Parser Tools: lex and yacc-style Parsing

Version 8.0.0.12

Scott Owens

March 23, 2021

This documentation assumes familiarity with lex and yacc style lexer and parser generators.
1 Lexers

(require parser-tools/lex) package:parser-tools-lib

1.1 Creating a Lexer

(lexer maybe-suppress-warnings [trigger action-expr] ...)

maybe-suppress-warnings =
 | #:suppress-warnings

trigger = re
 | (eof)
 | (special)
 | (special-comment)

re = id
 | string
 | character
 | (repetition lo hi re)
 | (union re ...)
 | (intersection re ...)
 | (complement re)
 | (concatenation re ...)
 | (char-range char char)
 | (char-complement re)
 | (id datum ...)

Produces a function that takes an input-port, matches the re patterns against the buffer, and returns the result of executing the corresponding action-expr. When multiple patterns match, a lexer will choose the longest match, breaking ties in favor of the rule appearing first.

An re is matched as follows:

- id — expands to the named lexer abbreviation; abbreviations are defined via define-lex-abbrev or supplied by modules like parser-tools/lex-sre.
- string — matches the sequence of characters in string.
- character — matches a literal character.
- (repetition lo hi re) — matches re repeated between lo and hi times, inclusive; hi can be +inf.0 for unbounded repetitions.
• (union re ...) — matches if any of the sub-expressions match
• (intersection re ...) — matches if all of the re's match.
• (complement re) — matches anything that re does not.
• (concatenation re ...) — matches each re in succession.
• (char-range char char) — matches any character between the two (inclusive); a single character string can be used as a char.
• (char-complement re) — matches any character not matched by re. The sub-expression must be a set of characters re.
• (id datum ...) — expands the lexer macro named id; macros are defined via define-lex-trans.

Note that both (concatenation) and "" match the empty string, (union) matches nothing, (intersection) matches any string, and (char-complement (union)) matches any single character.

The regular expression language is not designed to be used directly, but rather as a basis for a user-friendly notation written with regular expression macros. For example, parser-tools/lex-sre supplies operators from Olin Shivers's SREs, and parser-tools/lex-plt-v200 supplies (deprecated) operators from the previous version of this library. Since those libraries provide operators whose names match other Racket bindings, such as * and +, they normally must be imported using a prefix:

(require (prefix-in : parser-tools/lex-sre))

The suggested prefix is :, so that :* and :+ are imported. Of course, a prefix other than : (such as re-) will work too.

Since negation is not a common operator on regular expressions, here are a few examples, using : prefixed SRE syntax:

• (complement "1")
 Matches all strings except the string "1", including "11", "111", "0", "01", "", and so on.
• (complement (:* "1"))
 Matches all strings that are not sequences of "1", including "0", "00", "1110", "0111", "11001010" and so on.
• (:& (:: any-string "111" any-string)
 (complement (:or (:: any-string "01") (:* "1")))))
Matches all strings that have 3 consecutive ones, but not those that end in "01" and not those that are ones only. These include "1110", "0001000111" and "0111" but not "", "11", "11101", "111" and "11111".

- (:: "/*" (complement (:: any-string "/*" any-string)) "*/")
 Matches Java/C block comments. "/**/", "/******/", "/*/*/", "/***/", "/**/asg4/" and so on. It does not match "/**/*/", "/* */" and so on. (:: any-string "*/" any-string) matches any string that has a "*/" in is, so (complement (:: any-string "*/" any-string)) matches any string without a "*/" in it.

- (:: "/*/" (:* (complement "*/")) "*/")
 Matches any string that starts with "/*/" and ends with "*/", including "/* */ */ "/. (complement "*/") matches any string except "*/". This includes "*/" and "/" separately. Thus (:* (complement "*/")) matches "*/" by first matching "*/" and then matching "/". Any other string is matched directly by (complement "*/"). In other words, (:* (complement "xx")) = any-string. It is usually not correct to place a :* around a complement.

