia.org/wiki/Discrete_Fourier_transform

(array-inverse-fft arr) — FCArray
arr : (Array Number)

The inverse of array-fft, performed by parameterizing the forward transform on (dft-
inverse-convention).

6.15 Subtypes

6.15.1 Flonum Arrays

FlArray

The type of flonum arrays, a subtype of (Settable-Array Flonum) that stores its ele-
ments in an F1Vector. A flonum array is always strict.

(flarray #[#[...] ...1)

Like array, but creates flonum arrays. The listed elements must be real numbers, and may
be exact.

Examples:

> (flarray 0.0)

- : FlArray

(flarray 0.0)

> (flarray #['x])

eval:312:0: Type Checker: type mismatch
expected: Real
given: 'x
in: #((quote x))

> (flarray #[#[1 2] #[3 411)

- : FlArray

(flarray #[#[1.0 2.0] #[3.0 4.0]1)

(array->flarray arr) — FlArray
arr : (Array Real)

Returns a flonum array that has approximately the same elements as arr. Exact elements
will likely lose precision during conversion.

(flarray-data arr) — FlVector
arr : FlArray

210

Returns the elements of arr in a flonum vector, in row-major order.
Example:

> (flarray-data (flarray #[#[1 2] #[3 41]))
- : FlVector
(flvector 1.0 2.0 3.0 4.0)

(flarray-map f arrs ...) — FlArray
f : (Flonum ... -> Flonum)
arrs : FlArray

Maps the function f over the arrays arrs. If the arrays do not have the same shape, they are
broadcast first. If the arrays do have the same shape, this operation can be quite fast.

The function £ is meant to accept the same number of arguments as the number of its fol-
lowing flonum array arguments. However, a current limitation in Typed Racket requires £ to
accept any number of arguments. To map a single-arity function such as £1+, for now, use

inline-flarray-map or array-map.

(inline-flarray-map f arrs ...)

f : (Flonum ... -> Flonum)

arrs : FlArray

Like inline-array-map, but for flonum arrays.

This is currently unavailable in untyped Racket.

(flarray+ arr0 arrl) — FlArray
arrO : FlArray
arrl : FlArray

(flarray* arr0 arrl) — FlArray
arr0O : FlArray
arrl : FlArray

(flarray- arr) — FlArray
arr : FlArray

(flarray- arr0 arrl) — FlArray
arr0O : FlArray
arrl : FlArray

(flarray/ arr) — FlArray
arr : FlArray

(flarray/ arrO arrl) — FlArray
arrO : FlArray
arrl : FlArray

211

(flarray-min arr0 arrl) — FlArray
arrO : FlArray
arrl : FlArray

(flarray-max arr0 arrl) — FlArray
arrQ : FlArray
arrl : FlArray

(flarray-scale arr x) — FlArray
arr : FlArray
x @ Flonum

(flarray-abs arr) — FlArray
arr : FlArray

(flarray-sqr arr) — FlArray
arr : FlArray

(flarray-sqrt arr) — FlArray
arr : FlArray

Arithmetic lifted to flonum arrays.

6.15.2 Float-Complex Arrays

FCArray

The type of float-complex arrays, a subtype of (Settable-Array Float-Complex) that
stores its elements in a pair of F1Vectors. A float-complex array is always strict.

(fcarray #[#[...1 ...1)

Like array, but creates float-complex arrays. The listed elements must be numbers, and
may be exact.

Examples:

> (fcarray 0.0)
- : FCArray
(fcarray 0.0+0.01)
> (fcarray #['x])
eval:316:0: Type Checker: type mismatch
expected: Number
given: 'x
in: #((quote x))
> (fcarray #[#[1 2+1i] #[3 4+3i]])
- : FCArray
(fcarray #[#[1.0+0.0i 2.0+1.0i] #[3.0+0.0i 4.0+3.0il11)

212

(array->fcarray arr) — FCArray
arr : (Array Number)

Returns a float-complex array that has approximately the same elements as arr. Exact
elements will likely lose precision during conversion.

(fcarray-real-data arr) — FlVector
arr : FCArray

(fcarray-imag-data arr) — FlVector
arr : FCArray

Return the real and imaginary parts of arr’s elements in flonum vectors, in row-major order.

Examples:

> (define arr (fcarray #[#[1 2+1i] #[3 4+3i]]))
> (fcarray-real-data arr)

- : FlVector

(flvector 1.0 2.0 3.0 4.0)

> (fcarray-imag-data arr)

- : FlVector

(flvector 0.0 1.0 0.0 3.0)

(fcarray-map f arrs ...) — FCArray
f : (Float-Complex ... -> Float-Complex)
arrs : FCArray

Maps the function £ over the arrays arrs. If the arrays do not have the same shape, they are
broadcast first. If the arrays do have the same shape, this operation can be quite fast.

The function f is meant to accept the same number of arguments as the number of its follow-
ing float-complex array arguments. However, a current limitation in Typed Racket requires
£ to accept any number of arguments. To map a single-arity function, for now, use inline-
fcarray-map or array-map.

(inline-fcarray-map f arrs ...)

f : (Float-Complex ... -> Float-Complex)

arrs : FCArray

Like inline-array-map, but for float-complex arrays.

This is currently unavailable in untyped Racket.

213

(fcarray+ arr0 arrl) — FCArray
arrQ : FCArray
arrl : FCArray

(fcarray* arr0 arrl) — FCArray
arr0O : FCArray
arrl : FCArray

(fcarray- arr) — FCArray
arr : FCArray

(fcarray- arr0 arrl) — FCArray
arrO : FCArray
arrl : FCArray

(fcarray/ arr) — FCArray
arr : FCArray

(fcarray/ arr0 arrl) — FCArray
arrO : FCArray
arrl : FCArray

(fcarray-scale arr z) — FCArray
arr : FCArray
z : Float-Complex

(fcarray-sqr arr) — FCArray
arr : FCArray

(fcarray-sqrt arr) — FCArray
arr : FCArray

(fcarray-conjugate arr) — FCArray
arr : FCArray

Arithmetic lifted to float-complex arrays.

(fcarray-real-part arr) — FlArray
arr : FCArray
(fcarray-imag-part arr) — FlArray
arr : FCArray
(fcarray-make-rectangular arr0 arrl) — FCArray
arr0O : FlArray
arrl : FlArray
(fcarray-magnitude arr) — FlArray
arr : FCArray
(fcarray-angle arr) — FlArray
arr : FCArray
(fcarray-make-polar arr0 arrl) — FCArray
arrO : FlArray
arrl : FlArray

Conversions to and from complex numbers, lifted to flonum and float-complex arrays.

214

6.16 Strictness

(array-strictness) — Boolean
(array-strictness strictness) — void?
strictness : Boolean

Determines whether math/array functions return strict arrays. The default value is #t.

See[§6.5 “Nonstrict Arrays™|for a discussion on nonstrict arrays.

(array-strict? arr) — Boolean
arr : (Array A)

Returns #t when arr is strict.

Examples:

> (define arr
(parameterize ([array-strictness #f])
(array+ (array 10) (array #[0 1 2 3]))))
> (array-strict? arr)
- : Boolean
#t
> (array-strict! arr)
> (array-strict? arr)
- : Boolean
#t

(array-strict! arr) — Void
arr : (Array A)

Causes arr to compute and store all of its elements. Thereafter, arr computes its elements
by retrieving them from the store.

If arr is already strict, (array-strict! arr) does nothing.

(array-strict arr)

arr : (Array A)

An expression form of array-strict!, which is often more convenient. First evaluates
(array-strict! arr), thenreturns arr.

This is a macro so that Typed Racket will preserve arr’s type exactly. If it were a function,
(array-strict arr) would always have the type (Array A),even if arr were a subtype
of (Array A),such as (Mutable-Array A).

215

(array-default-strict! arr) — Void
arr : (Array A)
(array-default-strict arr)

arr : (Array A)

Like array-strict! and array-strict, but do nothing when array-strictness is #f.

Apply one of these to return values from library functions to ensure that users get strict arrays
by default. See§6.5 “Nonstrict Arrays”|for details.

(build-simple-array ds proc) — (Array A)
ds : In-Indexes
proc : (Indexes -> A)

Like build-array, but returns an array without storage that is nevertheless considered to
be strict, regardless of the value of array-strictness. Such arrays will not cache their
elements when array-strict! or array-strict is applied to them.

Use build-simple-array to create arrays that represent simple functions of their indexes.
For example, basic array constructors such as make-array are defined in terms of this or its
unsafe counterpart.

Be careful with this function. While it creates arrays that are always memory-efficient, it
is easy to ruin your program’s performance by using it to define arrays for which element
lookup is permanently expensive. In the wrong circumstances, using it instead of build-
array can turn a linear algorithm into an exponential one!

In general, use build-simple-array when

* Computing an element is never more expensive than computing a row-major index fol-
lowed by applying vector-ref. An example is index-array, which only computes
row-major indexes.

* Computing an element is independent of any other array’s elements. In this circum-
stance, it is impossible to compose some unbounded number of possibly expensive
array procedures.

* You can prove that each element will be computed at most once, throughout the entire
life of your program. This is true, for example, when the result is sent only to a
function that makes a copy of it, such as array-lazy or array->mutable-array.

See array-1lazy for an example of the last circumstance.

216

(array-lazy arr) — (Array A)
arr : (Array A)

Returns an immutable, nonstrict array with the same elements as arr, but element compu-
tations are cached.

s

Perhaps the most natural way to use array-1lazy is for so-called “dynamic programming,’
or memoizing a function that happens to have a rectangular domain. For example, this
computes the first 10 Fibonacci numbers in linear time:

> (define: fibs : (Array Natural)
(array-lazy
(build-simple-array
#(10) (A: ([js : Indexes])
(define j (vector-ref js 0))
(cond [(j . < . 2) j]
[else (+ (array-ref fibs (vector (- j 1)))
(array-ref fibs (vector (- j 2))))1)))))
> fibs
- @ #(struct:Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Nonnegative-Integer))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[0 1 1 2 3 5 8 13 21 34])

Because build-simple-array never stores its elements, its procedure argument may refer
to the array it returns. Wrapping its result with array-lazy makes each array-ref take
no more than linear time; further, each takes constant time when the elements of fibs are
computed in order. Without array-lazy, computing the elements of £ibs would take
exponential time.

Printing a lazy array computes and caches all of its elements, as does applying array-
strict! or array-strict toit.

217

Except for arrays returned by build-simple-array, it is useless to apply array-lazy to
a strict array. Using the lazy copy instead of the original only degrades performance.

While it may seem that array-1lazy should just return arr when arr is strict, this would
violate the invariant that array-1lazy returns immutable arrays. For example:

> (: array-maybe-lazy (A1l (A) ((Array A) -> (Array A))))
> (define (array-maybe-lazy arr)
(if (array-strict? arr) arr (array-lazy arr)))
> (define arr (mutable-array #[0 1 2 3]))
> (define brr (array-maybe-lazy arr))
> (array-set! arr #(0) -1000)
> brr
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Inte-
ger))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[-1000 1 2 3])

218

7 Matrices and Linear Algebra

Performance Warning: Matrix values are arrays, as exported by math/array. The same
performance warning applies: operations are currently 25-50 times slower in untyped Racket
than in Typed Racket, due to the overhead of checking higher-order contracts. We are work-
ing on it.

For now, if you need speed, use the typed/racket language.
(require math/matrix) package: math-1ib

Like all of math, math/matrix is a work in progress. Most of the basic algorithms are
implemented, but some are still in planning. Possibly the most useful unimplemented algo-
rithms are

* LUP decomposition (currently, LU decomposition is implemented, in matrix-1lu)
* matrix-solve for triangular matrices

* Singular value decomposition (SVD)

» Eigendecomposition

» Decomposition-based solvers

* Pseudoinverse and least-squares solving

7.1 Introduction

From the point of view of the functions in math/matrix, a matrix is an Array with two
axes and at least one entry, or an array for which matrix? returns #t.

Technically, a matrix’s entries may be any type, and some fully polymorphic matrix func-
tions such as matrix-row and matrix-map operate on any kind of matrix. Other functions,
such as matrix+, require their matrix arguments to contain numeric values.

7.1.1 Function Types

The documentation for math/matrix functions use the type Matrix, a synonym of Array,
when the function either requires that an argument is a matrix or ensures that a return value
is a matrix.

219

https://pkgs.racket-lang.org/package/math-lib

Most functions that implement matrix algorithms are documented as accepting (Matrix
Number) values. This includes (Matrix Real), which is a subtype. Most of these func-
tions have a more precise type than is documented. For example, matrix-conjugate has
the type

(case-> ((Matrix Flonum) -> (Matrix Flonum))
((Matrix Real) -> (Matrix Real))
((Matrix Float-Complex) -> (Matrix Float-Complex))
((Matrix Number) -> (Matrix Number)))

but is documented as having the type ((Matrix Number) -> (Matrix Number)).

Precise function types allow Typed Racket to prove more facts about math/matrix client
programs. In particular, it is usually easy for it to prove that operations on real matrices
return real matrices:

> (matrix-conjugate (matrix [[1 2 3] [4 5 6]]))
- : (Array Real)
(array #[#[1 2 3] #[4 5 61])

and that operations on inexact matrices return inexact matrices:

> (matrix-conjugate (matrix [[1.0+2.0i 2.0+3.0i 3.0+4.0i]
[4.0+5.01 5.0+6.0i 6.0+7.0i]11))

- : (Array Float-Complex)

(array #[#[1.0-2.01i 2.0-3.01i 3.0-4.0i] #[4.0-5.0i 5.0-6.0i 6.0-

7.0i11)

7.1.2 Failure Arguments

In many matrix operations, such as inversion, failure is easy to detect during computation,
but is just as expensive to detect ahead of time as the operation itself. In these cases, the
functions implementing the operations accept an optional failure thunk, or a zero-argument
function that returns the result of the operation in case of failure.

For example, the (simplified) type of matrix-inverse is

(A1l (F) (case-> ((Matrix Number) -> (Matrix Number))
((Matrix Number) (-> F) -> (U F (Matrix Number)))))

Thus, if a failure thunk is given, the call site is required to check for return values of type F
explicitly.

Default failure thunks usually raise an error, and have the type (-> Nothing). For such fail-
ure thunks, (U F (Matrix Number)) is equivalent to (Matrix Number), because Noth-
ing is part of every type. (In Racket, any expression may raise an error.) Thus, in this case,

220

no explicit test for values of type F is necessary (though of course they may be caught using
with-handlers or similar).

7.1.3 Broadcasting

Unlike array operations, pointwise matrix operations do not broadcast their arguments when
given matrices with different axis lengths:

> (matrix+ (identity-matrix 2) (matrix [[10]]))

matrix-map: matrices must have the same shape; given (array
#[#[1 0] #[0 1]]) (array #[#[10]])

If you need broadcasting, use array operations:

> (array+ (identity-matrix 2) (matrix [[10]]))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Index))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[11 10] #[10 11]1])

7.1.4 Strictness

Functions exported by math/matrix return strict or nonstrict arrays based on the value of
the array-strictness parameter. See|36.5 “Nonstrict Arrays”|for details.

7.2 Types, Predicates and Accessors

(Matrix A)

Equivalent to (Array A), but used for values M for which (matrix? M) is #t.

(matrix? arr) — Boolean
arr : (Array A)

221

Returns #t when arr is a matrix: a nonempty array with exactly two axes.
Examples:

> (matrix? (array 10))

- : Boolean

#t

> (matrix? (array #[1 2 3]))

- : Boolean

#f

> (matrix? (make-array #(5 0) 0))
- : Boolean

#t

> (matrix? (array #[#[1 0] #[0 1]]))
- : Boolean

#t

(row-matrix? arr) — Boolean
arr : (Array A)

Returns #t when arr is a row matrix: a matrix with exactly one row.

(col-matrix? arr) — Boolean
arr : (Array A)

Returns #t when arr is a column matrix: a matrix with exactly one column.

(square-matrix? arr) — Boolean
arr : (Array A)

Returns #t when arr is a matrix with the same number of rows and columns.

(matrix-shape M) — (Values Index Index)
M : (Matrix A)

Returns M’s row and column count, respectively. Raises an error if (matrix? M) is #f.

Examples:

> (matrix-shape (row-matrix [1 2 3]))

- : (values Integer Integer) [more precisely: (Values Index In-
dex)]

1

3

222

> (matrix-shape (col-matrix [1 2 3]))

- : (values Integer Integer) [more precisely: (Values Index In-
dex)]

3

1

> (matrix-shape (identity-matrix 3))

- ¢ (values Integer Integer) [more precisely: (Values Index In-
dex)]

3

3

(matrix-num-rows M) — Index
M : (Matrix A)
Returns the number of rows in M, or the first value of (matrix-shape M).
(matrix-num-cols M) — Index
M : (Matrix A)
Returns the number of columns in ¥, or the second value of (matrix-shape M).

(square-matrix-size M) — Index
M : (Matrix A)

Returns the number of rows/columns in M. Raises an error if (square-matrix? M) is #f.
Examples:

> (square-matrix-size (identity-matrix 3))

- : Integer [more precisely: Index]

3

> (square-matrix-size (row-matrix [1 2 3]))

square-matrix-size: contract violation

expected: square-matrix?
given: (array #[#[1 2 3]])

7.3 Construction
(matrix [[expr ...+] ...+] maybe-type-ann)

maybe-type-ann =
| : type

223

Like the array form for creating arrays, but does not require #[. . .] to delimit nested rows,
and the result is constrained to be amatrix?.

Examples:

> (matrix [[1 2 3] [4 5 6]])
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[1 2 3] #[4 5 6]])
> (matrix [[1 2 3] [4 5 6]] : Number)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Num-
ber))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[1 2 3] #[4 5 6]])
> (matrix [[11)
eval:20:0: matrix: given empty row

at: ()
in: (matrix (()))

(row-matrix [expr ...+] maybe-type-ann)

maybe-type-ann =
| : type

Like matrix, but returns a row matrix.

Examples:

224

> (row-matrix [1 2 3])
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[1 2 31])
> (row-matrix [1 2 3] : Number)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Num-
ber))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[1 2 31])

> (row-matrix [])

eval:23:0: row-matrix: given empty row
at: ()

in: (row-matrix ())
(col-matrix [expr ...+] maybe-type-ann)

maybe-type-ann =
| : type

Like matrix, but returns a column matrix.

