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ABSTRACT

Incremental Parallelization of Existing Sequential Runtime Systems

James Swaine

Many language implementations, particularly for high-level and scripting languages, are based

on carefully honed runtime systems that have an internally sequential execution model. Adding

support for parallelism in the usual form—as threads that run arbitrary code in parallel—would re-

quire a major revision or even a rewrite to add safe and efficient locking and communication. This

dissertation describes an alternative approach to incremental parallelization of runtime systems.

This approach can be applied inexpensively to many sequential runtime systems, and we demon-

strate its effectiveness in the Racket runtime system and Parrot virtual machine. The evaluation

assesses performance benefits, developer effort needed to implement such a system in these two

runtime systems, and the ease with which users can leverage the resulting parallel programming

constructs without sacrificing expressiveness. We find that incremental parallelization can provide

useful, scalable parallelism on commodity multicore processors at a fraction of the effort required

to implement conventional parallel threads.
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Part 1

Runtime Systems from a Sequential Era



Many modern high-level or scripting languages are implemented around an interpretive run-

time system, often with a JIT compiler. Examples include the Racket [18] runtime system, the Par-

rot virtual machine, and the virtual machines underlying Perl, Python, Ruby, and other productivity-

oriented languages. These runtime systems are often the result of many man-years of effort, and

they have been carefully tuned for capability, functionality, correctness, and performance.

For the most part, such runtime systems have not been designed to support parallelism on

multiple processors. Even when a language supports constructs for concurrency, they are typically

implemented through co-routines or OS-level threads that are constrained to execute one at a time.

This limitation has become a serious issue, as it is clear that exploiting parallelism is essential to

harnessing performance in future processor generations. Whether computer architects envision the

future as involving homogeneous or heterogeneous multicores, and with whatever form of memory

coherence or consistency model, the common theme is that the future is parallel and that language

implementations must adapt. The essential problem is making the language implementation safe

for low-level parallelism, i.e., ensuring that even when two threads are modifying internal data

structures at the same time, the runtime system behaves correctly.

One approach to enabling parallelism would be to allow existing concurrency constructs to

run in parallel, and to rewrite or revise the runtime system to carefully employ locking or explicit

communication. Experience with that approach, as well as the persistence of the global interpreter

lock in implementations for Python and Ruby, suggests that such a conversion is extremely difficult

to perform correctly. Based on the even longer history of experience in parallel systems, one

would also expect the result to scale poorly as more and more processors become available. The

alternative of simply throwing out the current runtime and re-designing and implementing it around

a carefully designed concurrency model is no better, as it would require discarding years or decades
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of effort in building an effective system, and this approach also risks losing much of the language’s

momentum as the developers are engaged in tasks with little visible improvement for a long period.

This dissertation investigates a new technique for parallelizing runtime systems, called slow-

path barricading. The technique is based on the observation that the core of many programs—and

particularly the part that runs fast sequentially and can benefit most from parallelism—involves rel-

atively few side effects with respect to the language implementation’s internal state. Thus, instead

of wholesale conversion of the runtime system to support arbitrary concurrency, we add language

constructs that focus and restrict concurrency where the implementation can easily support it.

Specifically, the set of primitives in a language implementation is partitioned into safe (for par-

allelism) and unsafe categories. The programmer is then given a mechanism to start a parallel task;

as long as the task sticks to safe operations, it stays in the so-called fast path of the implementation

and thus is safe for parallelism. As soon as the computation hits a barricade, the runtime system

suspends the computation until the operation can be handled in the more general, purely sequential

part of the runtime system.

Although the programming model allows only a subset of language operations to be executed

in parallel, this subset roughly corresponds to the set of operations that the programmer already

knows (or should know) to be fast in sequential code. Thus, a programmer who is reasonably ca-

pable of writing fast programs in the language already possesses the knowledge to write a program

that avoids unsafe operations—and one that therefore exhibits good scaling for parallelism. Fur-

thermore, this approach enables clear feedback to the programmer about when and how a program

uses unsafe operations.
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CHAPTER 1

Thesis Statement

The thesis of this dissertation is:

We can incrementally add effective parallel programming primitives and tool support to

legacy sequential runtime systems with a modest investment of effort.

The following chapters support the hypothesis by demonstrating the validity of each of the

adjectives found in the thesis statement.

1.1. Incremental

A straightforward, conservative implementation of slow-path barricading yields a system that

supports parallel threads, but may not scale because a majority of the language’s primitives are

barricaded. The key advantage to adding parallelism in this way is that the runtime system imple-

menter can first build a prototype in a fraction of the time required by wholesale rewriting and then

work on un-barricading primitives one at a time. Instead of incurring a huge initial overhead with

little chance of producing a bug-free, stable initial release, we incur a small one with a good chance

of producing a stable (but slow) release and then amortize the remainder of the work. Meanwhile,

our users are already using the system and providing feedback regarding both performance and

correctness bugs—allowing us to better prioritize which primitives receive the most attention in

terms of development man-hours.
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1.2. Effective Parallel Programming Primitives

Performance is the most important determinant of the effectiveness of any parallel system.

This dissertation will demonstrate, through a series of benchmark implementations and a real-

world example, that slow-path barricading implementations in both the Racket and Parrot runtime

systems can be used to produce parallel programs which scale well (i.e. they perform within

a constant factor of an equivalent implementation in some other well-established language with

hardware-threading support such as C or Java).

1.3. Effective Tool Support

While the runtime system implementer works to eliminate barricades from the system, users

are left with the problem of how to deal with an implementation which may sometimes restrict

parallelism in unexpected ways. If a well-written parallel algorithm is not scaling, the programmer

must be able to identify which barricaded primitives are the source of the problem. We show how

Racket’s parallel profiler, a graphical tool showing performance information about futures, can be

used to tune a program that is not scaling due to some limitation of the barricading implementation.