The following binding have special meaning inside of a lexer action:

- start-pos — a position struct for the first character matched.
- end-pos — a position struct for the character after the last character in the match.
- lexeme — the matched string.
- input-port — the input-port being processed (this is useful for matching input with multiple lexers).
- (return-without-pos x) is a function (continuation) that immediately returns the value of x from the lexer. This useful in a src-pos lexer to prevent the lexer from adding source information. For example:

 (define get-token
 (lexer-src-pos
 ...
 ((comment) (get-token input-port))
 ...))

would wrap the source location information for the comment around the value of the recursive call. Using ((comment) (return-without-pos (get-token input-port))) will cause the value of the recursive call to be returned without wrapping position around it.

The lexer raises an exception (exn:read) if none of the regular expressions match the input. Hint: If (any-char custom-error-behavior) is the last rule, then there will always be
a match, and custom-error-behavior is executed to handle the error situation as desired, only consuming the first character from the input buffer.

In addition to returning characters, input ports can return eof-objects. Custom input ports can also return a special-comment value to indicate a non-textual comment, or return another arbitrary value (a special). The non-re trigger forms handle these cases:

- The (eof) rule is matched when the input port returns an eof-object value. If no (eof) rule is present, the lexer returns the symbol 'eof when the port returns an eof-object value.
- The (special-comment) rule is matched when the input port returns a special-comment structure. If no special-comment rule is present, the lexer automatically tries to return the next token from the input port.
- The (special) rule is matched when the input port returns a value other than a character, eof-object, or special-comment structure. If no (special) rule is present, the lexer returns (void).

End-of-files, specials, special-comments and special-errors cannot be parsed via a rule using an ordinary regular expression (but dropping down and manipulating the port to handle them is possible in some situations).

Since the lexer gets its source information from the port, use port-count-lines! to enable the tracking of line and column information. Otherwise, the line and column information will return #f.

When peeking from the input port raises an exception (such as by an embedded XML editor with malformed syntax), the exception can be raised before all tokens preceding the exception have been returned.

Each time the racket code for a lexer is compiled (e.g. when a ".rkt" file containing a lexer form is loaded), the lexer generator is run. To avoid this overhead place the lexer into a module and compile the module to a ".zo" bytecode file.

If the lexer can accept the empty string, a message is sent to current-logger. These warnings can be disabled by giving the #:suppress-warnings flag.

Changed in version 7.7.0.7 of package parser-tools-lib: Add #:suppress-warnings flag.

(lexer-src-pos maybe-suppress-warnings [trigger action-expr] ...)

Like lexer, but for each action-result produced by an action-expr, returns (make-position-token action-result start-pos end-pos) instead of simply action-result.

| start-pos
Use of these names outside of a \texttt{lexer} action is a syntax error.

```scheme
(struct position (offset line col)
    #:extra-constructor-name make-position)
offset : exact-positive-integer?
line : exact-positive-integer?
col : exact-nonnegative-integer?
```

Instances of \texttt{position} are bound to \texttt{start-pos} and \texttt{end-pos}. The \texttt{offset} field contains the offset of the character in the input. The \texttt{line} field contains the line number of the character. The \texttt{col} field contains the offset in the current line.

```scheme
(struct position-token (token start-pos end-pos)
    #:extra-constructor-name make-position-token)
token : any/c
start-pos : position?
end-pos : position?
```

Lexers created with \texttt{lexer-src-pos} return instances of \texttt{position-token}.

```scheme
(file-path) → any/c
(file-path source) → void?
source : any/c
```

A parameter that the lexer uses as the source location if it raises a \texttt{exn:fail:read} error. Setting this parameter allows DrRacket, for example, to open the file containing the error.

1.2 Lexer Abbreviations and Macros

```scheme
(char-set string)
```

A lexer macro that matches any character in \texttt{string}.

```scheme
any-char
```

A lexer abbreviation that matches any character.

```scheme
any-string
```
A lexer abbreviation that matches any string.

```
nothing
```

A lexer abbreviation that matches no string.

```
alphabet
lower-case
upper-case
title-case
numeric
symbolic
punctuation
graphic
whitespace
blank
iso-control
```

Lexer abbreviations that match `char-alphabetic?` characters, `char-lower-case?` characters, etc.

```
(define-lex-abbrev id re)
```

Defines a lexer abbreviation by associating a regular expression to be used in place of the `id` in other regular expression. The definition of name has the same scoping properties as a other syntactic binding (e.g., it can be exported from a module).

```
(define-lex-abbrevs (id re) ...)
```

Like `define-lex-abbrev`, but defines several lexer abbreviations.

```
(define-lex-trans id trans-expr)
```

Defines a lexer macro, where `trans-expr` produces a transformer procedure that takes one argument. When `(id datum ...)` appears as a regular expression, it is replaced with the result of applying the transformer to the expression.