Examples:

> (col-matrix [1 2 3])
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Byte))

225

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[1] #[2] #[311)
> (col-matrix [1 2 3] : Number)
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Num-
ber))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array #[#[1] #[2] #[3]1])

> (col-matrix [])

eval:26:0: col-matrix: given empty column
at: ()

in: (col-matrix ())

(identity-matrix n [one zero]) — (Matrix A)
n : Integer
one : A =1
zero : A =0

Returns an n x n identity matrix, which has the value one on the diagonal and zero every-
where else. The height/width n must be positive.

Examples:

> (identity-matrix 3)

- : (Array (U One Zero))

(array #[#[1 0 0] #[0 1 0] #[0 O 111)

> (identity-matrix 4 1.0+0.0i 0.0+0.01i)
- : (Array Float-Complex)

(array

226

#[#[1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i]
#[0.0+0.01 1.0+0.01i 0.0+0.0i 0.0+0.0i]
#[0.0+0.01 0.0+0.01i 1.0+0.0i 0.0+0.0i]
#[0.0+0.01i 0.0+0.0i 0.0+0.0i 1.0+0.0i]])

(make-matrix m n x) — (Matrix A)
m : Integer
n : Integer
x : A

Returns an m xn matrix filled with the value x; both m and n must be positive. Analogous
to make-array (and defined in terms of it).

(build-matrix m n proc) — (Matrix A)
m : Integer
n : Integer
proc : (Index Index -> A)

Returns an m xn matrix with entries returned by proc; both m and n must be positive.
Analogous to build-array (and defined in terms of it).

(diagonal-matrix xs [zero]) — (Matrix A)
xs : (Listof A)
zero : A =0

Returns a matrix with xs along the diagonal and zero everywhere else. The length of xs
must be positive.
Examples:

> (diagonal-matrix '(1 2 3 4 5 6))
- : (Array Byte)

(array
#[#[1 0 0 0 0 0]
#[0 2 0 0 0 0]
#[0 0 30 0 0]
#[0 0 0 4 0 0]
#[0 0 0 0 5 0]
#[0 0 0 0 0 611)

> (diagonal-matrix '(1.0 2.0 3.0 4.0 5.0) 0.0)

- : (Array (U Flonum-Positive-Zero Positive-Float-No-NaN))

(array

##[1.
#[0.
#[0.
#[0.
#[0.

O O O O O
O O O N O
coocoo
O O w o o
coooo
O%OOO
OOOOO
U'IOOOO
OOOOO

.0]
.0]
.0]
.0]
.0]

227

(block-diagonal-matrix Xs [zero]) — (Array A)
Xs : (Listof (Array A))
zero : A =0

Returns an array with two-dimensional arrays Xs along the diagonal and zero everywhere

else.

Examples:

> (block-diagonal-matrix (list (matrix [[6 7] [8 9]11)

- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))
#<syntax:.../array/typed-array-struct.rkt:56:13

prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-

write>

(diagonal-matrix '(7 5 7))
(col-matrix [1 2 3])
(row-matrix [4 5 6])))

#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array
##i6 7
#[8 9
#[0 0
#[0 0
#[0 O
#[0 0
#[0 0
#[0 0
#[0 0
> (block-

QO O O O OO ~NOOo

O O O O O U1 oo o
O O O NO O o Oo

0

W NP OOOOOo
O O O O O O oo
O OO O O O oo

0

4

5

0]
0]
0]
0]
0]
0]
0]
0]
611)

iagonal-matrix (list (make-matrix 2 2 2.0+3.0i)

- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Float-

Complex))

(make-matrix 2 2 5.0+7.01i))
0.0+0.01i)

#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-

write>

#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array

#[#[2.0+3.01 2.0+3.0i 0.0+0.0i 0.0+0.0i]

228

Wikipedia:
Block-diagonal
matrices

http://en.wikipedia.org/wiki/Block_matrix#Block_diagonal_matrices
http://en.wikipedia.org/wiki/Block_matrix#Block_diagonal_matrices
http://en.wikipedia.org/wiki/Block_matrix#Block_diagonal_matrices

#[2.0+3.01i 2.0+3.0i 0.0+0.0i 0.0+0.0i]
#[0.040.0i 0.0+0.0i 5.0+7.0i 5.0+7.0i]
#[0.0+0.01i 0.0+0.0i 5.0+7.0i 5.0+7.0i]1])

Empty two-dimensional arrays are valid inputs. They contribute to the resulting array’s
shape.

Examples:

> (block-diagonal-matrix (list (make-array #(2 0) 1)
(matrix [[6 7] [8 911)))
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))
#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 0] #[0 0] #[6 71 #[8 9]11)
> (block-diagonal-matrix (list (matrix [[6 7] [8 9]])
(make-array #(2 0) 1)))
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))
#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[6 7] #[8 9] #[0 0] #[0 0]1)
> (block-diagonal-matrix (list (make-array #(0 2) 1)
(matrix [[6 7] [8 911)))
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))
#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 0 6 7] #[0 0 8 9]11)
> (block-diagonal-matrix (list (matrix [[6 7] [8 9]11)
(make-array #(0 2) 1)))
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))

229

#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[6 7 0 0] #[8 9 0 0]1)
> (block-diagonal-matrix (list (matrix [[6 7] [8 911)
(make-array #(2 0) 1)
(diagonal-matrix '(7 5 7))
(make-array #(0 2) 1)
(col-matrix [1 2 3])
(row-matrix [4 5 61)))
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Byte))
#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array

#[#[6 70000000 0 0]
#[89 00000000 0]
#[0 000000000 0]
#[0 000000000 0]
#[0 070000000 0]
#[0 00500000 0 0]
#[0 000700000 0]
#[0 000000100 0]
#[0 00000020 0 0]
#[0 000000300 0]
#[0 000000045 6]

> (block-diagonal-matrix (list (make-array #(2 0) 1)

(make-array #(0 3) 1)))

- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (U One
Zero)))

#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 0 0] #[0 0 01])
> (block-diagonal-matrix (list (make-array #(0 3) 1)

230

(make-array #(2 0) 1)))

- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (U One
Zero)))

#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 0 0] #[0 0 0]1)

If Xs is null, the result is an empty array with shape #(0 0).

Example:

> (block-diagonal-matrix '())
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Noth-
ing))

#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[1)

(vandermonde-matrix xs n) — (Matrix Number)
xs : (Listof Number)
n : Integer

Returns an mxn Vandermonde matrix, wherem = (length xs). Wikipedia:
Vandermonde
Examples: matrix

> (vandermonde-matrix '(1 2 3 4) 5)
- : (Array Real)
(array ##01 11 1 1] #[1 2 4 8 16] #[1 3 9 27 81] #[1 4 16 64
25611)
> (vandermonde-matrix '(5.2 3.4 2.0) 3)
- : (Array Flonum)
(array
#[#[1.0 5.2 27.040000000000003]
#[1.0 3.4 11.559999999999999]
#[1.0 2.0 4.01D)

231

http://en.wikipedia.org/wiki/Vandermonde_matrix
http://en.wikipedia.org/wiki/Vandermonde_matrix
http://en.wikipedia.org/wiki/Vandermonde_matrix

Using a Vandermonde matrix to find a Lagrange polynomial (the polynomial of least degree
that passes through a given set of points):

> (define (lagrange-polynomial xs ys)
(array->list (matrix-solve (vandermonde-
matrix xs (length xs))
(->col-matrix ys))))
> (define xs '(-3 0 3))
> (define ys '(13 3 6))
> (match-define (list ¢ b a) (lagrange-polynomial xs ys))
> (plot (list (function (1 (x) (+ ¢ (* b x) (*x a x x))) -4 4)
(points (map list xs ys))))
| | | | |
1 ' 1 ' 1

y axis

10—+

o+

4 2

X axis

o

Note that the above example is in untyped Racket.
This function is defined in terms of array-axis-expand.

(for/matrix: m n maybe-fill (for:-clause ...) maybe-type-ann
body ...+)

232

(for*/matrix: m n maybe-fill (for:-clause ...) maybe-type-ann
body ...+)

maybe-fill
| #:£i11 fill

maybe-type-ann

: body-type

m : Integer
n : Integer

fill : body-type

Like for/array: and for*/array:, but for matrices. The only material difference is that
the shape m n is required and must be positive.

(for/matrix m n maybe-fill (for-clause ...)
body ...+)

(for*/matrix m n maybe-fill (for-clause ...)
body ...+)

Untyped versions of the loop macros.

7.4 Conversion

(list->matrix m n xs) — (Matrix A)
m : Integer
n : Integer
xs : (Listof A)
(matrix->list M) — (Listof A)
M : (Matrix A)

Convert a flat list to an m x n matrix and back; both m and n must be positive, and (* m n)
= (length xs). The entries in xs are in row-major order.

Examples:

> (list->matrix 2 3 '(1 2 3 4 5 6))

- : (Array Positive-Byte)

(array #[#[1 2 3] #[4 5 6]])

> (matrix->list (matrix [[1 2] [3 4] [5 611))
- : (Listof Positive-Byte)

'(123456)

233

(vector->matrix m n xs) — (Matrix A)
m : Integer
n : Integer
xs : (Vectorof A)
(matrix->vector M) — (Vectorof A)
M : (Matrix A)

Like 1ist->matrix and matrix->1ist, but for vectors.
Examples:

> (vector->matrix 2 3 #(1 2 3 4 5 6))
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)
(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:.../array/typed-mutable-array.rkt:14:13
prop:custom-write>)
(mutable-array #[#[1 2 3] #[4 5 6]11)
> (matrix->vector (matrix [[1 2] [3 4] [5 6]11))
- : (Vectorof Integer)
"#(1 2 3 4 5 6)

(->row-matrix xs) — (Matrix A)

xs : (U (Listof A) (Vectorof A) (Array A))
(->col-matrix xs) — (Matrix A)

xs : (U (Listof A) (Vectorof A) (Array A))

Convert a list, vector, or array into a row or column matrix. If xs is an array, it must be
nonempty and not have more than one axis with length greater than 1.

Examples:

> (->row-matrix '(1 2 3))

- : (Array Positive-Byte)

(array #[#[1 2 31])

> (->row-matrix #(1 2 3))

- : (Array Positive-Byte)

(array #[#[1 2 31])

> (->row-matrix (col-matrix [1 2 3]))
- : (Array Positive-Byte)

234

(array #[#[1 2 311)
> (->col-matrix (array #[#[#[1]1] #[#[2]] #[#[3]1]11))
- : (Array Positive-Byte)
(array #[#[1] #[2] #[311)
> (->col-matrix (matrix [[1 0] [0 111))
array->col-matrix: contract violation
expected: nonempty Array with exactly one axis of length
>=]
given: (array #[#[1 0] #[0 1]])

(list*->matrix xss) — (Matrix A)
xss : (Listof (Listof A))
(matrix->list* M) — (Listof (Listof A))
M : (Matrix A)

Convert a list of lists of entries into a matrix and back.

Examples:

> (list*->matrix '((1 2 3) (4 5 6)))

- : (Array Positive-Byte)

(array #[#[1 2 3] #[4 5 6]])

> (matrix->list* (matrix [[1 2 3] [4 5 6]]))
- : (Listof (Listof Positive-Byte))
'((123) (45 6))

These functions are like 1ist*->array and array->1ist*, but use a fixed-depth (i.e. non-
recursive) list type, and do not require a predicate to distinguish entries from rows.

(vector*->matrix xss) — (Matrix A)
xss : (Vectorof (Vectorof A))
(matrix->vectorx* M) — (Vectorof (Vectorof A))
M : (Matrix A)

Like 1ist*->matrix and matrix*->1ist, but for vectors.

Examples:

> ((inst vector*->matrix Integer) #(#(1 2 3) #(4 5 6)))
- : #(struct:Mutable-Array
(Indexes
Index
(Boxof Boolean)
(-> Void)
(-> Indexes Integer)

235

(-> Indexes Integer Void)
(Vectorof Integer))
#<syntax:.../array/typed-mutable-array.rkt:14:13
prop:custom-write>)
(mutable-array #[#[1 2 3] #[4 5 6]11)
> (matrix->vector* (matrix [[1 2 3] [4 5 6]]))
- : (Vectorof (Vectorof Integer))
'#(#(1 2 3) #(4 5 6))

As in the first example, Typed Racket often needs help inferring the type A.

7.5 Entrywise Operations and Arithmetic

(matrix+ M N ...) — (Matrix Number)
M : (Matrix Number)
N : (Matrix Number)

(matrix- M N ...) — (Matrix Number)
M : (Matrix Number)
N : (Matrix Number)

(matrix* M N ...) — (Matrix Number)
M : (Matrix Number)
N : (Matrix Number)

Matrix addition, subtraction and products respectively.
For matrix addition and subtraction all matrices must have the same shape.

For matrix product the number of columns of one matrix must equal the number of rows in
the following matrix.

Examples:

> (define A (matrix ([1 2]
[3 41)))
> (define B (matrix ([5 6]
[7 81)))
> (define C (matrix ([9 10 11]
[12 13 141)))
> (matrix+ A B)
(array #[#[6 8] #[10 12]]1)
> (matrix- A B)
(array #[#[-4 -4] #[-4 -411)
> (matrix* A C)
(array #[#[33 36 39] #[75 82 89]])

236

(matrix-expt M n) — (Matrix Number)
M : (Matrix Number)
n : Integer

Computes (matrix* M ...) with n arguments, but more efficiently. M must be a square-
matrix? and n must be nonnegative.

Examples:

> (matrix* (matrix-expt (matrix [[1 1] [1 0]1) 100)
(col-matrix [0 1]))

(array #[#[354224848179261915075] #[218922995834555169026]11])

> (->col-matrix (list (fibomnacci 100) (fibonacci 99)))

(array #[#[354224848179261915075] #[218922995834555169026]])

(matrix-scale M z) — (Matrix Number)
M : (Matrix Number)
z . Number

Computes the matrix zM, a matrix of the same shape as M where each entry in M is multiplied
with z.

Example:

> (matrix-scale (matrix [[1 2] [3 4]1]) 2)
(array #[#[2 4] #[6 811)

(matrix-kronecker M N ...) — (Matrix Number)
M : (Matrix Number)
N : (Matrix Number)

Computes the Kronecker product. Wikipedia:
Kronecker product

Example:

> (matrix-kronecker (matrix [[1 2] [3 4] [5 6]11)
(matrix [[7 8] [9 1011))

(mutable-array
#[#[7 8 14 16]

#[9 10 18 20]

#[21 24 28 32]

#[27 30 36 40]

#[35 40 42 48]

#[45 50 54 6011)

237

https://en.wikipedia.org/wiki/Kronecker_product

Added in version 1.2 of package math-1ib.

(matrix-map f M) — (Matrix R)
f: (A ->R)
M : (Matrix A)
(matrix-map £ MO M1 N ...) — (Matrix R)
f: (ABTs ... ->R)
MO : (Matrix A)
M1 : (Matrix B)
N : (Matrix Ts)

Like array-map, but requires at least one matrix argument and never broadcasts.
Examples:

> (matrix-map sqr (matrix [[1 2] [3 4]1))

(array #[#[1 4] #[9 16]11)

> (matrix-map + (matrix [[1 2] [3 411)
(matrix [[5 6] [7 811))

(array #[#[6 8] #[10 1211)

(matrix-sum Ms) — (Matrix Number)
Ms : (Listof (Matrix Number))

Like (apply matrix+ Ms), but raises a runtime error when Ms is empty.

(matrix= MO M1 N ...) — Boolean
MO : (Matrix Number)
M1 : (Matrix Number)
N : (Matrix Number)

Returns #t when its arguments are the same size and are equal entrywise.

See matrix-relative-error and matrix-absolute-error for equality testing that is
tolerant to floating-point error.

7.6 Polymorphic Operations

(matrix-ref M i j) — A
M : (Matrix A)
i : Integer
Jj : Integer

238

Returns the entry on row i and column j.

Examples:

> (define M (matrix ([1 2 3] [4 5 6])))
> (matrix-ref M 0 2)
3
> (matrix-ref M 1 2)
6
(matrix-row M i) — (Matrix A)
M : (Matrix A)
i : Integer
(matrix-col M j) — (Matrix A)

M : (Matrix A)
Jj : Integer

Returns the ith row or jth column as a matrix.

Examples:

> (define M (matrix ([1 2 3] [4 5 6])))
> (matrix-row M 1)

(array #[#[4 5 6]1])

> (matrix-col M 0)

(array #[#[1] #[4]11)

(submatrix M is js) — (Array A)
M : (Matrix A)
is : (U Slice (Sequenceof Integer))
js : (U Slice (Sequenceof Integer))

Returns a submatrix or subarray of M, where is and js specify respectively the rows and
columns to keep. Like array-slice-ref, but constrained so the result has exactly two
axes.

Examples:

> (submatrix (identity-matrix 5) (:: 1 #f 2) (::))
- : #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (U One
Zero)))

#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>

239

#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[0 1 0 0 0] #[0 0 0 1 0]11)
> (submatrix (identity-matrix 5) '() '(1 2 4))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes (U One
Zero)))

#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[1)

Note that submatrix may return an empty array, which is not a matrix.

(matrix-diagonal M) — (Array A)
M : (Matrix A)

Returns array of the entries on the diagonal of M.
Example:

> (matrix-diagonal
(matrix ([1 2 3] [4 5 6] [7 8 9])))
(array #[1 5 91)

(matrix-upper-triangle M [zero]) — (Matrix A)
M : (Matrix A)
zero : A =0

(matrix-lower-triangle M [zero]) — (Matrix A)
M : (Matrix A)
zero : A =0

The function matrix-upper-triangle returns an upper triangular matrix (entries below
the diagonal have the value zero) with entries from the given matrix. Likewise the function
matrix-lower-triangle returns a lower triangular matrix

Examples:
> (define M (array+ (array 1) (axis-index-array #(5 7) 1)))

> M
- @ #(struct:Array

240

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes
Positive-Fixnum))

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)

(array

#[#[1 23 45 6 7]
#[1 23 456 7]
#[1 23 456 7]
#[1 23 456 7]

#[1 23456 7]
> (matrix-upper-triangle M)
- : (Array Nonnegative-Fixnum)

(array

#[#[1 2 3456 7]
#[0 23 456 7]
#[0 0 3456 7]
#[0 00456 7]

#[0 0005 6 7]11)
> (matrix-lower-triangle M)
- : (Array Nonnegative-Fixnum)

(array

#[#[1 0 0 0 0 0 0]
#[1 200 0 0 0]
#[1 23 00 0 0]
#[1 23 4 0 0 0]

#[1 23 450 01D
> (matrix-lower-triangle (array->flarray M) 0.0)
- : (Array Flonum)
(array
##[1.
#[1.
#[1.
#[1.
#[1.

O O O O O
N NDNDNO
oo ooo
W w w oo
oo ooo
b O O O
coooo
OO O O O
ocoooo
O O O O O
oo ooo
O O O O O
g

D

(matrix-rows M) — (Listof (Matrix A))
M : (Matrix A)

(matrix-cols M) — (Listof (Matrix A))
M : (Matrix A)

241

The functions respectively returns a list of the rows or columns of the matrix.
Examples:

> (define M (matrix ([1 2 3] [4 5 61)))

> (matrix-rows M)

(list (array #[#[1 2 3]]1) (array #[#[4 5 61]1))

> (matrix-cols M)

(list (array #[#[1] #[4]]) (array #[#[2] #[5]]) (array #[#[3]
#[611))

(matrix-augment Ms) — (Matrix A)
Ms : (Listof (Matrix A))

(matrix-stack Ms) — (Matrix A)
Ms : (Listof (Matrix A))

The function matrix-augment returns a matrix whose columns are the columns of the
matrices in Ms. The matrices in list must have the same number of rows.

The function matrix-stack returns a matrix whose rows are the rows of the matrices in
Ms. The matrices in list must have the same number of columns.

Examples:

(define MO (matrix ([1 1] [1 11)))

(define M1 (matrix ([2 2] [2 21)))

(define M2 (matrix ([3 3] [3 31)))

(matrix-augment (list MO M1 M2))

(array #[#[1 1 2 2 3 3] #[1 1 2 2 3 3]])

> (matrix-stack (list MO M1 M2))

(array #[#[1 1] #[1 1] #[2 2] #[2 2] #[3 3] #[3 311)

vV V V V

(matrix-set-col M idx new-col) — (Matrix A)
M : (Matrix A)
idx : Integer
new-col : (Matrix A)

(matrix-set-row M idx new-row) — (Matrix A)
M : (Matrix A)
idx : Integer
new-row : (Matrix A)

The function matrix-set-col returns a matrix whose idxth column is new-col. The
function matrix-set-row returns a matrix whose idxth row is new-row.

Examples:

242

> (define mat (matrix [[1 2 3]
[4 5 6]
[7 8 9110
> (define new-col (col-matrix [-1 -2 -3]))
> (define new-row (row-matrix [-1 -2 -3]))
> (matrix-set-col mat O new-col)
(array #[#[-1 2 3] #[-2 5 6] #[-3 8 911)
> (matrix-set-row mat O new-row)
(array #[#[-1 -2 -3] #[4 5 6] #[7 8 911)

(matrix-map-rows f M) — (Matrix B)
f : ((Matrix A) -> (Matrix B))
M : (Matrix A)
(matrix-map-rows f M fail) — (U F (Matrix B))
f : ((Matrix A) -> (U #f (Matrix B)))
M : (Matrix A)
fail : (-> F)

The two-argument case applies the function f to each row of M. If the rows are called r0,
r1i, ..., the result matrix has the rows (f r0), (f ril),....

Examples:

> (define M (matrix ([1 2 3] [4 56 6] [7 8 9] [10 11 12])))
> (define (double-row r) (matrix-scale r 2))

> (matrix-map-rows double-row M)

(array #[#[2 4 6] #[8 10 12] #[14 16 18] #[20 22 24]])

In the three argument case, if £ returns #£, the result of (fail) is returned:

> (define Z (make-matrix 4 4 0))

> Z

- : (Array Zero)

(array #[#[0 0 0 0] #[0 0 0 0] #[0 0 O O] #[0 O O 0]1)

> (matrix-map-rows (d: ([r : (Matrix Real)])

(matrix-normalize r 2 (4 () #£)))

Z
(4 () 'FAILURE))

- : (U 'FAILURE (Array Real))

'FAILURE

243

(matrix-map-cols f M) — (Matrix B)
f : ((Matrix A) -> (Matrix B))
M : (Matrix A)
(matrix-map-cols f M fail) — (U F (Matrix B))
f : ((Matrix A) -> (U #f (Matrix B)))
M : (Matrix A)
fail : (-> F)

Like matrix-map-rows, but maps £ over columns.

7.7 Basic Operations

(matrix-conjugate M) — (Matrix Number)
M : (Matrix Number)

Wikipedia:

Returns a matrix where each entry of the given matrix is conjugated.
Conjugate

Example:
> (matrix-conjugate (matrix ([1 O0+1i] [-1 2+1i])))

(array #[#[1 0-1i] #[-1 2-1i]1])

(matrix-transpose M) — (Matrix A)
M : (Matrix A)

(matrix-hermitian M) — (Matrix Number)
M : (Matrix Number)

Returns the transpose or the hermitian of the matrix. The hermitian of a matrix is the Wikipedia:

conjugate of the transposed matrix. For a real matrix these operations return the the same [Iranspose,
Hermitian

result.

Examples:

> (matrix-transpose (matrix ([1 1] [2 2] [3 31)))

(array #[#[1 2 3] #[1 2 3]11)
> (matrix-hermitian (matrix ([1 O0+1i] [2 0+2i] [3 0+3i])))

(array #[#[1 2 3] #[0-1i 0-2i 0-3il])

(matrix-trace M) — Number
M : (Matrix Number)

Returns the trace of the square matrix. The trace of matrix is the the sum of the diagonal Wikipedia: Trace

entries.

Example:

244

https://en.wikipedia.org/wiki/Complex_conjugate
http://en.wikipedia.org/wiki/Transpose
http://en.wikipedia.org/wiki/Hermitian_matrix
http://en.wikipedia.org/wiki/Trace_(linear_algebra)

> (matrix-trace (matrix ([1 2] [3 4])))
5

7.8 Inner Product Space Operations

The following functions treat matrices as vectors in an inner product space. It often makes
most sense to use these vector-space functions only for row matrices and column matrices,
which are essentially vectors as we normally think of them. There are exceptions, however,
such as the fact that the Frobenius or Euclidean norm (implemented by matrix-2norm) can
be used to measure error between matrices in a way that meets certain reasonable criteria
(specifically, it is submultiplicative).

Seel§7.12 “Operator Norms and Comparing Matrices”|for similar functions (e.g. norms and
angles) defined by considering matrices as operators between inner product spaces consisting
of column matrices.

(matrix-1norm M) — Nonnegative-Real
M : (Matrix Number)

(matrix-2norm M) — Nonnegative-Real
M : (Matrix Number)

(matrix-inf-norm M) — Nonnegative-Real
M : (Matrix Number)

(matrix-norm M [p]) — Nonnegative-Real
M : (Matrix Number)
p : Real = 2

Respectively compute the Lj norm, Ly norm, Lo, and Ly norm.

The L{ norm is also known under the names Manhattan or taxicab norm. The L{ norm of a
matrix is the sum of magnitudes of the entries in the matrix.

The L, norm is also known under the names Euclidean or Frobenius norm. The L, norm of
a matrix is the square root of the sum of squares of magnitudes of the entries in the matrix.

The Lo norm is also known as the maximum or infinity norm. The Ly, norm computes the
maximum magnitude of the entries in the matrix.

For p >= 1, matrix-norm computes the L, norm: the pth root of the sum of all entry
magnitudes to the pth power.

Examples:
> (matrix-1norm (col-matrix [1 2]))
3
> (matrix-2norm (col-matrix [1 2]))

245

Wikipedia: Norm

http://en.wikipedia.org/wiki/Norm_(mathematics)

2.23606797749979
> (matrix-inf-norm (col-matrix [1 2]))

2

> (matrix-norm (col-matrix [1 2]) 3)
2.080083823051904

> (matrix-norm (col-matrix [1 2]) +inf.0)
2

(matrix-dot M) — Nonnegative-Real
M : (Matrix Number)

(matrix-dot M N) — Number
M : (Matrix Number)
N : (Matrix Number)

The call (matrix-dot M N) computes the Frobenius inner product of the two matrices
with the same shape. In other words the sum of (* a (conjugate b)) is computed where
a runs over the entries in M and b runs over the corresponding entries in N.

The call (matrix-dot M) computes (matrix-dot M M) efficiently.
Examples:

> (matrix-dot (col-matrix [1 2]) (col-matrix [3 4]))
11

> (+ (¢ 1.3) (x 2 4))

11

(matrix-cos-angle M N) — Number
M : (Matrix Number)
N : (Matrix Number)

Returns the cosine of the angle between two matrices w.r.t. the inner produce space induced
by the Frobenius inner product. That is it returns

(/ (matrix-dot M N) (* (matrix-2norm M) (matrix-2norm N)))

Examples:

(define M (col-matrix [1 0]))
(define N (col-matrix [0 1]))
(matrix-cos-angle M N)

(matrix-cos-angle M (matrix+ M N))

>
>
>
0
>
0.7071067811865475

246

(matrix-angle M N) — Number
M : (Matrix Number)
N : (Matrix Number)

Equivalent to (acos (matrix-cos-angle M N)).
Examples:

(require (only-in math/base radians->degrees))
(define M (col-matrix [1 01))

(define N (col-matrix [0 11))

(radians->degrees (matrix-angle M N))

90.0

> (radians->degrees (matrix-angle M (matrix+ M N)))
45.00000000000001

vV V V V

(matrix-normalize M [p fail]) — (U F (Matrix Number))
M : (Matrix Number)
p : Real = 2
fail : (-> F) = (1 OO (error ...))

Normalizes M with respect to the L, norm.
Examples:

> (matrix-normalize (col-matrix [1 1]))

- : (Array Real)

(array #[#[0.7071067811865475] #[0.7071067811865475]])
> (matrix-normalize (col-matrix [1 1]) 1)

- : (Array Real)

(array #[#[1/2] #[1/2]11)

> (matrix-normalize (col-matrix [1 1]) +inf.0)

- : (Array Real)

(array #[#[11 #[111)

The result of applying the failure thunk fail is returned if M’s norm is zero.

(matrix-normalize-rows M [p fail]) — (Matrix Number)
M : (Matrix Number)
p : Real = 2
fail : (-> F) = (1 O (error ...))
(matrix-normalize-cols M [p fail]) — (Matrix Number)
M : (Matrix Number)
p : Real = 2
fail : (-> F) = (1 O (error ...))

247

As matrix-normalize but each row or column is normalized separately. The result is a
matrix with unit vectors as rows or columns.

Examples:

> (matrix-normalize-rows (matrix [[1 2] [2 4]1]))

- : (Array Real)

(array

#[#[0.4472135954999579 0.8944271909999159]
#[0.4472135954999579 0.8944271909999159]])

> (matrix-normalize-cols (matrix [[1 2] [2 4]1]))

- : (Array Real)

(array

#[#[0.4472135954999579 0.4472135954999579]
#[0.8944271909999159 0.8944271909999159]1])

The result of applying the failure thunk fail is returned if the norm of any row or column
in M is zero.

(matrix-rows-orthogonal? M [eps]) — Boolean
M : (Matrix Number)
eps : Real = (* 10 epsilon.0)
(matrix-cols-orthogonal? M [eps]) — Boolean
M : (Matrix Number)
eps : Real = (* 10 epsilon.0)

Returns #t if the rows or columns of M are very close of being orthogonal (by default a few
epsilons).

Examples:

> (matrix-rows-orthogonal? (matrix [[1 1] [-1 1]1))
#t
> (matrix-cols-orthogonal? (matrix [[1 1] [-1 1]11))
#t

7.9 Solving Systems of Equations

(matrix-solve M B [fail]) — (U F (Matrix Number))
M : (Matrix Number)
B : (Matrix Number)
fail : (-> F) = (1 O (error ...))

Returns the matrix X for which (matrix* M X) is B. M and B must have the same number
of rows.

248

It is typical for B (and thus X) to be a column matrix, but not required. If B is not a column
matrix, matrix-solve solves for all the columns in B simultaneously.

Examples:

(define M (matrix [[7 5] [3 -2]11))
(define BO (col-matrix [3 22]))
(define B1 (col-matrix [19 4]))
(matrix-solve M BO)
(Array Real)
(array #[#[4] #[-511)
> (matrix* M (col-matrix [4 -5]))
- : (Array Integer)
(array #[#[3] #[22]11)
> (matrix-solve M B1)
- : (Array Real)
(array #[#[2] #[111)
> (matrix-cols (matrix-solve M (matrix-augment (list BO B1))))
- : (Listof (Array Real))
(list (array #[#[4] #[-511) (array #[#[2] #[111))

vV V V V

matrix-solve does not solve overconstrained or underconstrained systems, meaning that
M must be invertible. If M is not invertible, the result of applying the failure thunk fail is
returned.

matrix-solve is implemented using matrix-gauss-elim to preserve exactness in its out-
put, with partial pivoting for greater numerical stability when M is not exact.

See vandermonde-matrix for an example that uses matrix-solve to compute Legendre
polynomials.

(matrix-inverse M [fail]) — (U F (Matrix Number))
M : (Matrix Number)
fail : (->F) = (1 (O (error ...))

Returns the inverse of M if it exists; otherwise returns the result of applying the failure thunk [Wikipedia:
fail. Invertible Matrix

Examples:

> (matrix-inverse (identity-matrix 3))

- : (Array Real)

(array #[#[1 0 0] #[0 1 0] #[0 0 111)

> (matrix-inverse (matrix [[7 5] [3 -2]11))
- : (Array Real)

(array #[#[2/29 5/29] #[3/29 -7/291])

249

http://en.wikipedia.org/wiki/Invertible_matrix
http://en.wikipedia.org/wiki/Invertible_matrix

> (matrix-inverse (matrix [[1 2] [10 20]1))
matrix-inverse: contract violation

expected: matrix-invertible?

given: (array #[#[1 2] #[10 20]])
> (matrix-inverse (matrix [[1 2] [10 20]1]) (1 O #£))
- : (U (Array Real) False)
#f

(matrix-invertible? M) — Boolean
M : (Matrix Number)

Returns #t when M is a square-matrix? and (matrix-determinant M) is nonzero.

(matrix-determinant M) — Number
M : (Matrix Number)

Returns the determinant of M, which must be a square-matrix?. Wikipedia :
Determinant

Examples:

> (matrix-determinant (diagonal-matrix '(1 2 3 4)))
- : Real

24

> (x 123 4)

- : Integer [more precisely: Positive-Integer]

24

> (matrix-determinant (matrix [[1 2] [10 20]1))
- : Real

0

> (matrix-determinant (col-matrix [1 2]))
square-matrix-size: contract violation
expected: square-matrix?

given: (array #[#[1] #[2]])

7.10 Row-Based Algorithms

(matrix-gauss-elim M
[jordan?
unitize-pivot?
pivoting])
— (Values (Matrix Number) (Listof Index))
M : (Matrix Number)
jordan? : Any = #f
unitize-pivot? : Any = #f
pivoting : (U 'first 'partial) = 'partial

250

http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Determinant

Implements Gaussian elimination or Gauss-Jordan elimination. Wikipedia:
Gaussian

If jordan? is true, row operations are done both above and below the pivot. If unitize- €limination,
pivot? is true, the pivot’s row is scaled so that the pivot value is 1. When both are true, Sf;?;;ggﬂdn
the algorithm is called Gauss-Jordan elimination, and the result matrix is in reduced row

echelon form.

If pivoting is 'first, the first nonzero entry in the current column is used as the pivot.
If pivoting is 'partial, the largest-magnitude nonzero entry is used, which improves
numerical stability on average when M contains inexact entries.

The first return value is the result of Gaussian elimination.
The second return value is a list of indexes of columns that did not have a nonzero pivot.

See matrix-row-echelon for examples.

(matrix-row-echelon M
[jordan?
unitize-pivot?
pivoting]) — (Matrix Number)
M : (Matrix Number)
jordan? : Any = #f
unitize-pivot? : Any = #f
pivoting : (U 'first 'partial) = 'partial

Like matrix-gauss-elim, but returns only the result of Gaussian elimination. Wikipedia: Row
echelon form

Examples:

> (define M (matrix [[2 1 -1] [-3 -1 2] [-2 1 2]]1))
> (matrix-row-echelon M)

- : (Array Real)

(mutable-array #[#[-3 -1 2] #[0 5/3 2/3] #[0 0 1/5]1)
> (matrix-row-echelon M #t)

- : (Array Real)

(mutable-array #[#[-3 0 0] #[0 5/3 0] #[0 0 1/5]1)

> (matrix-identity? (matrix-row-echelon M #t #t))

- : Boolean

#t

The last example shows that M is invertible.

Using matrix-row-echelon to solve a system of linear equations (without checking for
failure):

> (define B (col-matrix [8 -11 -3]1))

251

http://en.wikipedia.org/wiki/Gaussian_elimination
http://en.wikipedia.org/wiki/Gaussian_elimination
http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination
http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination
http://en.wikipedia.org/wiki/Row_echelon_form
http://en.wikipedia.org/wiki/Row_echelon_form

> (define MB (matrix-augment (list M B)))

> (matrix-col (matrix-row-echelon MB #t #t) 3)
- : (Array Real)

(array #[#[2] #[3] #[-111)

> (matrix-solve M B)

- : (Array Real)

(array #[#[2] #[3] #[-111)

Using matrix-row-echelon to invert a matrix (also without checking for failure):

> (define MI (matrix-augment (list M (identity-matrix 3))))
> (submatrix (matrix-row-echelon MI #t #t) (::) (:: 3 #f))
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Real))
#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[4 3 -1] #[-2 -2 1] #[5 4 -111)
> (matrix-inverse M)
- : (Array Real)
(array #[#[4 3 -1] #[-2 -2 1] #[5 4 -111)

(matrix-lu M [faill])

— (Values (U F (Matrix Number)) (Matrix Number))
M : (Matrix Number)
fail : (-> F) = (1 O (error ...))

Returns the LU decomposition of ¥ (which must be a square-matrix?) if one exists. An
LU decomposition exists if M can be put in row-echelon form without swapping rows.

Because matrix-1lu returns a unit lower-triangular matrix (i.e. a lower-triangular matrix
with only ones on the diagonal), the decomposition is unique if it exists.

Examples:

> (define-values (L U)

(matrix-lu (matrix [[4 3] [6 3]1)))
> (values L U)
- : (values (Array Real) (Array Real))
(mutable-array #[#[1 0] #[3/2 111)
(mutable-array #[#[4 3] #[0 -3/2]1]1)

252

Wikipedia: LU
decomposition

http://en.wikipedia.org/wiki/LU_decomposition
http://en.wikipedia.org/wiki/LU_decomposition

> (matrix* L U)
- : (Array Real)
(array #[#[4 3] #[6 3]11)

If M does not have an LU decomposition, the first result is the result of applying the failure
thunk fail, and the second result is the original argument M:

> (matrix-lu (matrix [[0 1] [1 111))
matrix-lu: contract violation

expected: LU-decomposable matrix

given: (array #[#[0 1] #[1 1]])
> (matrix-lu (matrix [[0 1] [1 111) (1 () #£))
- : (values (U (Array Real) False) (Array Real))
#f
(array #[#[0 1] #[1 1]11)

7.11 Orthogonal Algorithms

(matrix-gram-schmidt M [normalize? start-col]) — (Array Number)
M : (Matrix Number)
normalize? : Any = #f
start-col : Integer = 0

Returns an array whose columns are orthogonal and span the same subspace as M’s columns.
The number of columns in the result is the rank of M. If normalize? is true, the columns
are also normalized.