1.3 Lexer SRE Operators

```
(require parser-tools/lex-sre)
```

```
package: parser-tools-lib
```

```
(* re ...)
```
Repetition of \texttt{re} sequence 0 or more times.
\[(+ \texttt{re} \ldots) \]

Repetition of \texttt{re} sequence 1 or more times.
\[(? \texttt{re} \ldots) \]

Zero or one occurrence of \texttt{re} sequence.
\[(= n \texttt{re} \ldots) \]

Exactly \(n \) occurrences of \texttt{re} sequence, where \(n \) must be a literal exact, non-negative number.
\[(\geq n \texttt{re} \ldots) \]

At least \(n \) occurrences of \texttt{re} sequence, where \(n \) must be a literal exact, non-negative number.
\[(** n m \texttt{re} \ldots) \]

Between \(n \) and \(m \) (inclusive) occurrences of \texttt{re} sequence, where \(n \) must be a literal exact, non-negative number, and \(m \) must be literally either \texttt{#f}, \texttt{+inf.0}, or an exact, non-negative number; a \texttt{#f} value for \(m \) is the same as \texttt{+inf.0}.
\[(\texttt{or re} \ldots) \]

Same as \texttt{(union re} \ldots\texttt{)}.
\[(: \texttt{re} \ldots) \]
\[(\texttt{seq re} \ldots) \]

Both forms concatenate the \texttt{res}.
\[(\& \texttt{re} \ldots) \]

Intersects the \texttt{res}.

9
The set difference of the \textit{res}.

Character-set complement, which each \textit{re} must match exactly one character.

Character ranges, matching characters between successive pairs of characters.

1.4 Lexer Legacy Operators

\begin{verbatim}
(require parser-tools/lex-plt-v200)
 package: parser-tools-lib
\end{verbatim}

The \texttt{parser-tools/lex-plt-v200} module re-exports \texttt{*}, \texttt{+}, \texttt{?}, and \texttt{k} from \texttt{parser-tools/lex-sre}. It also re-exports \texttt{:or} as \texttt{\&}, \texttt{::} as \texttt{\&\&}, \texttt:{~} as \texttt{\&\&}, and \texttt{:/} as \texttt{-}.

A lexer macro that matches an empty sequence.

The same as \texttt{(complement re ...)}.

1.5 Tokens

Each \texttt{action-expr} in a lexer form can produce any kind of value, but for many purposes, producing a \texttt{token} value is useful. Tokens are usually necessary for inter-operating with a parser generated by \texttt{parser-tools/parser}, but tokens may not be the right choice when using lexer in other situations.

\begin{verbatim}
(define-tokens group-id (token-id ...))
\end{verbatim}
Binds group-id to the group of tokens being defined. For each token-id, a function token-token-id is created that takes any value and puts it in a token record specific to token-id. The token value is inspected using token-id and token-value.

A token cannot be named error, since error has special use in the parser.

```scheme
(define-empty-tokens group-id (token-id ...))
```

Like define-tokens, except each token constructor token-token-id takes no arguments and returns (quote token-id).

```scheme
(token-name t) -> symbol?
t : (or/c token? symbol?)
```

Returns the name of a token that is represented either by a symbol or a token structure.

```scheme
(token-value t) -> any/c
t : (or/c token? symbol?)
```

Returns the value of a token that is represented either by a symbol or a token structure, returning #f for a symbol token.

```scheme
(token? v) -> boolean?
v : any/c
```

Returns #t if val is a token structure, #f otherwise.
2 LALR(1) Parsers

```
(require parser-tools/yacc)
```