Examples:

> (define M
(matrix [[12 -51 4]
[6 167 -68]
(-4 24 -4111))
> (matrix-gram-schmidt M)
- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Real))
#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[12 -69 -58/5] #[6 158 6/5] #[-4 30 -3311)
> (matrix-gram-schmidt M #t)

253

Wikipedia:
Gram-Schmidt
process

http://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
http://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
http://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process

- @ #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Real))
#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[6/7 -69/175 -58/175] #[3/7 158/175 6/175] #[-2/7 6/35
-33/35611)
> (matrix-cols-orthogonal? (matrix-gram-schmidt M))
- : Boolean
#t
> (matrix-orthonormal? (matrix-gram-schmidt M #t))
- : Boolean
#t

Examples with rank-deficient matrices:

> (matrix-gram-schmidt (matrix [[1
[-2
[3
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Real))

#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[1 5/7] #[-2 67/71 #[3 43/71])
> (matrix-gram-schmidt (make-matrix 3 3 0))
- @ #(struct:Array

(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Real))

#<syntax:.../array/typed-array-struct.rkt:56:13
prop:equal+hash>

#<syntax:.../array/typed-array-struct.rkt:55:13 prop:custom-
write>

#<syntax:.../array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array #[#[]1 #[1 #0111

When start-col is positive, the Gram-Schmidt process is begun on column start-col

(but still using the previous columns to orthogonalize the remaining columns). This fea-

ture is generally not directly useful, but is used in the implementation of matrix-basis-

extension. * On the round-off
error analysis of
the Gram-Schmidt

254 algorithm with re-

orthogonalization.,
Luc Giraud, Julien
Langou and
Miroslav
Rozloznik. 2002.
(PDF)

http://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf

While Gram-Schmidt with inexact matrices is known to be unstable, using it twice tends to
remove instabilities:*

> (define M (matrix [[0.7 0.70711]
[0.70001 0.7071111))

> (matrix-orthonormal?

(matrix-gram-schmidt M #t))
- : Boolean
#f
> (matrix-orthonormal?

(matrix-gram-schmidt (matrix-gram-schmidt M) #t))
- : Boolean
#t

(matrix-basis-extension M) — (Array Number)
M : (Matrix Number)

Returns additional orthogonal columns which, if augmented with M, would result in an or-
thogonal matrix of full rank. If M’s columns are normalized, the result’s columns are nor-
malized.

(matrix-qr M) — (Values (Matrix Number) (Matrix Number))
M : (Matrix Number)

(matrix-qr M full?) — (Values (Matrix Number) (Matrix Number))
M : (Matrix Number)
full? : Any

Computes a QR-decomposition of the matrix M. The values returned are the matrices Q and
R. If full?is #£f, then a reduced decomposition is returned, otherwise a full decomposition
is returned.

The (full) decomposition of a square matrix consists of two matrices: a orthogonal matrix Q
and an upper triangular matrix R, such that QR = M.

For tall non-square matrices R, the triangular part of the full decomposition, contains zeros
below the diagonal. The reduced decomposition leaves the zeros out. See the Wikipedia
entry on QR decomposition for more details.

Examples:

> (define M
(matrix [[12 -51 4]
[6 167 -68]
[-4 24 -4111))
> (define-values (Q R) (matrix-qr M))
> (values Q R)
- : (values (Array Real) (Array Real))

255

Wikipedia: QR
decomposition

An orthonormal
matrix has columns
which are
orthoginal, unit
vectors.

http://en.wikipedia.org/wiki/QR_decomposition
http://en.wikipedia.org/wiki/QR_decomposition
http://en.wikipedia.org/wiki/QR_decomposition

(array #[#[6/7 -69/175 -58/175] #[3/7 1568/175 6/175] #[-2/7 6/35
-33/3511)

(array #[#[14 21 -14] #[0 175 -70] #[0 0 3511)

> (matrix= M (matrix* Q R))

- : Boolean

#t

The difference between full and reduced decompositions:

> (define M
(matrix [[12 -51]
[6 167]
[-4 2411))

> (define-values (Q1 R1) (matrix-qr M #f))

> (define-values (Q2 R2) (matrix-qr M #t))

> (values Q1 R1)

- @ (values (Array Real) (Array Real))

(array #[#[6/7 -69/175] #[3/7 158/175] #[-2/7 6/351])
(array #[#[14 21] #[0 175]11)

> (values Q2 R2)

- : (values (Array Real) (Array Real))

(array #[#[6/7 -69/175 58/175] #[3/7 158/175 -6/175] #[-2/7 6/35
33/3511)

(array #[#[14 21] #[0 175] #[0 011)

> (matrix= M (matrix* Q1 R1))

- : Boolean

#t

> (matrix= M (matrix* Q2 R2))

- : Boolean

#t

The decomposition ¥ = QR is useful for solving the equation Mx=v. Since the inverse of Q
is simply the transpose of Q, Mx=v <=> QRx=v <=> Rx = Q°T v. And since R is upper
triangular, the system can be solved by back substitution.

The algorithm used is Gram-Schmidt with reorthogonalization.

7.12 Operator Norms and Comparing Matrices

[§7.8 “Inner Product Space Operations”’|describes functions that deal with matrices as vectors
in an inner product space. This section describes functions that deal with matrices as linear
operators, or as functions from column matrices to column matrices.

In this setting, a norm is the largest relative change in magnitude an operator (i.e. matrix)

256

Wikipedia: Induced
norm

http://en.wikipedia.org/wiki/Matrix_norm#Induced_norm
http://en.wikipedia.org/wiki/Matrix_norm#Induced_norm

can effect on a column matrix, where “magnitude” is defined by a vector norm. (See the
Wikipedia article linked to in the margin for a formal definition.) Matrix norms that are
defined in terms of a vector norm are called induced norms, or operator norms.

(matrix-op-1norm M) — Nonnegative-Real
M : (Matrix Number)

The operator norm induced by the vector norm matrix-1norm.

When M is a column matrix, (matrix-op-1norm M) isequivalentto (matrix-1inorm M).

(matrix-op-2norm M) — Nonnegative-Real
M : (Matrix Number)

The operator norm induced by the vector norm matrix-2norm.

This function is currently undefined because a required algorithm (singular value decompo-
sition or eigendecomposition) is not yet implemented in math/matrix.

When M is a column matrix, (matrix-op-2norm M) is equivalent to (matrix-2norm M).

(matrix-op-inf-norm M) — Nonnegative-Real
M : (Matrix Number)

The operator norm induced by the vector norm matrix-inf-norm.

When M is a column matrix, (matrix-op-inf-norm M) is equivalent to (matrix-inf-
norm M).

(matrix-basis-cos-angle MO M1) — Number
MO : (Matrix Number)
M1 : (Matrix Number)

Returns the cosine of the angle between the two subspaces spanned by MO and M1.

This function is currently undefined because a required algorithm (singular value decompo-
sition or eigendecomposition) is not yet implemented in math/matrix.

When MO and M1 are column matrices, (matrix-basis-cos-angle MO M1) is equivalent
to (matrix-cos-angle MO M1).

(matrix-basis-angle MO M1) — Number
MO : (Matrix Number)
M1 : (Matrix Number)

Equivalent to (acos (matrix-basis-cos-angle MO M1)).

257

The function is currently undefined because matrix-basis-cos-angle is currently unde-
fined.

(matrix-error-norm) — ((Matrix Number) -> Nonnegative-Real)
(matrix-error-norm norm) — void?
norm : ((Matrix Number) -> Nonnegative-Real)

The norm used by matrix-relative-error and matrix-absolute-error. The default
value is matrix-op-inf-norm.

Besides being a true norm, norm should also be submultiplicative:

(norm (matrix* MO M1)) <= (* (norm MO) (morm M1))

This additional triangle-like inequality makes it possible to prove error bounds for formulas
that involve matrix multiplication.

All operator norms (matrix-op-1norm, matrix-op-2norm, matrix-op-inf-norm) are
submultiplicative by definition, as is the Frobenius norm (matrix-2norm).

(matrix-absolute-error M R [norm]) — Nonnegative-Real
M : (Matrix Number)
R : (Matrix Number)
norm : ((Matrix Number) -> Nonnegative-Real)
= (matrix-error-norm)

Basically equivalent to (norm (matrix- M R)), but handles non-rational flonums like
+inf .0 and +nan. O specially.

See absolute-error for the scalar version of this function.

(matrix-relative-error M R [norm]) — Nonnegative-Real
M : (Matrix Number)
R : (Matrix Number)
norm : ((Matrix Number) -> Nonnegative-Real)
= (matrix-error-norm)

Measures the error in M relative to the true matrix R, under the norm norm. Basically equiv-
alentto (/ (norm (matrix- M R)) (norm R)), but handles non-rational flonums like
+inf .0 and +nan. O specially, as well as the case (norm R) = O.

See relative-error for the scalar version of this function.

(matrix-zero? M [eps]) — Boolean
M : (Matrix Number)
eps : Real = (* 10 epsilon.0)

258

Returns #t when M is very close to a zero matrix (by default, within a few epsilons). Equiv-
alent to

(<= (matrix-absolute-error M (make-matrix m n 0)) eps)

where m n is the shape of M.

(matrix-identity? M [eps]) — Boolean
M : (Matrix Number)
eps : Real = (* 10 epsilon.0)

Returns #t when M is very close to the identity matrix (by default, within a few epsilons).
Equivalent to

(and (square-matrix? M)
(<= (matrix-relative-error M (identity-matrix (square-matrix-
size M)))
eps))

(matrix-orthonormal? M [eps]) — Boolean
M : (Matrix Number)
eps : Real = (* 10 epsilon.0)

Returns #t when M is very close to being orthonormal; that is, when (matrix* M
(matrix-hermitian M)) is very close to an identity matrix. Equivalent to

(matrix-identity? (matrix* M (matrix-hermitian M)) eps)

259

8 Statistics Functions

(require math/statistics) package: math-11ib

This module exports functions that compute statistics, meaning summary values for collec-
tions of samples, and functions for managing sequences of weighted or unweighted samples.

Most of the functions that compute statistics accept a sequence of nonnegative reals that
correspond one-to-one with sample values. These are used as weights; equivalently counts,
pseudocounts or unnormalized probabilities. While this makes it easy to work with weighted
samples, it introduces some subtleties in bias correction. In particular, central moments
must be computed without bias correction by default. See [§8.1 “Expected Values™| for a
discussion.

8.1 Expected Values

Functions documented in this section that compute higher central moments, such as vari-
ance, stddev and skewness, can optionally apply bias correction to their estimates. For
example, when variance is given the argument #:bias #t, it multiplies the result by (/
n (- n 1)), where n is the number of samples.

The meaning of “bias correction” becomes less clear with weighted samples, however. Of-
ten, the weights represent counts, so when moment-estimating functions receive #:bias
#t, they interpret it as “use the sum of ws for n.” In the following example, the sample 4 is
first counted twice and then given weight 2; therefore n = 5 in both cases:

> (variance '(1 2 3 4 4) #:bias #t)

- : Real [more precisely: Nonnegative-Real]
17/10

> (variance '(1 2 3 4) '(1 1 1 2) #:bias #t)
- : Real [more precisely: Nonnegative-Real]
17/10

However, sample weights often do not represent counts. For these cases, the #:bias key-
word can be followed by a real-valued pseudocount, which is used for n:

> (variance '(1 2 3 4) '(1/2 1/2 1/2 1) #:bias b5)
- : Real [more precisely: Nonnegative-Real]
17/10

Because the magnitude of the bias correction for weighted samples cannot be known without
user guidance, in all cases, the bias argument defaults to #f£.

(mean xs [ws]) — Real

260

https://pkgs.racket-lang.org/package/math-lib

xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f

When ws is #£ (the default), returns the sample mean of the values in xs. Otherwise, returns
the weighted sample mean of the values in xs with corresponding weights ws.

Examples:

\2

(mean '(1 2 3 4 5))
: Real

v o w |

(mean '(1 23 45) '(111110.0))
- : Real
4.285714285714286
> (define d (normal-dist))
> (mean (sample d 10000))
- : Real
-0.0026782521460904122
> (define arr (array-strict (build-array #(5 1000) (A1 (_) (sample d)))))
> (array-map mean (array->list-array arr 1))
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Real))
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:56:13
prop:equal+hash>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:55:13 prop:custom-
write>
#<syntax:build/docs/share/pkgs/math-
lib/math/private/array/typed-array-struct.rkt:54:13 prop:custom-
print-quotable>)
(array
#[-0.0007693170543251155
-0.025188865425186616
0.03255784068906223
-0.030400735780568094
0.0006213410261761649])

(variance xs [ws #:bias bias]) — Nonnegative-Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f

(stddev xs [ws #:bias bias]) — Nonnegative-Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f

261

(skewness xs [ws #:bias bias]) — Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f
(kurtosis xs [ws #:bias bias]) — Nonnegative-Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f

If ws is #f, these compute the sample variance, standard deviation, skewness and excess
kurtosis the samples in xs. If ws is not #£, they compute weighted variations of the same.

Examples:

\2

(stddev '(1 2 3 4 5))

: Real [more precisely: Nonnegative-Real]
.4142135623730951

(stddev '(1 23 45) '"(111110))

: Real [more precisely: Nonnegative-Reall
.2777531299998799

[VAR |

[EY

See[$8.1 “Expected Values™| for the meaning of the bias keyword argument.

(variance/mean m xs [ws #:bias bias]) — Nonnegative-Real
m : Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f
(stddev/mean m xs [ws #:bias bias]) — Nonnegative-Real
m : Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f
(skewness/mean m xs [ws #:bias bias]) — Real
m : Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f
(kurtosis/mean m xs [ws #:bias bias]) — Nonnegative-Real
m : Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f

Like variance, stddev, skewness and kurtosis, but computed using known mean m.

262

8.2 Running Expected Values

The statistics object allows computing the sample minimum, maximum, count, mean,
variance, skewness, and excess kurtosis of a sequence of samples in O(1) space.

To use it, start with empty-statistics, then use update-statistics to obtain a new
statistics object with updated values. Use statistics-min, statistics-mean, and simi-
lar functions to get the current estimates.

Example:

> (let* ([s empty-statistics]

[s (update-statistics s 1)]
[s (update-statistics s 2)]
[s (update-statistics s 3)]
[s (update-statistics s 4 2)])

(values (statistics-mean s)
(statistics-stddev s #:bias #t)))
- : (values Flonum Flonum) [more precisely: (Values Flonum
Nonnegative-Flonum)]
2.8
1.3038404810405297

(struct statistics (min max count))
min : Flonum
max : Flonum
count : Nonnegative-Flonum

Represents running statistics.

The min and max fields are the minimum and maximum value observed so far, and the count
field is the total weight of the samples (which is the number of samples if all samples are
unweighted). The remaining, hidden fields are used to compute moments, and their number
and meaning may change in future releases.

empty-statistics : statistics

The empty statistics object.
Examples:

> (statistics-min empty-statistics)
- : Flonum

+inf.0

> (statistics-max empty-statistics)

263

- : Flonum

-inf.0

> (statistics-range empty-statistics)

- : Flonum [more precisely: Nonnegative-Flonum]
+nan.0

> (statistics-count empty-statistics)

- : Flonum [more precisely: Nonnegative-Flonum]
0.0

> (statistics-mean empty-statistics)

- : Flonum

+nan.0

> (statistics-variance empty-statistics)

- : Flonum [more precisely: Nonnegative-Flonum]
+nan.0

> (statistics-skewness empty-statistics)

- : Flonum

+nan.0

> (statistics-kurtosis empty-statistics)

- : Flonum [more precisely: Nonnegative-Flonum]
+nan.0

(update-statistics s x [w]) — statistics
s : statistics
x : Real
w : Real = 1.0

Returns a new statistics object that includes x in the computed statistics. If w is given, x is
weighted by w in the moment computations.

(update-statistics* s xs [ws]) — statistics
s : statistics
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f

Like update-statistics, but includes all of xs, possibly weighted by corresponding ele-
ments in ws, in the returned statistics object.

Examples:

> (define s (update-statistics* empty-statistics '(1 2 3 4) '(1 1 1 2)))
> (statistics-mean s)

- : Flonum

2.8

> (statistics-stddev s #:bias #t)

- : Flonum [more precisely: Nonnegative-Flonum]

1.3038404810405297

264

This function uses O(1) space regardless of the length of xs.

(statistics-range s) — Nonnegative-Flonum
s : statistics
(statistics-mean s) — Flonum
s : statistics
(statistics-variance s [#:bias bias]) — Nonnegative-Flonum
s : statistics
bias : (U #t #f Real) = #f
(statistics-stddev s [#:bias bias]) — Nonnegative-Flonum
s : statistics
bias : (U #t #f Real) = #f
(statistics-skewness s [#:bias bias]) — Flonum
s : statistics
bias : (U #t #f Real) = #f
(statistics-kurtosis s [#:bias bias]) — Nonnegative-Flonum
s : statistics
bias : (U #t #f Real) = #f

Compute the range, mean, variance, standard deviation, skewness, and excess kurtosis of the
observations summarized in s.

See[§8.1 “Expected Values”| for the meaning of the bias keyword argument.

8.3 Correlation

(covariance xs ys [ws #:bias bias]) — Real
xs : (Sequenceof Real)
ys : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f
(correlation xs ys [ws #:bias bias]) — Real
xs : (Sequenceof Real)
ys : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f

Compute the sample covariance and correlation of xs and ys, optionally weighted by ws.

Examples:

> (define xs (sample (normal-dist) 10000))
> (define ys (map (4: ([x : Real]) (sample (normal-dist x))) xs))
> (correlation xs ys)

265

- : Real
0.7111334800898171

Removing the correlation using importance weights:

> (define ws (map (A: ([x : Real] [y : Reall)
(/ (pdf (normal-dist) y)
(pdf (normal-dist x) y)))
xs ys))
> (correlation xs ys (ann ws (Sequenceof Real)))
- : Real
0.005067103380516852

See[§8.1 “Expected Values”| for the meaning of the bias keyword argument.

(covariance/means mx my xs ys [ws #:bias bias]) — Real
mx : Real

my : Real

xs : (Sequenceof Real)

ys : (Sequenceof Real)

ws : (U #f (Sequenceof Real)) = #f

bias : (U #t #f Real) = #f
(correlation/means mx my xs ys [ws #:bias bias]) — Real

mx : Real

my : Real

xs : (Sequenceof Real)

ys : (Sequenceof Real)

ws : (U #f (Sequenceof Real)) = #f

bias : (U #t #f Real) = #f

Like covariance and correlation, but computed using known means mx and my.

8.4 Counting and Binning

(samples->hash xs) — (HashTable A Positive-Integer)
xs : (Sequenceof A)

(samples->hash xs ws) — (HashTable A Nonnegative-Real)
xs : (Sequenceof A)

ws : (U #f (Sequenceof Real))

Returns a hash table mapping each unique element in xs (under equal?) to its count, or, if
ws is not #£, to its total weight.

Examples:

266

> (samples->hash '(1 2 3 4 4))

- : (HashTable Integer Positive-Integer)
"#hash((1 . 1) (2 . 1) (3 . 1) (4 . 2))

> (samples->hash '(1 1 2 3 4) '(1/2 1/2 1 1 2))
- : (HashTable Integer Nonnegative-Real)
"#hash((1 . 1) (2 . 1) (3 . 1) (4 . 2))

(count-samples xs)

— (Values (Listof A) (Listof Positive-Integer))
xs : (Sequenceof A)

(count-samples xs ws)

— (Values (Listof A) (Listof Nonnegative-Real))
xs : (Sequenceof A)
ws : (U #f (Sequenceof Real))

Like samples->hash, but returns two lists. The elements in the returned (Listof A) are
in order of first appearance in xs.

Examples:

> (count-samples '(1 2 3 4 4))

- : (values (Listof Positive-Byte) (Listof Positive-Integer))
‘(123 4)

‘1112

> (count-samples '(1 1 2 3 4) '(1/2 1/2 1 1 2))

- : (values (Listof Positive-Byte) (Listof Nonnegative-Real))
‘(1234

‘(1112

(struct sample-bin (min max values weights))
min : B
max : B
values : (Listof A)
weights : (U #f (Listof Nonnegative-Real))

Represents a bin, or a group of samples within an interval in a total order. The values and

bounds have a different type to allow bin-samples/key to group elements based on a
function of their values.

(bin-samples bounds 1te? xs ws) — (Listof (sample-bin A A))
bounds : (Sequenceof A)
1te? : (A A -> Any)
xs : (Sequenceof A)
ws : (U #f (Sequenceof Real))

267

Similar to (sort xs I1te?), but additionally groups samples into bins. The bins’ bounds
are sorted before binning xs.

Ifn = (length bounds), then bin-samples returns at least (- n 1) bins, one for each
pair of adjacent (sorted) bounds. If some values in xs are less than the smallest bound, they
are grouped into a single bin in front. If some are greater than the largest bound, they are
grouped into a single bin at the end.

Examples:

> (bin-samples '() <= '(0 1 2 3 45 6))
- : (Listof
#(struct:sample-bin
(Byte Byte (Listof Byte) (U (Listof Nonnegative-Real)
False))))
(list (sample-bin 0 6 '(0 1 2 3 4 5 6) #f))
> (bin-samples '(3) <= '(0 1 2 3 4 5 6))
- ¢ (Listof
#(struct:sample-bin
(Byte Byte (Listof Byte) (U (Listof Nonnegative-Real)
False))))
(list (sample-bin 0 3 '(0 1 2 3) #f) (sample-bin 3 6 '(4 5 6) #f))
> (bin-samples '(2 4) <= '(0 1 2 3 4 5 6))
- : (Listof
#(struct:sample-bin
(Byte Byte (Listof Byte) (U (Listof Nonnegative-Real)
False))))
(1ist
(sample-bin 0 2 '(0 1 2) #f)
(sample-bin 2 4 '(3 4) #f)
(sample-bin 4 6 '(5 6) #f))
> (bin-samples '(2 4) <=
(012345 6)
'(10 20 30 40 50 60 70))
- : (Listof
#(struct:sample-bin
(Byte Byte (Listof Byte) (U (Listof Nonnegative-Real)
False))))
(list
(sample-bin 0 2 '(0 1 2) '(10 20 30))
(sample-bin 2 4 '(3 4) '(40 50))
(sample-bin 4 6 '(5 6) '(60 70)))

If 1te? is a less-than-or-equal relation, the bins represent half-open intervals (min, max]
(except possibly the first, which may be closed). If 1te? is a less-than relation, the bins
represent half-open intervals [min, max) (except possibly the last, which may be closed). In

268

either case, the sorts applied to bounds and xs are stable.

Because intervals used in probability measurements are normally open on the left, prefer to
use less-than-or-equal relations for 1te?.

If ws is #£f, bin-samples returns bins with #f weights.

(bin-samples/key bounds 1te? key xs ws) — (Listof (sample-bin A B))
bounds : (Sequenceof B)
1te? : (B B -> Any)
key : (A -> B)
xs : (Sequenceof A)
ws : (U #f (Sequenceof Real))

Similar to (sort xs lte? #:key key #:cache-keys? #t), but additionally groups
samples into bins.

Example:

> (bin-samples/key '(2 4) <= (inst car Real String)
(1. oMy (200 m2") (3. "3") (4. "4") (5.
"5")))
- : (Listof
#(struct:sample-bin
(Real
Real
(Listof (Pairof Positive-Byte String))
(U (Listof Nonnegative-Real) False))))
(list
(sample-bin 1 2 '((1 . "1") (2 . "2")) #f)
(sample-bin 2 4 '((3 . "3") (4 . "4")) #f)
(sample-bin 4 5 '((5 . "5")) #f))

See bin-samples for the simpler, one-type variant.

(sample-bin-compact bin) — (sample-bin A B)
bin : (sample-bin A B)

Compacts bin by applying count-samples to its values and weights.

Example:

> (sample-bin-compact (sample-bin 1 4 '(1 2 3 4 4) #f))
- : #(struct:sample-bin

(Positive-Byte

Positive-Byte

269

(Listof Positive-Byte)
(U (Listof Nonnegative-Real) False)))
(sample-bin 1 4 '(1 23 4) '(1 11 2))

(sample-bin-total bin) — Nonnegative-Real
bin : (sample-bin A B)

If (sample-bin-weights bin) is #f, returns the number of samples in bin; otherwise,
returns the sum of their weights.

Examples:

> (sample-bin-total (sample-bin 1 4 '(1 2 3 4 4) #f£))
- : Real [more precisely: Nonnegative-Real]
5
> (sample-bin-total (sample-bin-compact (sample-
bin 1 4 '(1 2 3 4 4) #£)))
: Real [more precisely: Nonnegative-Reall

8.5 Order Statistics

(sort-samples 1t? xs) — (Listof A)
1t? : (A A -> Any)
xs : (Sequenceof A)
(sort-samples 1t? xs ws)
— (Values (Listof A) (Listof Nonnegative-Real))
1t? : (A A -> Any)
xs : (Sequenceof A)
ws : (U #f (Sequenceof Real))

Sorts possibly weighted samples according to 1t ?, which is assumed to define a total order
over the elements in xs.

Examples:

> (sort-samples < '(5 2 3 1))

- : (Listof Positive-Byte)

'(1235)

> (sort-samples < '(5 2 3 1) '(50 20 30 10))

- : (values (Listof Positive-Byte) (Listof Nonnegative-Real))
'(1235)

'(10 20 30 50)

270

> (sort-samples < '(5 2 3 1) #f)

- : (values (Listof Positive-Byte) (Listof Nonnegative-Real))
‘(123 5)

‘1111

Because sort-samples is defined in terms of sort, the sort is only guaranteed to be stable
if 1t 7 is strictly a less-than relation.

(median 1t? xs [ws]) — A
1t? : (A A -> Any)
xs : (Sequenceof A)
ws : (U #f (Sequenceof Real)) = #f

Equivalent to (quantile 1/2 1t? xs ws).

(quantile p 1t? xs [ws]) — A
p : Real
1t? : (A A -> Any)
xs : (Sequenceof A)
ws : (U #f (Sequenceof Real)) = #f

Computes the inverse of the empirical cdf represented by the samples xs, which are option-
ally weighted by ws.

Examples:

\2

(quantile 0 < '(1 3 5))
: Integer [more precisely: Positive-Bytel

VvV o= |

(quantile 0.5 < '(1 2 3 4))
: Integer [more precisely: Positive-Bytel

v N I

(quantile 0.5 < '(1 2 3 4) '(0.25 0.2 0.2 0.35))
: Integer [more precisely: Positive-Bytel

w

If p = 0, quantile returns the smallest element of xs under the ordering relation 1t?. If
p = 1,itreturns the largest element.

For weighted samples, quantile sorts xs and ws together (using sort-samples), then
finds the least x for which the proportion of its cumulative weight is greater than or equal to
p-

For unweighted samples, quantile uses the quickselect algorithm to find the element that

would be at index (ceiling (- (* p n) 1)) if xs were sorted, where n is the length of
XS.

271

(absdev xs [ws]) — Nonnegative-Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f

Computes the average absolute difference between the elements in xs and (median < xs
ws). If ws is not #£, it is a weighted average.

(absdev/median median xs [ws]) — Nonnegative-Real
median : Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f

Like (absdev xs ws), but computed using known median median.

(hpd-interval 1t? § p xs [ws]) — (Values A A)
1t? : (A A -> Any)
6 : (A A ->Real)
p : Real
xs : (Sequenceof A)
ws : (U #f (Sequenceof Real)) = #f
(hpd-interval/sorted 6 p xs [ws]) — (Values A A)
6 : (A A ->Real)
p : Real
xs : (Sequenceof A)
ws : (U #f (Sequenceof Real)) = #f

Estimates the smallest interval for which the distribution that produced xs (optionally
weighted by ws) assigns probability p, which must be positive. The type A represents an
ordered metric space with order 1t? and metric J.

To compute an HPD interval from sorted samples, use hpd-interval/sorted.

You almost certainly want to use real-hpd-interval or real-hpd-interval/sorted
instead, which are defined in terms of these.

(real-hpd-interval p xs [ws]) — (Values Real Real)

p : Real

xs : (Sequenceof Real)

ws : (U #f (Sequenceof Real)) = #f
(real-hpd-interval/sorted p xs [ws]) — (Values Real Real)

p : Real

xs : (Sequenceof Real)

ws : (U #f (Sequenceof Real)) = #f

Equivalent to (hpd-interval < - p xs ws) and (hpd-interval/sorted - p xs
WS).

272

Examples:

(define beta32 (beta-dist 3 2))
(real-dist-hpd-interval beta32 0.8)
(values Flonum Flonum)
.36542991742846176
.8939657937826784
(real-hpd-interval 0.8 (sample beta32 10000))
- : (values Real Real)
.36641458801311566
.8972525775041224

v © O 1 V V

o O

8.6 Simulations

The functions in this section support Monte Carlo simulation; for example, quantifying un-
certainty about statistics estimated from samples.

(mc-variance xs [ws #:bias bias]) — Nonnegative-Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f

(mc-stddev xs [ws #:bias bias]) — Nonnegative-Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f

Estimate the variance and standard deviation of expected values computed from random
samples.
If xs are random variable samples, then

(define 6 (mean xs ws))

is also a random variable sample. These two values:
(mc-variance xs ws #:bias bias)

(mc-stddev xs ws #:bias bias)

estimate the variance and standard deviation of 6. The latter is simply the square root of the
variance, and bias correction is applied as described in[§8.1 “Expected Values™|

Two different ways to estimate the standard deviation of a mean computed from 1000 sam-
ples are

273

> (mc-stddev (sample (normal-dist 0 1) 1000))

- : Real [more precisely: Nonnegative-Real]

0.030998008326722813

> (stddev (for/list : (Listof Real) ([_ (in-range 100)])
(mean (sample (normal-dist 0 1) 1000))))

- : Real [more precisely: Nonnegative-Real]

0.03189764947540754

Using mc-stddev is 100 times faster in this case, and in most statistical applications, repli-
cating a sampling process 100 times is infeasible.

(mc-stddev/mean m xs [ws #:bias bias]) — Nonnegative-Real
m : Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f
(mc-variance/mean m xs [ws #:bias bias]) — Nonnegative-Real
m : Real
xs : (Sequenceof Real)
ws : (U #f (Sequenceof Real)) = #f
bias : (U #t #f Real) = #f

Use these in the exceedingly rare cases in which you know the mean m but are estimating
uncertainty in an estimate of the mean anyway.

(indicator pred?) — (A -> (U 0 1))
pred? : (A -> Any)

Converts a predicate into an indicator function.
Examples:

> (fl1 (mean (map (indicator (1 ([x : Reall) (< -inf.0 x -1)))
(sample (normal-dist O 1) 5000))))

: Flonum

.1624

(real-dist-prob (normal-dist O 1) -inf.0 -1)

: Flonum

.15865525393145705

I v O 1

o

(mc-probability pred? xs [ws]) — Nonnegative-Real
pred? : (A -> Any)
xs : (Sequenceof A)
ws : (U #f (Sequenceof Real)) = #f

274

Estimates the probability of pred? from possibly weighted samples. Equivalent to (mean
(sequence-map (indicator pred?) xs) ws).

Example:

> (f1 (mc-probability (4 ([x : Real]) (< -inf.0 x -1))
(sample (normal-dist 0 1) 5000)))

- : Flonum [more precisely: Nonnegative-Flonum]

0.1544

(mc-prob-dist pred? xs [ws]) — Beta-Dist
pred? : (A -> Any)
xs : (Sequenceof A)
ws : (U #f (Sequenceof Real)) = #f

Returns a beta distribution estimated from possibly weighted samples whose mean is (mc-
probability pred? xs ws).

Computing a confidence interval for a probability whose endpoints are guaranteed to be
between O and 1:

> (real-dist-hpd-interval
(mc-prob-dist (1 ([x : Real]) (< -inf.0 x -1))
(sample (normal-dist 0 1) 5000))
0.95)
- : (values Flonum Flonum)
0.14170222702547164
0.1615759682866843

275

9 Probability Distributions

(require math/distributions) package: math-1ib

The math/distributions module exports the following:

1. Distribution objects, which represent probability distributions
2. Functions that operate on distribution objects

3. The low-level flonum functions used to define distribution objects

Performance Warning: Using distribution objects in untyped Racket is currently 25-50
times slower than using them in Typed Racket, due to the overhead of checking higher-order
contracts. We are working on it.

For now, if you need speed, either use the typed/racket language, or use just the low-level
flonum functions, which are documented in[§9.6 “Low-Level Distribution Functions’]

9.1 Distribution Objects

A distribution object represents a probability distribution over a common domain, such as the
real numbers, integers, or a set of symbols. Their constructors correspond with distribution
families, such as the family of normal distributions.

A distribution object, or a value of type dist, has a density function (a pdf) and a procedure
to generate random samples. An ordered distribution object, or a value of type ordered-
dist, additionally has a cumulative distribution function (a cdf), and its generalized inverse
(an inverse cdf).

The following example creates an ordered distribution object representing a normal distribu-
tion with mean 2 and standard deviation 5, computes an approximation of the probability of
the half-open interval (1/2,1], and computes another approximation from random samples:

(define d (normal-dist 2 5))

(real-dist-prob d 0.5 1.0)

.038651712749849576

(define xs (sample d 10000))

(f1 (/ (count (1 (x) (and (1/2 . < . x) (x . <= . 1))) xs)
(length xs)))

vV VvV O V V

o

.0391

This plots the pdf and a kernel density estimate of the pdf from random samples:

276

https://pkgs.racket-lang.org/package/math-lib

> (plot (list (function (distribution-pdf d) #:color O #:style 'dot)
(density xs))
#:x-label "x" #:y-label "density of N(2,5)")
08— : : : — : : : } :

04+

density of N(2,5)

02—+

There are also higher-order distributions, which take other distributions as constructor argu-
ments. For example, the truncated distribution family returns a distribution like its distribu-
tion argument, but sets probability outside an interval to 0 and renormalizes the probabilities
within the interval:

(define d-trunc (truncated-dist d -inf.0 5))
(real-dist-prob d-trunc 5 6)
.0
(real-dist-prob d-trunc 0.5 1.0)
.0532578419490049
(plot (list (function (distribution-pdf d-
trunc) #:color O #:style 'dot)
(density (sample d-trunc 1000)))
#:x-label "x" #:y-label "density of T(N(2,5),-00,5)")

v ©O VvV OV V

277

075+

n
§
"
S
Z
=
T 05—+ -+
ey
2
o
S

025+ -

04 { t } t | t | t :
-15 -10 -5 0 5
X

Because real distributions’ cdfs represent the probability P[X < x], they are right-continuous
(i.e. continuous from the right):

> (define d (geometric-dist 0.4))
> (plot (for/list ([i (in-range -1 7)])
(define i+l-g (flprev (+ i 1.0)))
(list (lines (list (vector i (cdf d i))
(vector it+l-g (cdf d i+l-g)))
#:width 2)
(points (list (vector i (cdf d i)))
#:sym 'fullcircleb #:color 1)
(points (list (vector i+l-g (cdf d i+1l-g)))
#:sym 'fullcircleb #:color 1 #:fill-
color 0)))
#:x-min -0.5 #:x-max 6.5 #:y-min -0.05 #:y-max 1
#:x-label "x" #:y-label "P[X < x]")

278

1 } . } . } . |
| e O L
| ® O L
| L
I5—+ -
| ~ 0 L
=
v T
o | L
[aW)
| o—0 |
25+ -+
0+—0O -+
] ,] ,] ,]
I ' I ' I ' I
0 2 4 6
X

For convenience, cdfs are defined over the extended reals regardless of their distribution’s
support, but their inverses return values only within the support:

> (cdf d +inf.0)

1.0

> (cdf d 1.5)

0.64

> (cdf d -inf.0)

0.0

> (inv-cdf d (cdf d +inf.0))
+inf.0

> (inv-cdf 4 (cdf d 1.5))
1.0

> (inv-cdf d (cdf 4 -inf.0))
0.0

A distribution’s inverse cdf is defined on the interval [0,1] and is always left-continuous,
except possibly at O when its support is bounded on the left (as with geometric-dist).