<table>
<thead>
<tr>
<th>(package parser-tools-lib)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(parser clause ...)</td>
</tr>
</tbody>
</table>

```
clause = (grammar (non-terminal-id
    ((grammar-id ...) maybe-prec expr)
    ...
    ...
    | (tokens group-id ...) |
    | (start non-terminal-id ...) |
    | (end token-id ...) |
    | (error expr) |
    | (precs (assoc token-id ...) ...) |
    | (src-pos) |
    | (suppress) |
    | (expected-SR-conflicts num) |
    | (expected-RR-conflicts num) |
    | (debug filename) |
    | (yacc-output filename) |
```

```
maybe-prec = |
    | (prec token-id) |

assoc = left |
    | right |
    | nonassoc |
```

Creates a parser. The clauses may be in any order, as long as there are no duplicates and all non-**OPTIONAL** declarations are present:

- (grammar (non-terminal-id
 ((grammar-id ...) maybe-prec expr)
 ...
 ...
 Declares the grammar to be parsed. Each **grammar-id** can be a **token-id** from a **group-id** named in a **tokens** declaration, or it can be a **non-terminal-id** declared in the **grammar** declaration. The optional **prec** declaration works with the **precs** declaration. The **expr** is a “semantic action,” which is evaluated when the input is found to match its corresponding production.

Each action is Racket code that has the same scope as its parser’s definition, except that the variables \$1, ..., \$i are bound, where \(i\) is the number of **grammar-ids** in the corresponding production. Each \$k\ is bound to the result of the action for the \(k^{th}\)}
grammar symbol on the right of the production, if that grammar symbol is a non-
terminal, or the value stored in the token if the grammar symbol is a terminal. If the
src-pos option is present in the parser, then variables $1-start-pos, ..., $i-start-
pos and $1-end-pos, ..., $i-end-pos and are also available, and they refer to the
position structures corresponding to the start and end of the corresponding grammar-
symbol. Grammar symbols defined as empty-tokens have no $k associated, but do
have $k-start-pos and $k-end-pos. Also $n-start-pos and $n-end-pos are
bound to the largest start and end positions, (i.e., $i-start-pos and $i-end-pos).

An error production can be defined by providing a production of the form (error
α), where α is a string of grammar symbols, possibly empty.

All of the productions for a given non-terminal must be grouped with it. That is, no
non-terminal-id may appear twice on the left hand side in a parser.

• (tokens group-id ...)
 Declares that all of the tokens defined in each group-id—as bound by define-
tokens or define-empty-tokens—can be used by the parser in the grammar
declaration.

• (start non-terminal-id ...)
 Declares a list of starting non-terminals for the grammar.

• (end token-id ...)
 Specifies a set of tokens from which some member must follow any valid parse. For
 example, an EOF token would be specified for a parser that parses entire files and a
 newline token for a parser that parses entire lines individually.

• (error expr)
 The expr should evaluate to a function which will be executed for its side-effect
 whenever the parser encounters an error.

 If the src-pos declaration is present, the function should accept 5 arguments,:

 (lambda (tok-ok? tok-name tok-value start-pos end-pos)
 )

 Otherwise it should accept 3:

 (lambda (tok-ok? tok-name tok-value)
 )

 The first argument will be #f if and only if the error is that an invalid token was
 received. The second and third arguments will be the name and the value of the token
 at which the error was detected. The fourth and fifth arguments, if present, provide
 the source positions of that token.

 In both cases, the function is allowed to accept an additional keyword argument named
 #:stack. This argument is a representation of the parsing automata’s stack. This
 can, for example, be used to generate context-sensitive error messages as described in
 Generating LR syntax error messages from examples by Clinton L. Jeffrey.
• \[\text{precs (assoc token-id ...)} \ldots\] \textit{OPTIONAL}

Precedence declarations to resolve shift/reduce and reduce/reduce conflicts as in yacc/bison. An \textit{assoc} must be one of \texttt{left}, \texttt{right} or \texttt{nonassoc}. States with multiple shift/reduce or reduce/reduce conflicts (or some combination thereof) are not resolved with precedence.

• \[\text{(src-pos)} \textit{OPTIONAL}\]

Causes the generated parser to expect input in the form \texttt{(make-position-token token start-pos end-pos)} instead of simply \texttt{token}. Include this option when using the parser with a lexer generated with \texttt{lexer-src-pos}.