279

Every pdf and cdf can return log densities and log probabilities, in case densities or proba-
bilities are too small to represent as flonums (i.e. are less than +min. 0):

> (define d (normal-dist))
> (pdf d 40.0)

0.0

> (cdf d -40.0)

0.0

> (pdf d 40.0 #t)

-800.9189385332047
> (cdf d -40.0 #t)
-804.6084420137538

Additionally, every cdf can return upper-tail probabilities, which are always more accurate
when lower-tail probabilities are greater than 0.5:

> (cdf d 20.0)

1.0

> (cdf d 20.0 #f #t)
2.7536241186062337e-89

Upper-tail probabilities can also be returned as log probabilities in case probabilities are too
small:

(cdf d 40.0)

.0

(cdf d 40.0 #f #t)
.0

(cdf d 40.0 #t #t)
-804.6084420137538

vV O V = V

Inverse cdfs accept log probabilities and upper-tail probabilities.

The functions 1g+ and 1gsum, as well as others in math/flonum, perform arithmetic on log
probabilities.

When distribution object constructors receive parameters outside their domains, they return
undefined distributions, or distributions whose functions all return +nan. 0:

> (pdf (gamma-dist -1 2) 2)

+nan.0

> (sample (poisson-dist -2))

+nan.0

> (cdf (beta-dist 0 0) 1/2)

+nan.0

> (inv-cdf (geometric-dist 1.1) 0.2)
+nan.0

280

9.2 Distribution Types and Operations

(PDF In)

The type of probability density functions, or pdfs, defined as

(case-> (In -> Flonum)
(In Any -> Flonum))

For any function of this type, the second argument should default to #f. When not #f, the
function should return a log density.

(Sample Out)

The type of a distribution’s sampling procedure, defined as

(case-> (-> QOut)
(Integer -> (Listof Out)))

When given a nonnegative integer n as an argument, a sampling procedure should return a
length-n list of independent, random samples.

(CDF In)

The type of cumulative distribution functions, or cdfs, defined as

(case-> (In -> Flonum)
(In Any -> Flonum)
(In Any Any -> Flonum))

For any function of this type, both optional arguments should default to #£, and be inter-
preted as specified in the description of cdf.

(Inverse-CDF Out)

The type of inverse cumulative distribution functions, or inverse cdfs, defined as

(case-> (Real -> QOut)
(Real Any -> Out)
(Real Any Any -> Out))

For any function of this type, both optional arguments should default to #f, and be inter-
preted as specified in the description of inv-cdf.

281

(distribution In Out)

(struct distribution (pdf sample))
pdf : (PDF In)
sample : (Sample Out)

The parent type of distribution objects. The In type parameter is the data type a distribution
accepts as arguments to its pdf. The Out type parameter is the data type a distribution returns
as random samples.

Examples:

> (distribution? (discrete-dist '(a b c¢)))
#t

> (distribution? (normal-dist))

#t

> ((distribution-pdf (normal-dist)) 0)
0.39894228040143265

> ((distribution-sample (normal-dist)))
-0.14787025453564936

See pdf and sample for uncurried forms of distribution-pdf and distribution-
sample.

Type Examples:

> (ann (poisson-dist) (distribution Real Real))
- : #(struct:distribution

((->* (Real) (Any) Flonum)

(case-> (-> Real) (-> Integer (Listof Real)))))
(poisson-dist 0.5)

(ordered-dist In Out)

(struct ordered-dist distribution (cdf inv-cdf min max median))
cdf : (CDF In)
inv-cdf : (Inverse-CDF Out)
min : Out
max : Out
median : (Promise Out)

282

The parent type of ordered distribution objects.

Similarly to distribution, the In type parameter is the data type an ordered distribution
accepts as arguments to its pdf, and the Out type parameter is the data type an ordered
distribution returns as random samples. Additionally, its cdf accepts values of type In, and
its inverse cdf returns values of type Out.

Examples:

> (ordered-dist? (discrete-dist '(a b c¢)))
#f

> (ordered-dist? (normal-dist))

#t

The median is stored in an ordered-dist to allow interval probabilities to be computed
accurately. For example, for d = (normal-dist), whose median is 0.0, (real-dist-
prob d -2.0 -1.0) is computed using lower-tail probabilities, and (real-dist-prob
d 1.0 2.0) is computed using upper-tail probabilities.

Type Examples:

> (ann (poisson-dist) (ordered-dist Real Real))
- : #(struct:ordered-dist
((->* (Real) (Any) Flonum)
(case-> (-> Real) (-> Integer (Listof Real)))
(->x (Real) (Any Any) Flonum)
(->x (Real) (Any Any) Real)
Real
Real
(Promise Real)))
(poisson-dist 0.5)

Real-Dist

The parent type of real-valued distributions, such as any distribution returned by normal-
dist. Equivalent to the type (ordered-dist Real Flonum).

(pdf d v [log?]) — Flonum
d : (dist In Out)
v :In
log? : Any = #f

An uncurried form of distribution-pdf. When 1og? is not #f, returns a log density.

Examples:

283

> (pdf (discrete-dist '(a b c) '(1 2 3)) 'a)
0.16666666666666666

> (pdf (discrete-dist '(a b c) '(1 2 3)) 'a #t)
-1.791759469228055

(sample d) — Out
d : (dist In Out)

(sample d n) — (Listof Out)
d : (dist In Out)
n : Integer

An uncurried form of distribution-sample.

Examples:

> (sample (exponential-dist))

1.1890528036144634

> (sample (exponential-dist) 3)

' (1.87792954482508 1.6184275541091742 0.7308881789878429)

(cdf d v [log? 1-p?]) — Flonum
d : (ordered-dist In Out)

v :In
log? : Any = #f
1-p? : Any = #f

An uncurried form of ordered-dist-cdf.
When log?is #f, cdf returns a probability; otherwise, it returns a log probability.

When 1-p?is #f, cdf returns a lower-tail probability or log probability (depending on
log?); otherwise, it returns an upper-tail probability or log-probability.

(inv-cdf d p [log? 1-p7]) — Out
d : (ordered-dist In Out)

p : Real
log? : Any = #f
1-p? : Any = #f

An uncurried form of ordered-dist-inv-cdf.

When log?is #f, inv-cdf interprets p as a probability; otherwise, it interprets p as a log
probability.

When 1-p?is #£f, inv-cdf interprets p as a lower-tail probability or log probability (de-
pending on 1og?); otherwise, it interprets p as an upper-tail probability or log probability.

284

(real-dist-prob d a b [log? 1-p?]) — Flonum
d : Real-Dist

a : Real
b : Real
log? : Any = #f
1-p? : Any = #f

Computes the probability of the half-open interval (a, b]. (If b < a, the two endpoints are
swapped first.) The 1og? and 1-p? arguments determine the meaning of the return value in

the same way as the corresponding arguments to cdf.

(real-dist-hpd-interval d p) — (Values Flonum Flonum)
d : Real-Dist
p : Real

Finds the smallest interval for which d assigns probability p, if one exists.

Examples:

> (define d (beta-dist 3 2))
> (define-values (x0 x1) (real-dist-hpd-interval d 0.8))
> (plot (list
(function-interval (4 (x) 0) (distribution-pdf d) x0 x1
#:1linel-style 'transparent
#:1line2-style 'transparent
#:1abel "80% HPD region")
(function (distribution-pdf d) O 1
#:1label "Beta(3,2)")))

285

, I , I , I , I ,
i 1 i I t I I t
+ | 80% HPD region +
| |Beta(3,2) _ |
1.5+ -+
14 +
é | |
>
S+ -+
0 f { f I I I -
0 2 4 6 8 1

X axis

9.3 Finite Distribution Families

9.3.1 Unordered Discrete Distributions

(Discrete-Dist 4)
(discrete-dist xs) — (Discrete-Dist A4)
xs : (Sequenceof A)
(discrete-dist xs ws) — (Discrete-Dist 4)
xs : (Sequenceof 4)
ws : (Sequenceof Real)
(discrete-dist-values d) — (Listof A)
d : (Discrete-Dist A4)
(discrete-dist-probs d) — (Listof Positive-Flonum)
d : (Discrete-Dist A4)

Represents families of unordered, discrete distributions over values of type A, with equality

286

decided by equal?.

The weights in ws must be nonnegative, and are treated as unnormalized probabilities. When
ws is not given, the values in xs are assigned uniform probabilities.

The type (Discrete-Dist A) is a subtype of (dist A A). This means that discrete dis-
tribution objects are unordered, and thus have only a pdf and a procedure to generate random
samples.

Note, however, that the discrete-dist-values and discrete-dist-probs functions
produce lists that may be paired; that is, if the result of calling discrete-dist-values
on a given distribution produces a list whose third element is 'a, and the result of calling
discrete-dist-probs on the same distribution produces a list whose third element is
0. 25, then the given distribution associates the probability 0.25 with the value 'a.

Examples:
> (define xs '(a b c))
> (define d (discrete-dist xs '(2 5 3)))
> (define n 500)
> (define h (samples->hash (sample d n)))
> (plot (list (discrete-histogram

(map vector xs (map (distribution-pdf d) xs))
#:x-min O #:skip 2 #:label "P[x]")
(discrete-histogram
(map vector xs (map (1 (x) (/ (hash-

ref h x) n)) xs))
#:x-min 1 #:skip 2 #:1line-style 'dot #:alpha 0.5
#:label "est. P[x]")))

287

P[x] — | T
| |est. P[x] {77777 |
4+ -
B I i e e T -
é | |
>

24— T i
REE e

0 { { {

a b c

X axis

9.4 Integer Distribution Families

Mathematically, integer distributions are commonly defined in one of two ways: over ex-
tended reals, or over extended integers. The most common definitions use the extended
reals, so the following distribution object constructors return objects of type Real-Dist.

(Another reason is that the extended integers correspond with the type (U Integer +inf.0
-inf.0). Values of this type have little support in Racket’s library.)

This leaves us with a quandary and two design decisions users should be aware of. The
quandary is that, when an integer distribution is defined over the reals, it has a cdf, but no
well-defined pdf: the pdf would be zero except at integer points, where it would be undefined.

Unfortunately, an integer distribution without a pdf is nearly useless. So the pdfs of these
integer distributions are pdfs defined over integers, while their cdfs are defined over reals.

Most implementations, such as |R’s, make the same design choice. Unlike R’s, this imple-

288

In measure-theory
parlance, the pdfs
are defined with
respect to counting
measure, while the
cdfs are defined
with respect to
Lebesgue measure.

http://www.r-project.org

mentation’s pdfs return +nan .0 when given non-integers, for three reasons:

* Their domain of definition is the integers.

* Applying an integer pdf to a non-integer almost certainly indicates a logic error, which
is harder to detect when a program returns an apparently sensible value.

* If this design choice turns out to be wrong and we change pdfs to return 0.0, this
should affect very few programs. A change from 0.0 to +nan.0 could break many
programs.

Integer distributions defined over the extended integers are not out of the question, and may
show up in future versions of math/distributions if there is a clear need.

9.4.1 Bernoulli Distributions

Wikipedia:
Bernoulli
Distribution.
Bernoulli-Dist
(bernoulli-dist prob) — Bernoulli-Dist
prob : Real
(bernoulli-dist-prob d) — Flonum
d : Bernoulli-Dist
Represents the Bernoulli distribution family parameterized by probability of success.
(bernoulli-dist prob) is equivalent to (binomial-dist 1 prob), but operations on
it are faster.
Examples:
> (define d (bernoulli-dist 0.75))
> (map (distribution-pdf d) '(0 1))
'(0.25 0.75)
> (map (ordered-dist-cdf d) '(0 1))
'(0.25 1.0)
> (define d (binomial-dist 1 0.75))
> (map (distribution-pdf d) '(0 1))
'(0.25 0.75)
> (map (ordered-dist-cdf d) '(0 1))
'(0.25 1.0)
9.4.2 Binomial Distributions
Wikipedia:
Binomial
Distribution.

289

http://wikipedia.org/wiki/Bernoulli_distribution
http://wikipedia.org/wiki/Bernoulli_distribution
http://wikipedia.org/wiki/Binomial_distribution
http://wikipedia.org/wiki/Binomial_distribution

Binomial-Dist
(binomial-dist count prob) — Binomial-Dist
count : Real
prob : Real
(binomial-dist-count d) — Flonum
d : Binomial-Dist
(binomial-dist-prob d) — Flonum
d : Binomial-Dist

Represents the binomial distribution family parameterized by count (number of trials) and
probability of success.

Examples:

> (define d (binomial-dist 15 0.6))

> (plot (discrete-histogram
(map vector (build-list 16 values) (build-

list 16 (distribution-pdf d))))
#:x-label "number of successes" #:y-label "probability")

290

probability
n

05—+ -
0 R L1+
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

number of successes

> (plot (function-interval (4 (x) 0) (ordered-dist-

cdf d) -0.5 15.5)

#:x-label "at-most number of successes" #:y-

label "probability")

291

|
8 -
61 -
2
=
< r |
)
o
a
A -
2 -
—
0— ’ ’ f i T T T T T T T T T T T
0 5 10 15

at-most number of successes

9.4.3 Geometric Distributions
Wikipedia:
Geometric
Distribution.
Geometric-Dist
(geometric-dist prob) — Geometric-Dist
prob : Real
(geometric-dist-prob d) — Flonum

d : Geometric-Dist

Represents the geometric distribution family parameterized by success probability. The ran-
dom variable is the number of failures before the first success, or equivalently, the index of
the first success starting from zero.

Examples:

> (define d (geometric-dist 0.25))
> (plot (discrete-histogram

292

http://wikipedia.org/wiki/Geometric_distribution
http://wikipedia.org/wiki/Geometric_distribution

(map vector (build-list 16 values) (build-
list 16 (distribution-pdf d))))

#:x-label "first success index" #:y-label "probability")
25

—_
W
|
|
|

probability

T
10 11 12 13 14 15

05 |_| £
0 fDDDDQQ;‘;‘;h
5 6 7 8 9

first success index

> (plot (function-interval (4 (x) 0) (ordered-dist-
cdf d) -0.5 15.5)

#:x-label "at-most first success index" #:y-
label "probability"

#:y-max 1)

293

probability

R e ——

0 5

T
10

at-most first success index

9.4.4 Poisson Distributions

Poisson-Dist

(poisson-dist mean) — Poisson-Dist

mean : Real
(poisson-dist-mean d) — Flonum
d : Poisson-Dist

15

Wikipedia: Poisson
Distribution.

Represents the Poisson distribution family parameterized by the mean number of occur-

rences of independent events.
Examples:

> (define d (poisson-dist 6.2))
> (plot (discrete-histogram

294

http://wikipedia.org/wiki/Poisson_distribution
http://wikipedia.org/wiki/Poisson_distribution

(map vector (build-list 16 values) (build-
list 16 (distribution-pdf d))))
#:x-label "number of events" #:y-label "probability"_)_

probability

05—+ 4

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

number of events

0 _FD DDQQ—H
1

> (plot (function-interval (4 (x) 0) (ordered-dist-
cdf d) -0.5 15.5)

#:x-label "at-most number of events" #:y-
label "probability"

#:y-max 1)

295

probability

T T T T T T T T T T T T
0 5 10 15

at-most number of events

9.5 Real Distribution Families

The distribution object constructors documented in this section return uniquely defined dis-
tributions for the largest possible parameter domain. This usually means that they return
distributions for a larger domain than their mathematical counterparts are defined on.

For example, those that have a scale parameter, such as cauchy-dist, logistic-dist,
exponential-dist and normal-dist, are typically undefined for a zero scale. However,
in floating-point math, it is often useful to simulate limits in finite time using special val-
ues like +inf . 0. Therefore, when a scale-parameterized family’s constructor receives O, it
returns a distribution object that behaves like a Delta-Dist:

> (pdf (normal-dist 1 0) 1)

+inf.0

> (pdf (normal-dist 1 0) 1.0000001)
0.0

296

Further, negative scales are accepted, even for exponential-dist, which results in a dis-
tribution with positive scale reflected about zero.

Some parameters’ boundary values give rise to non-unique limits. Sometimes the ambiguity
can be resolved using necessary properties; see Gamma-Dist for an example. When no
resolution exists, as with (beta-dist 0 0), which puts an indeterminate probability on
the value 0 and the rest on 1, the constructor returns an undefined distribution.

Some distribution object constructors attempt to return sensible distributions when given
special values such as +inf . 0 as parameters. Do not count on these yet.

Many distribution families, such as Gamma-Dist, can be parameterized on either scale or
rate (which is the reciprocal of scale). In all such cases, the implementations provided by
math/distributions are parameterized on scale.

9.5.1 Beta Distributions
Wikipedia: Beta

Distribution.

Beta-Dist
(beta-dist alpha beta) — Beta-Dist
alpha : Real
beta : Real
(beta-dist-alpha d) — Flonum
d : Beta-Dist
(beta-dist-beta d) — Flonum
d : Beta-Dist

Represents the beta distribution family parameterized by two shape parameters, or pseudo-
counts, which must both be nonnegative.

Examples:

> (plot (for/list ([a (in-list '(1 2 3 1/2))]
[(in-list '(1 3 1 1/2))]
[i (in-naturals)])
(function (distribution-pdf (beta-dist a f))
#:color i #:1label (format "Beta("a,”a)" a f3)))
#:x-min O #:x-max 1 #:y-max 4 #:y-label "density")

297

http://wikipedia.org/wiki/Beta_distribution
http://wikipedia.org/wiki/Beta_distribution

4 t } t } t } t } t
Beta(1,1) _—
Beta(2,3) _—
11| Beta(3,1) _— -
Beta(1/2,1/2) ——
3 -
2
2 2+ 4
o
<
1
0 T | t } t } t } t
0 2 4 6 8 1
X axis
> (plot (for/list ([a@ (in-list '(1 2 3 1/2))]

(in-list '(1 3 1 1/2))]
(in-naturals)])

(B
[i

(function (ordered-dist-cdf (beta-dist a f3))

#:color i #:label (format "Beta("a,”a)" a B)))

#:x-min O #:x-max 1 #:y-label "probability")

298

1 . } . } . } . } ;
Beta(1,1) _
1 Beta(2,3) _ 1
Beta(3,1) _
Beta(1/2,1/2) ———
8+ -
6+ -
2
E
s 1
)
o
=
A+ -
2+ -
0 } . | . | } } }
0 2 4 6 8 1

X axis

(beta-dist 0 0) and (beta-dist +inf.0 +inf.0) are undefined distributions.

Whena = Oorb = +inf.O0, the returned distribution acts like (delta-dist 0).

When a = +inf.0orb = 0, the returned distribution acts like (delta-dist 1).

9.5.2 Cauchy Distributions
Wikipedia: Cauchy
Distribution.
Cauchy-Dist
(cauchy-dist [mode scale]) — Cauchy-Dist
mode : Real = 0
scale : Real = 1
(cauchy-dist-mode d) — Flonum
d : Cauchy-Dist
(cauchy-dist-scale d) — Flonum
d : Cauchy-Dist

299

http://wikipedia.org/wiki/Cauchy_distribution
http://wikipedia.org/wiki/Cauchy_distribution

Represents the Cauchy distribution family parameterized by mode and scale.

Examples:

> (plot (for/list ([m (in-list '(0 -1 0 2))]
[s (in-list '(1 1/2 2.25 0.7))]
[i (in-naturals)])
(function (distribution-pdf (cauchy-dist m s))
#:color i #:label (format "Cauchy(“a,”a)" m s)))
#:x-min -8 #:x-max 8 #:y-label "density"
#:legend-anchor 'top-right)
4 | 4 4 4 | |

f f 1 f f f 1 f f f f 1
Cauchy(0,1)
Cauchy(-1,1/2)
Cauchy(0,2.25)
Cauchy(2,0.7)

density

X axis

> (plot (for/list ([m (in-list '(0 -1 0 2))]
[s (in-list '(1 1/2 2.25 0.7))]
[i (in-naturals)])
(function (ordered-dist-cdf (cauchy-dist m s))
#:color i #:label (format "Cauchy(“a,”a)" m s)))
#:x-min -8 #:x-max 8 #:y-label "probability")

300

' '] ' ' ' '] ' ' ' '] L L

t t 1 t t t t I
Cauchy(0,1)
Cauchy(-1,1/2)
Cauchy(0,2.25)
Cauchy(2,0.7)

L
t

probability

9.5.3 Delta Distributions
Wikipedia: Dirac

Delta Function.

Delta-Dist
(delta-dist [mean]) — Delta-Dist
mean : Real = 0O
(delta-dist-mean d) — Flonum
d : Delta-Dist

Represents the family of distributions whose densities are Dirac delta functions.

Examples:

> (pdf (delta-dist) 0)
+inf .0

> (pdf (delta-dist) 1)
0.0

301

http://wikipedia.org/wiki/Dirac_delta_function
http://wikipedia.org/wiki/Dirac_delta_function

> (plot (for/list ([p (in-list '(-1 0 1))]
[i (in-naturals)])
(function (ordered-dist-cdf (delta-dist u))
#:color i #:style i #:label (format "6(Ta)" w)))
#:x-min -2 #:x-max 2 #:y-label "probability")

1 } + : i ;
d(-1) :
| [0(0) -eeeeeeees | |
8(1) ———— !
I
8+ : -+
I
I
L | |
I
I
I
6+ : -+
2 I
= I
B | I 1
<
E I
= I
A+ : -+
I
I
| I |
I
I
I
2+ : -+
I
I
| I |
I
I
I
0 | : . i }
2 -1 0 1 2

X axis

9.5.4 Exponential Distributions
Wikipedia:
Exponential

i i Distribution.
Exponential-Dist istribution

(exponential-dist [mean]) — Exponential-Dist
mean : Real = 1

(exponential-dist-mean d) — Flonum
d . Exponential-Dist

Represents the exponential distribution family parameterized by mean, or scale.

Warning: The exponential distribution family is often parameterized by rate, which is the

302

http://wikipedia.org/wiki/Exponential_distribution
http://wikipedia.org/wiki/Exponential_distribution

reciprocal of mean or scale. Construct exponential distributions from rates using

(exponential-dist (/ 1.0 rate))

Examples:

> (plot (for/list ([p (in-list '(2/3 1 2))]
[i (in-naturals)])
(function (distribution-pdf (exponential-dist u))
#:color i #:label (format "Exponential(Ta)" w)))
#:x-min O #:x-max 5 #:y-label "density"
#:legend-anchor 'top-right)
| |

1.5 : } : } : } : }
Exponential(2/3)
Exponential(1) ——
Exponential2) ——
1.25+ -
14 -+
2
% 5+ -
kS
S -
25—+ -
.] .] .
y 1 y 1 y 1 ¥ 1 ¥
0 1 2 3 4 5

X axis

> (plot (for/list ([p (in-list '(2/3 1 2))]
[i (in-naturals)])
(function (ordered-dist-cdf (exponential-dist u))
#:color i #:label (format "Exponential(~a)" u)))
#:x-min O #:x-max 5 #:y-label "probability"
#:legend-anchor 'bottom-right)

303

probability

Exponential(2/3) ———
1 Exponential(1) ———| 7
Exponential(2) ——
0+ . } . } . } } } }
0 1 2 3 4 5
X axis
9.5.,5 Gamma Distributions
Wikipedia: Gamma

Distributionl

Gamma-Dist
(gamma-dist [shape scale]) — Gamma-Dist
shape : Real =1
scale : Real = 1
(gamma-dist-shape d) — Flonum
d : Gamma-Dist
(gamma-dist-scale d) — Flonum
d : Gamma-Dist

Represents the gamma distribution family parameterized by shape and scale. The shape
parameter must be nonnegative.

Warning: The gamma distribution family is often parameterized by shape and rate, which
is the reciprocal of scale. Construct gamma distributions from rates using

304

http://wikipedia.org/wiki/Gamma_distribution
http://wikipedia.org/wiki/Gamma_distribution

(gamma-dist shape (/ 1.0 rate))

Examples:

> (plot (for/list ([k (in-list '(1 2 3 9))]
[s (in-1list '(2 2 3 1/2))]
[i (in-naturals)])
(function (distribution-pdf (gamma-dist k s))
#:color i #:label (format "Gamma(~a,”a)" k s)))
#:x-min O #:x-max 15 #:y-label "density"
#:legend-anchor 'top-right)
| | |

5 I I I f f
Gamma(1,2) —
1 Gamma(2,2) —— 1
Gamma(3,3) ——
Gamma(9,1/2) ———
44 -+
34+ -+
2
é) + +
Q
o
24 -+
A4 -+
0 f f f f .
0 2.5 5 7.5 10 12.5 15

X axis

> (plot (for/list ([k (din-list '(1 2 3 9))]
[s (in-list '(2 2 3 1/2))]
[i (in-naturals)])
(function (ordered-dist-cdf (gamma-dist k s))
#:color i #:label (format "Gamma(~a,”a)" k s)))
#:x-min O #:x-max 15 #:y-label "probability"
#:legend-anchor 'bottom-right)

305

]]]] !
1 1 1 i
84 -+
64+ -+
2
'_'g | |
O
<)
&
44 -+
24 -+
Gamma(l,2) —
Gamma(2,2) ——
1 Gamma(33) —|
Gamma(9,1/2) ——
0 { { { { {
0 2.5 5 7.5 10 12.5 15

X axis

The cdf of the gamma distribution with shape = 0 could return either 0.0 or 1.0 at x =
0, depending on whether a double limit is taken with respect to scale or with respect to
x first. However the limits are taken, the cdf must return 1.0 for x > 0. Because cdfs are
right-continuous, the only correct choice is

> (cdf (gamma-dist 0 1) 0)
1.0

Therefore, a gamma distribution with shape = 0 behaves like (delta-dist 0).

9.5.6 Weibull Distributions
Wikipedia: Weibull

Distributionl

Weibull-Dist

306

http://wikipedia.org/wiki/Weibull_distribution
http://wikipedia.org/wiki/Weibull_distribution

(weibull-dist shape [location scale]) — Weibull-Dist
shape : Positive-Real
location : Real = 0
scale : Real =1
(weibull-dist-shape k) — Positive-Flonum
k : Weibull-Dist
(weibull-dist-location d) — Real
d : Weibull-Dist
(weibull-dist-scale d) — Real
d : Weibull-Dist

Represents the Weibull distribution family parameterized by shape, location and scale.

Examples:

> (plot (for/list ([k (in-list '(1/2 1 1 5))]
[d (in-list '(0 0 3/2 0))]
[s (in-list '(1 1 2 1))]
[i (in-naturals)])
(function (distribution-pdf (weibull-dist k d s))
#:color i #:1label (if (and (= d 0) (= s 1))
(format "Weibull(“a)" k)
(format "Weibull(“a,”a,”a)" k d s))))
#:x-min O #:x-max 6 #:y-label "density"
#:legend-anchor 'top-right)

307

] ;] ; }

T Weibull(1/2)
Weibull(1)
Weibull(1,3/2.2)
I Weibull(5)

density

X axis

> (plot (for/list ([k (in-list '(1/2 1 1 5))]

[d (in-list '(0 0 3/2 0))]

[s (in-1ist '"(1 1 2 1))]

[i (in-naturals)])

(function (ordered-dist-cdf (weibull-dist k d s))
#:color i #:1label (if (and (= d 0) (= s 1))
(format "Weibull(~a)" k)
(format "Weibull(Ta,”a,”a)" k d s))))

#:x-min O #:x-max 10 #:y-label "probability"
#:legend-anchor 'bottom-right)

308

6 -
=
E
- i
Na)
o
a.
4 -
2- -
Weibull(1/2) e
Weibull(1) S
Weibull(1,3/22) —| T
Weibull(5) _—
0 . F— % —t — ’
! ; 4 6 8 10

X axis

9.5.7 Logistic Distributions
Wikipedia: Logistic
Distributionl

Logistic-Dist
(logistic-dist [mean scale]) — Logistic-Dist
mean : Real = 0
scale : Real = 1
(logistic-dist-mean d) — Flonum
d : Logistic-Dist
(logistic-dist-scale d) — Flonum
d : Logistic-Dist

Represents the logistic distribution family parameterized by mean (also called “location”)
and scale. In this parameterization, the variance is (x 1/3 (sqr (* pi scale))).

Examples:

309

http://wikipedia.org/wiki/Logistic_distribution
http://wikipedia.org/wiki/Logistic_distribution

> (plot (for/list ([p (in-list '(0 -1 0 2))]
[s (in-list '(1 1/2 2.25 0.7))]
[i (in-naturals)])
(function (distribution-pdf (logistic-dist u s))
#:color i #:label (format "Logistic(Ta,”a)" u s)))
#:x-min -8 #:x-max 8 #:y-label "density"
#:legend-anchor 'top-right)
| |] | | | |]

f f f f]

1 f f t t 1

Logistic(0,1)
Logistic(-1,1/2)

1 Logistic(0,2.25)

Logistic(2,0.7)

X axis

> (plot (for/list ([p (in-list '(0 -1 0 2))]
[s (in-list '(1 1/2 2.25 0.7))]
[i (in-naturals)])
(function (ordered-dist-cdf (logistic-dist u s))
#:color i #:label (format "Logistic(Ta,”a)" u s)))
#:x-min -8 #:x-max 8 #:y-label "probability")

310

t t 1
Logistic(0,1)
Logistic(-1,1/2)
Logistic(0,2.25)
Logistic(2,0.7)

probability

9.5.8 Normal Distributions

Normal-Dist
(normal-dist [mean stddev]) — Normal-Dist
mean : Real = 0
stddev : Real =1
(normal-dist-mean d) — Flonum
d : Normal-Dist
(normal-dist-stddev d) — Flonum
d : Normal-Dist

Represents the normal distribution family parameterized by mean and standard deviation.

Warning: The normal distribution family is often parameterized by mean and variance,
which is the square of standard deviation. Construct normal distributions from variances

using

311

Wikipedia: Normal
Distribution.

http://wikipedia.org/wiki/Normal_distribution
http://wikipedia.org/wiki/Normal_distribution

(normal-dist mean (sqrt var))

Examples:

> (plot (for/list ([p (in-list '(0 -1 0 2))]
[c (in-list '(1 1/2 2.25 0.7))]
[i (in-naturals)])
(function (distribution-pdf (normal-dist u o))
#:color i #:1label (format "N("a,”a)" u o0)))
#:x-min -5 #:x-max 5 #:y-label "density")
]] n] |] |

4 2 0 2 4

X axis

> (plot (for/list ([p (in-list '(0 -1 0 2))]
[c (in-list '(1 1/2 2.25 0.7))]
[i (in-naturals)])
(function (ordered-dist-cdf (normal-dist u o))
#:color i #:label (format "N(Ta,”a)" u o)))
#:x-min -5 #:x-max 5 #:y-label "probability")

312

probability

9.5.9 Student-t Distributions
Wikipedia:
Student-t
Distribution.

Student-t-Dist
(student-t-dist freedom [mean scale]) — Student-t-Dist

freedom : Positive-Real
mean : Real = 0
scale : Real =1
(student-t-dist-freedom d) — Positive-Flonum
d : Student-t-Dist
(student-t-dist-mean d) — Real
d : Student-t-Dist
(student-t-dist-scale d) — Real
d : Student-t-Dist

Represents the student-t distribution family parameterized by degree of freedom, mean (also
called “location”) and scale.

313

https://en.wikipedia.org/wiki/Student's_t-distribution
https://en.wikipedia.org/wiki/Student's_t-distribution

Examples:

> (plot (for/list ([v (in-list '(1 2 3 5.5))]
[(in-list '(0 0 0 2.3))]
[c (in-list '(1 1 1 0.4))]
[i (in-naturals)])
(function (distribution-pdf (student-t-dist v u o))
#:color i #:1label (if (and (= u 0) (= o 1))
(format "Stud-t(7a)" v)
(format "Stud-
t(Ta,"a,”a)" v u 0))))
#:x-min -5 #:x-max 10 #:y-label "density")
]]

i i i | |
| [Stud-t(1) S I
Stud-t(2) _
Stud-t(3) _
81| Stud-1(552304) —— 4
6+ 4+
=z 1 I
Z
[}
o
A+ 4+
2 +
| i
5 25 0 25 5 75 10

X axis

> (plot (for/list ([v (in-list '(1 2 3 5.5))]
[(in-list '(0 0 0 2.3))]
[c (in-list '(1 1 1 0.4))]
[i (in-naturals)])
(function (ordered-dist-cdf (student-t-dist v u o))
#:color i #:label (if (amnd (= u 0) (= o 1))
(format "Stud-t(7a)" v)

314

(format "Stud-
t(Ta,"a,”a)" v u 0))))
#:x-min -5 #:x-max 10 #:y-label "probability")
|

| | |
| | I
Stud-t(1) S
| [Stud-1(2) — I
Stud-t(3) S
Stud-t(5.523.04) ——
8+ 4+
6+ 4+
=
E
g | I
O
e
[=9
A +
2+ 4+
|] | | |
I 1 1 1 1
5 25 0 25 5 75 10

X axis

9.5.10 Triangular Distributions
Wikipedia:
Triangular
Distribution.
Triangle-Dist
(triangle-dist [min max mode]) — Triangle-Dist
min : Real = 0
max : Real =1
mode : Real = (x 0.5 (+ min max))
(triangle-dist-min d) — Flonum
d : Triangle-Dist
(triangle-dist-max d) — Flonum
d . Triangle-Dist
(triangle-dist-mode d) — Flonum
d : Triangle-Dist

315

http://wikipedia.org/wiki/Triangular_distribution
http://wikipedia.org/wiki/Triangular_distribution

Represents the triangular distribution family parameterized by minimum, maximum and
mode.

If min, mode and max are not in ascending order, they are sorted before constructing the
distribution object.

Examples:

> (plot (for/list ([a (in-list '(-3 -1 -2))]
[b (in-list '(0 1 3))]
[m (in-list '(-2 0 2))]
[i (in-naturals)])
(function (distribution-pdf (triangle-
dist a b m)) #:color i
#:1abel (format "Triangle("a,”a,”a)" a b m)))
#:x-min -3.5 #:x-max 3.5 #:y-label "density")
] |]

1 y 1
Triangle(-3,0,-2)
| | Triangle(-1,1,0) — 1
Triangle(-2,3,2) ——
8+ T
6+ T
f
‘B 4 1
5
ks
4+ T
2+ T
0 f 1 y 1 y i
-2 0 2
X axis

> (plot (for/list ([a (in-list '(-3 -1 -2))]
[b (in-1ist '(0 1 3))]
[m (in-1list '(-2 0 2))]

316

[i (in-naturals)])
(function (ordered-dist-cdf (triangle-
dist a b m)) #:color i
#:1abel (format "Triangle("a,”a,”a)" a b m)))
#:x-min -3.5 #:x-max 3.5 #:y-label "probability")
| | |

1 } } } } } }
Triangle(-3,0,-2) ——
1 Triangle(-1,10) —— 1
Triangle(-2,32) ——
84 -+
6+ -+
2
z
o 1 1
e
S
&
44 -+
24+ -+
0L— | | | |
-2 0 2
X axis

(triangle-dist ¢ c c) for any real c behaves like a support-limited delta distribution
centered at c.

9.5.11 Truncated Distributions

Truncated-Dist

317

(truncated-dist d) — Truncated-Dist
d : Real-Dist

(truncated-dist d max) — Truncated-Dist
d : Real-Dist
max : Real

(truncated-dist d min max) — Truncated-Dist
d : Real-Dist
min : Real
max : Real

(truncated-dist-original t) — Real-Dist
t : Truncated-Dist

(truncated-dist-min t) — Flonum
t : Truncated-Dist

(truncated-dist-max t) — Flonum
t : Truncated-Dist

Represents distributions like d, but with zero density for x < min and for x > max. The
probability of the interval [min, max] is renormalized to one.

(truncated-dist d) is equivalent to (truncated-dist d -inf.0 +inf.0).
(truncated-dist d max) is equivalent to (truncated-dist d -inf.0 max). If
min > max, they are swapped before constructing the distribution object.

Samples are taken by applying the truncated distribution’s inverse cdf to uniform samples.
Examples:

> (define d (normal-dist))
> (define t (truncated-dist d -2 1))
>t
(truncated-dist (normal-dist 0.0 1.0) -2.0 1.0)
> (plot (list (function (distribution-pdf d) #:label "N(0,1)" #:color 0)
(function (distribution-pdf t) #:label "T(N(0,1),-
2,10")
#:x-min -3.5 #:x-max 3.5 #:y-label "density")

318

4] 4 - 4 | 4
t

t T t t I
N(.,1) _

T |T(N(,1),-2,1) — 1
4+ -
3+ -

2
E 1 1
=
()
o
2+ -
A1+ -
0 i I t | }
2 0 2
X axis

> (plot (list (function (ordered-dist-cdf d) #:label "N(0,1)" #:color
(function (ordered-dist-cdf t) #:label "T(N(0,1),-

2,1)")
#:x-min -3.5 #:x-max 3.5 #:y-label "probability")

319

1 . } . }

N(,1) —_—
| TONO.1).2.,1) i

8+ -

6+ -
2
z
o | |
e
[°)
&

4+ -

2+ -

0 f t } } t

2 0 2
X axis

9.5.12 Uniform Distributions

Uniform-Dist
(uniform-dist) — Uniform-Dist
(uniform-dist max) — Uniform-Dist
max : Real
(uniform-dist min max) — Uniform-Dist
min : Real
max : Real
(uniform-dist-min d) — Flonum
d : Uniform-Dist
(uniform-dist-max d) — Flonum
d : Uniform-Dist

Represents the uniform distribution family parameterized by minimum and maximum.