• \[\text{(debug filename)} \textit{OPTIONAL}\]

Causes the parser generator to write the LALR table to the file named \texttt{filename} (unless the file exists), where \texttt{filename} is a literal string. Additionally, if a debug file is specified, when a running generated parser encounters a parse error on some input file, after the user specified error expression returns, the complete parse stack is printed to assist in debugging the grammar of that particular parser. The numbers in the stack printout correspond to the state numbers in the LALR table file.

• \[\text{(yacc-output filename)} \textit{OPTIONAL}\]

Causes the parser generator to write a grammar file in approximately the syntax of yacc/bison. The file might not be a valid yacc file, because the Racket grammar can use symbols that are invalid in C.

• \[\text{(suppress)} \textit{OPTIONAL}\]

Causes the parser generator not to report shift/reduce or reduce/reduce conflicts.

• \[\text{(expected-SR-conflicts n)} \textit{OPTIONAL}\]

Causes the parser generator to expect exactly \texttt{num} shift/reduce conflicts, where \texttt{num} must be a literal number. The \texttt{suppress} option overrides this option.

• \[\text{(expected-RR-conflicts n)} \textit{OPTIONAL}\]

Causes the parser generator to expect exactly \texttt{num} reduce/reduce conflicts, where \texttt{num} must be a literal number. The \texttt{suppress} option overrides this option.

The result of a \texttt{parser} expression with one \texttt{start} non-terminal is a function, \texttt{parse}, that takes one argument. This argument must be a zero argument function, \texttt{gen}, that produces successive tokens of the input each time it is called. If desired, the \texttt{gen} may return symbols instead of tokens, and the parser will treat symbols as tokens of the corresponding name (with \texttt{#f} as a value, so it is usual to return symbols only in the case of empty tokens). The \texttt{parse} function returns the value associated with the parse tree by the semantic actions. If the parser encounters an error, after invoking the supplied error function, it will try to use error productions to continue parsing. If it cannot, it raises \texttt{exn:fail:read}.
If multiple non-terminals are provided in `start`, the parser expression produces a list of parsing functions, one for each non-terminal in the same order. Each parsing function is like the result of a parser expression with only one `start` non-terminal.

Each time the Racket code for a parser is compiled (e.g. when a "\.rkt" file containing a parser form is loaded), the parser generator is run. To avoid this overhead place the parser into a module and compile the module to a "\.zo" bytecode file.
3 Context-Free Parsers

```scheme
(require parser-tools/cfg-parser)
package: parser-tools-lib
```

The `parser-tools/cfg-parser` library provides a parser generator that is an alternative to that of `parser-tools/yacc`.

```scheme
(cfg-parser clause ...)
```

```
clause = (grammar (non-terminal-id
     ((grammar-id ...) maybe-prec expr)
     ...) ...) |
         (tokens group-id ...) |
         (start non-terminal-id ...) |
         (end token-id ...) |
         (error expr) |
         (src-pos)
```

Creates a parser similar to that of `parser`. Unlike `parser`, `cfg-parser`, can consume arbitrary and potentially ambiguous context-free grammars. Its interface is a subset of `parser-tools/yacc`, with the following differences:

- `(start non-terminal-id)`
 Unlike `parser`, `cfg-parser` only allows for a single non-terminal-id.

- The `cfg-parser` form does not support the `precs`, `suppress`, `expected-SR-conflicts`, `expected-RR-conflicts`, `debug`, or `yacc-output` options of `parser`.
4 Converting yacc or bison Grammars

```
(requires parser-tools/yacc-to-scheme)
package: parser-tools-lib

(trans file) -> any/c
  file : path-string?
```

Reads a C yacc/bison grammar from file and produces an s-expression that represents a Racket parser for use with parser.

This function is intended to assist in the manual conversion of grammars for use with parser, and not as a fully automatic conversion tool. It is not entirely robust. For example, if the C actions in the original grammar have nested blocks, the tool will fail.

Annotated examples are in the "examples" subdirectory of the "parser-tools" collection.
trans, 17
upper-case, 8
whitespace, 8
yacc, 12
\sim, 10
\sim, 10