(uniform-dist) is equivalent to (uniform-dist 0 1).

320

(uniform-dist max) is

Wikipedia:
Uniform
Distributionl

http://wikipedia.org/wiki/Uniform_distribution_%28continuous%29
http://wikipedia.org/wiki/Uniform_distribution_%28continuous%29

equivalent to (uniform-dist O max).Ifmax < min, they are swapped before construct-
ing the distribution object.

Examples:

> (plot (for/list ([a (in-list '(-3 -1 -2))]

[b (in-list '(0 1 3))]

[i (in-naturals)])

(function (distribution-pdf (uniform-
dist a b)) #:color i
#:1label (format "Uniform(~a,”a)" a b)))
#:x-min -3.5 #:x-max 3.5 #:y-label "density")
| |

5 . } } } :
Uniform(-3,0)
1 Uniform(-1,1) ——— 1
Uniform(-2,3)
44 -
3+ -
2
g 4 4
[
ks
2+ -
1 £
0 i
-2 0 2
X axis

> (plot (for/list ([a (in-list '(-3 -1 -2))]
[b (in-list '(0 1 3))]
[i (in-naturals)])
(function (ordered-dist-cdf (uniform-
dist a b)) #:color i
#:1label (format "Uniform(~a,”a)" a b)))
#:x-min -3.5 #:x-max 3.5 #:y-label "probability")

321

1 ; } ; } ; }

Uniform(-3,0)
| Uniform(-1,1) ———
Uniform(-2,3)
84 -+
64 -+
iy
z
<
e
S
&
44 -+
24+ -+
0 f } } t
-2 0 2
X axis

(uniform-dist x x) for any real x behaves like a support-limited delta distribution cen-
tered at x.

9.6 Low-Level Distribution Functions

The following functions are provided for users who need lower overhead than that of distri-
bution objects, such as untyped Racket users (currently), and library writers who are imple-
menting their own distribution abstractions.

Because applying these functions is meant to be fast, none of them have optional arguments.
In particular, the boolean flags 1og? and 1-p? are always required.

Every low-level function’s argument list begins with the distribution family parameters. In
the case of pdfs and cdfs, these arguments are followed by a domain value and boolean flags.
In the case of inverse cdfs, they are followed by a probability argument and boolean flags.
For sampling procedures, the distribution family parameters are followed by the requested

322

number of random samples.

Generally, prob is a probability parameter, k is an integer domain value, x is a real domain
value, p is the probability argument to an inverse cdf, and n is the number of random samples.

9.6.1 Integer Distribution Functions

(flbernoulli-pdf prob k log?) — Flonum
prob : Flonum
k : Flonum
log? : Any

(flbernoulli-cdf prob k log? 1-p?) — Flonum
prob : Flonum
k : Flonum
log? : Any
1-p? : Any

(flbernoulli-inv-cdf prob p log? 1-p?) — Flonum
prob : Flonum

p : Flonum
log? : Any
1-p? . Any

(flbernoulli-sample prob n) — FlVector
prob : Flonum
n : Integer

Low-level flonum functions used to implement bernoulli-dist.

(flbinomial-pdf count prob k log?) — Flonum
count : Flonum
prob : Flonum
k : Flonum
log? : Any
(flbinomial-cdf count prob k log? 1-p?) — Flonum
count : Flonum
prob : Flonum
k : Flonum
log? : Any
1-p? . Any
(flbinomial-inv-cdf count prob p log? 1-p?) — Flonum
count : Flonum
prob : Flonum

p : Flonum
log? : Any
1-p? . Any

323

(flbinomial-sample count prob n) — FlVector
count : Flonum
prob : Flonum
n : Integer

Low-level flonum functions used to implement binomial-dist.

(flgeometric-pdf prob k log?) — Flonum
prob : Flonum
k : Flonum
log? : Any

(flgeometric-cdf prob k log? 1-p?) — Flonum
prob : Flonum
k : Flonum
log? : Any
1-p? : Any

(flgeometric-inv-cdf prob p log? 1-p?) — Flonum
prob : Flonum
p : Flonum
log? : Any
1-p? : Any

(flgeometric-sample prob n) — FlVector
prob : Flonum
n : Integer

Low-level flonum functions used to implement geometric-dist.

(flpoisson-pdf mean k log?) — Flonum
mean : Flonum
k : Flonum
log? : Any

(flpoisson-cdf mean k log? 1-p?) — Flonum
mean : Flonum
k : Flonum
log? : Any
1-p? : Any

(flpoisson-inv-cdf mean p log? 1-p?) — Flonum
mean : Flonum

p : Flonum
log? : Any
1-p? : Any

(flpoisson-sample mean n) — FlVector
mean : Flonum
n : Integer

(flpoisson-median mean) — Flonum
mean : Flonum

324

Low-level flonum functions used to implement poisson-dist.

(flpoisson-median mean) runs faster than (flpoisson-inv-cdf mean 0.5 #f
#£), significantly so when mean is large.

9.6.2 Real Distribution Functions

(flbeta-pdf alpha beta x log?) — Flonum
alpha : Flonum
beta : Flonum
x : Flonum
log? : Any
(flbeta-cdf alpha beta x log? 1-p?) — Flonum
alpha : Flonum
beta : Flonum
x : Flonum
log? : Any
1-p? : Any
(flbeta-inv-cdf alpha beta p log? 1-p?) — Flonum
alpha : Flonum
beta : Flonum

p : Flonum
log? : Any
1-p? : Any

(flbeta-sample alpha beta n) — FlVector
alpha : Flonum
beta : Flonum
n : Integer

Low-level flonum functions used to implement beta-dist.

(flcauchy-pdf mode scale x log?) — Flonum
mode : Flonum
scale : Flonum
x : Flonum
log? : Any
(flcauchy-cdf mode scale x log? 1-p?) — Flonum
mode : Flonum
scale : Flonum
x : Flonum
log? : Any
1-p? : Any

325

(flcauchy-inv-cdf mode scale p log? 1-p?) — Flonum
mode : Flonum
scale : Flonum
p : Flonum
log? : Any
1-p? : Any
(flcauchy-sample mode scale n) — FlVector
mode : Flonum
scale : Flonum
n : Integer

Low-level flonum functions used to implement cauchy-dist.

(fldelta-pdf mean x log?) — Flonum
mean : Flonum
x : Flonum
log? : Any

(fldelta-cdf mean x log? 1-p?) — Flonum
mean : Flonum
x : Flonum
log? : Any
1-p? : Any

(fldelta-inv-cdf mean p log? 1-p?) — Flonum
mean : Flonum

p : Flonum
log? : Any
1-p? : Any

Low-level flonum functions used to implement delta-dist.

To get delta-distributed random samples, use (make-flvector n mean).

(flexponential-pdf mean x log?) — Flonum
mean : Flonum
x : Flonum
log? : Any
(flexponential-cdf mean x log? 1-p?) — Flonum
mean : Flonum
x : Flonum
log? : Any
1-p? : Any
(flexponential-inv-cdf mean p log? 1-p?) — Flonum
mean : Flonum
p : Flonum
log? : Any
1-p? : Any

326

(flexponential-sample mean n) — FlVector
mean : Flonum
n : Integer

Low-level flonum functions used to implement exponential-dist.

(flgamma-pdf shape scale x log?) — Flonum
shape : Flonum
scale : Flonum
x : Flonum
log? : Any
(flgamma-cdf shape scale x log? 1-p?) — Flonum
shape : Flonum
scale : Flonum
x : Flonum
log? : Any
1-p? : Any
(flgamma-inv-cdf shape scale p log? 1-p?) — Flonum
shape : Flonum
scale : Flonum

p : Flonum
log? : Any
1-p? : Any

(flgamma-sample shape scale n) — FlVector
shape : Flonum
scale : Flonum
n : Integer

Low-level flonum functions used to implement gamma-dist.

(fllogistic-pdf mean scale x log?) — Flonum
mean : Flonum
scale : Flonum
x : Flonum
log? : Any
(fllogistic-cdf mean scale x log? 1-p?) — Flonum
mean : Flonum
scale : Flonum
x : Flonum
log? : Any
1-p? : Any
(fllogistic-inv-cdf mean scale p log? 1-p?) — Flonum
mean : Flonum
scale : Flonum

p : Flonum
log? : Any
1-p? : Any

327

(fllogistic-sample mean scale n) — FlVector
mean : Flonum
scale : Flonum
n : Integer

Low-level flonum functions used to implement logistic-dist.

(flnormal-pdf mean stddev x log?) — Flonum
mean : Flonum
stddev : Flonum
x : Flonum
log? : Any
(flnormal-cdf mean stddev x log? 1-p?) — Flonum
mean : Flonum
stddev : Flonum
x @ Flonum
log? : Any
1-p? : Any
(flnormal-inv-cdf mean stddev p log? 1-p?) — Flonum
mean : Flonum
stddev : Flonum

p : Flonum
log? : Any
1-p? : Any

(flnormal-sample mean stddev n) — FlVector
mean : Flonum
stddev : Flonum
n : Integer

Low-level flonum functions used to implement normal-dist.

(fltriangle-pdf min max mode x log?) — Flonum
min : Flonum
max : Flonum
mode : Flonum
x : Flonum
log? : Any
(fltriangle-cdf min max mode x log? 1-p?) — Flonum
min : Flonum
max : Flonum
mode : Flonum
x : Flonum
log? : Any
1-p? : Any

328

(fltriangle-inv-cdf min max mode p log? 1-p?) — Flonum
min : Flonum
max : Flonum
mode : Flonum

p : Flonum
log? : Any
1-p? : Any

(fltriangle-sample min max mode n) — FlVector
min : Flonum
max : Flonum
mode : Flonum
n : Integer

Low-level flonum functions used to implement triangle-dist.

(fluniform-pdf min max x log?) — Flonum
min : Flonum
max : Flonum
x : Flonum
log? : Any
(fluniform-cdf min max x log? 1-p?) — Flonum
min : Flonum
max : Flonum
x : Flonum
log? : Any
1-p? : Any
(fluniform-inv-cdf min max p log? 1-p?) — Flonum
min : Flonum
max : Flonum

p : Flonum
log? : Any
1-p? : Any

(fluniform-sample min max n) — FlVector
min : Flonum
max : Flonum
n : Integer

Low-level flonum functions used to implement uniform-dist.

329

10 Stuff That Doesn’t Belong Anywhere Else

(require math/utils) package: math-1ib

10.1 Parallelization

(max-math-threads) — Positive-Integer
(max-math-threads num) — void?
num : Positive-Integer

The maximum number of threads a parallelized math function will use. The default value is
(max 1 (processor-count)).

10.2 Discrete Fourier Transform Conventions

(dft-convention) — (List Real Real)
(dft-convention 1st) — void?
1st : (List Real Real)

A parameter controlling the convention used for scaling discrete Fourier transforms, such
as those performed by array-fft. The default value is ' (1 -1), which represents the
convention used in signal processing.

In general, if Ist is (1ist a b) and n is the length of a transformed array axis or vector,
then

e Each sum is scaled by (expt n (/ (- a 1) 2)).
* Each exponential in the sum has its argument scaled by b.

Conveniently, a Fourier transform with convention (1ist (- a) (- b)) is the inverse of
a Fourier transform with convention (1ist a b).

See Mathematica’s documentation on Fourier, from which this excellent idea was stolen.

(dft-inverse-convention) — (List Real Real)

Returns the convention used for inverse Fourier transforms, given the current convention.

330

https://pkgs.racket-lang.org/package/math-lib
http://reference.wolfram.com/mathematica/tutorial/FourierTransforms.html

10.3 Floating-Point Compliance Testing

(test-floating-point n) — (Listof (List Any Any))
n : Natural

Runs a comprehensive test of the system’s IEEE 754 (floating-point) compliance, and reports
unexpected inaccuracies and errors.

In each test, a function is applied to some carefully chosen values, as well as n additional
random values. Its corresponding bigfloat function is applied to the same values, and the
answers are compared. Each test returns a list of failures, which are appended and returned.

Each failure in a failure list is formatted

(l1ist (list name args ...) reason)
where name is the name of a function, such as 'fl+, args ... are the arguments it was
applied to, and reason is the reason for the failure.

If reason is a flonum, the failure was due to inaccuracy. For example,

(1ist (1list 'fl+ 4.5 2.3) 0.76)

means the result of (£1+ 4.5 2.3) was off by 0.76 ulps.

The threshold for reporting unexpected inaccuracy depends on the function tested. All the
arithmetic and irrational functions exported by racket/f1lonum, for example, must have no
more than 0.5 ulps error in order to be compliant.

Two other possible failure reasons are

(list 'different-zero 0.0 -0.0)
(list 'different-zero -0.0 0.0)

The first zero is the answer returned by the function, and the second zero is the expected
answer.

Other possible failure reasons have the form

(1ist 'mot-f127 x y)
meaning that the result (values x y) is not a valid flonum expansion. Such reasons are
only given for failures of functions whose names begin with £12 or contain /error. These

functions are currently undocumented, but are used to implement many math/flonum,
math/special-functions, and math/distributions functions.

331

Tests of functions that operate on and return flonum expansions are the strictest tests, requir-
ing hardware arithmetic to be perfectly IEEE 754 compliant. They reliably fail on seemingly
innocuous noncompliant behavior, such as computing intermediate results with 80-bit preci-
sion.

(print-fp-test-progress?) — Boolean
(print-fp-test-progress? print?) — void?
print? : Boolean

When (print-fp-test-progress?) is #t, floating-point tests print and flush a represen-
tation of their progress as they run. The default value is #t.

332

	1 Constants and Elementary Functions
	1.1 Constants
	1.2 Functions
	1.3 Random Number Generation
	1.4 Measuring Error

	2 Flonums
	2.1 Additional Flonum Functions
	2.2 Log-Space Arithmetic
	2.3 Debugging Flonum Functions
	2.3.1 Measuring Floating-Point Error
	2.3.2 Flonum Constants
	2.3.3 Low-Level Flonum Operations

	2.4 Double-Double Operations
	2.4.1 Debugging Double-Double Functions
	2.4.2 Low-Level Double-Double Operations

	2.5 Additional Flonum Vector Functions

	3 Special Functions
	3.1 Real Functions
	3.2 Flonum Functions

	4 Number Theory
	4.1 Congruences and Modular Arithmetic
	4.1.1 Parameterized Modular Arithmetic

	4.2 Primes
	4.3 Roots
	4.4 Powers
	4.5 Multiplicative and Arithmetic Functions
	4.6 Number Sequences
	4.7 Combinatorics
	4.8 Special Numbers
	4.8.1 Polygonal Numbers

	4.9 Fractions
	4.10 The Quadratic Equation
	4.11 The group Zn and Primitive Roots

	5 Arbitrary-Precision Floating-Point Numbers (Bigfloats)
	5.1 Quick Start
	5.2 Fictionally Asked Questions
	5.3 Type and Constructors
	5.4 Accessors and Conversion Functions
	5.5 Parameters
	5.6 Constants
	5.7 Predicates
	5.8 Rounding
	5.9 Mathematical Operations
	5.10 Low-level Functions

	6 Arrays
	6.1 Quick Start
	6.2 Definitions
	6.3 Broadcasting
	6.3.1 Broadcasting Rules
	6.3.2 Broadcasting Control

	6.4 Slicing
	6.4.1 (Sequenceof Integer): pick rows
	6.4.2 Slice: pick rows in a length-aware way
	6.4.3 Slice-Dots: preserve remaining axes
	6.4.4 Integer: remove an axis
	6.4.5 Slice-New-Axis: add an axis

	6.5 Nonstrict Arrays
	6.5.1 Caching Nonstrict Elements
	6.5.2 Performance Considerations

	6.6 Types, Predicates and Accessors
	6.7 Construction
	6.8 Conversion
	6.8.1 Printing

	6.9 Comprehensions and Sequences
	6.10 Pointwise Operations
	6.10.1 Broadcasting

	6.11 Indexing and Slicing
	6.12 Transformations
	6.13 Folds, Reductions and Expansions
	6.13.1 Axis Folds
	6.13.2 Whole-Array Folds
	6.13.3 General Reductions and Expansions

	6.14 Other Array Operations
	6.14.1 Fast Fourier Transform

	6.15 Subtypes
	6.15.1 Flonum Arrays
	6.15.2 Float-Complex Arrays

	6.16 Strictness

	7 Matrices and Linear Algebra
	7.1 Introduction
	7.1.1 Function Types
	7.1.2 Failure Arguments
	7.1.3 Broadcasting
	7.1.4 Strictness

	7.2 Types, Predicates and Accessors
	7.3 Construction
	7.4 Conversion
	7.5 Entrywise Operations and Arithmetic
	7.6 Polymorphic Operations
	7.7 Basic Operations
	7.8 Inner Product Space Operations
	7.9 Solving Systems of Equations
	7.10 Row-Based Algorithms
	7.11 Orthogonal Algorithms
	7.12 Operator Norms and Comparing Matrices

	8 Statistics Functions
	8.1 Expected Values
	8.2 Running Expected Values
	8.3 Correlation
	8.4 Counting and Binning
	8.5 Order Statistics
	8.6 Simulations

	9 Probability Distributions
	9.1 Distribution Objects
	9.2 Distribution Types and Operations
	9.3 Finite Distribution Families
	9.3.1 Unordered Discrete Distributions

	9.4 Integer Distribution Families
	9.4.1 Bernoulli Distributions
	9.4.2 Binomial Distributions
	9.4.3 Geometric Distributions
	9.4.4 Poisson Distributions

	9.5 Real Distribution Families
	9.5.1 Beta Distributions
	9.5.2 Cauchy Distributions
	9.5.3 Delta Distributions
	9.5.4 Exponential Distributions
	9.5.5 Gamma Distributions
	9.5.6 Weibull Distributions
	9.5.7 Logistic Distributions
	9.5.8 Normal Distributions
	9.5.9 Student-t Distributions
	9.5.10 Triangular Distributions
	9.5.11 Truncated Distributions
	9.5.12 Uniform Distributions

	9.6 Low-Level Distribution Functions
	9.6.1 Integer Distribution Functions
	9.6.2 Real Distribution Functions

	10 Stuff That Doesn't Belong Anywhere Else
	10.1 Parallelization
	10.2 Discrete Fourier Transform Conventions
	10.3 Floating-Point Compliance Testing