1.4. Modest Investment

Building a stable, correct runtime system is both complicated and time-consuming; retrofitting

one to support parallel execution is equally, if not more, difficult. Few sequential language runtime

systems have successfully made the transition to a truly parallel implementation, with the Java

Virtual Machine being one notable exception [14]. Instead, increasingly exotic methods have been

explored in order to deliberately avoid the problem of pervasive rewriting [33]. The slow-path

barricading technique makes this undertaking tractable, and details concerning the development

overhead incurred in both the Racket and Parrot implementations are given in part V.
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CHAPTER 2

Overview

Part II introduces the languages and API’s used throughout this dissertation, including the

Racket language and its associated parallel libraries and utilities. Part III demonstrates the use of

these tools by working through several example programs. Part IV explains in detail the imple-

mentation of futures, both in a general sense (for any runtime system) and specific sense (Racket

and Parrot), and their accompanying profiling tools. Part V evaluates the futures approach both in

terms of its development overhead and the performance of the two libraries our applications of it

produced. Part VI surveys related work in high-level parallel languages and runtime systems, as

well as relevant work in profiling and visualization tools for parallel systems.



Part 2

Background
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CHAPTER 3

Racket

The Racket language is a programming language in the Lisp/Scheme family.1 It is multi-

paradigm, allowing programmers to mix object-oriented, functional, or imperative styles in what-

ever way is appropriate for the task at hand. Its rich macro system serves as a platform for language

design, and the Racket core ships with a litany of specialized languages built using this system.

For example, this document was built using scribble [17], a documentation-generation language,

for typesetting; and slideshow [16], a language enabling programmatic assembly of slide-based

presentations used here for figure rendering. Though plain-vanilla Racket is dynamically typed,

the Typed Racket language [41] offers a statically typed variant. Subsequent chapters demonstrate

how this static typing can be leveraged to mitigate some of the restrictions imposed by slow-path

barricades.

The following Racket program defines a function which can compute the nth Fibonacci num-

ber:

(define (fib/rec number prev1 prev2)

(if (<= number 0)

prev2

(fib/rec (- number 1) (+ prev1 prev2) prev1)))

(define (fib number)

(fib/rec number 1 0))

1http://racket-lang.org

http://racket-lang.org


3. RACKET 13

> (fib 350)

6254449428820551641549772190170184190608177514674331726439961915653414425

And the Typed Racket equivalent:

(: fib/rec (Integer Nonnegative-Integer

Nonnegative-Integer -> Nonnegative-Integer))

(define (fib/rec number prev1 prev2)

(if (<= number 0)

prev2

(fib/rec (- number 1) (+ prev1 prev2) prev1)))

(: fib (Integer -> Nonnegative-Integer))

(define (fib number)

(fib/rec number 1 0))

Note that the typed version is identical to the untyped one, except for the addition of function

type annotations (via :). In most cases the Typed Racket compiler will accept unaltered untyped

Racket code after top-level functions have type annotations.
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CHAPTER 4

Futures API

A future [5] is an object that acts as a proxy or placeholder for a value that is the result of

some computation; at some point after the future’s creation, the program may ask for the value

that is being proxied explicitly, by applying a function such as touch or force with the future

as an argument. The futures described in this dissertation offer best-effort parallelism; that is, no

guarantee exists that the future’s value will be computed in parallel.

Futures are currently the primary means of shared-memory parallel programming in Racket.

The language provides future to start a parallel computation and touch to receive its result:

(future thunk) → future?

thunk : (-> any)

Accepts a thunk (i.e. a procedure with no arguments) and may start evaluating it in parallel to the

rest of the computation. The return value is a future descriptor that can subsequently be touched.

(touch ft) → any

ft : future?

Waits for the thunk to complete and returns the value that the thunk produced. If applied to the

same future descriptor multiple times, touch returns the same result each time (as computed just

once by the thunk).

For example, in the program:

(define a (powerful-computer))
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(define b (even-more-powerful-computer))

(values

(life-the-universe-and-everything? a)

(life-the-universe-and-everything? b))

a and b can compute life-the-universe-and-everything? independently. They could be

computed in parallel using future and touch as follows:

(define fa (future (λ () (life-the-universe-and-everything? a))))

(define db (future (λ () (life-the-universe-and-everything? b))))

(values

(touch fa)

(touch fb))

The main computation can proceed in parallel to a future:

(define f (future (λ () (life-the-universe-and-everything? a))))

(values

(life-the-universe-and-everything? b)

(touch f))

There is as much parallelism here as in the version that uses two futures, since b’s work will

be performed on some thread other than the one evaluating this code. In contrast:

(define f (future (λ () (life-the-universe-and-everything? a))))

(values

(touch f)

(life-the-universe-and-everything? b))

This has no parallelism, because Racket evaluates expressions from left to right; (life-the-

universe-and-everything? b) is evaluated only after the (touch f) expression.

A future’s thunk is not necessarily evaluated in parallel to other expressions. In particular,

if the thunk’s computation relies in some way on the evaluation context, then the computation is
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suspended until a touch, at which point the computation continues in the context of the touch.

For example, if a future thunk raises an exception, the exception is raised at the point of the touch.

(If an exception-raising future is touched a second time, the second attempt raises a different

exception to report that no value is available.)

A future’s thunk can perform side effects that are visible to other computations. For example,

after

(define x 0)

(define (inc!) (set! x (+ x 1)))

(define f1 (future inc!))

(define f2 (future inc!))

(touch f1)

(touch f2)

the possible values of x include 0, 1, and 2. The future and touch operations are intended

for use with thunks that perform independent computations, though possibly storing results in

variables, arrays or other data structures using side effects.

For a slightly more realistic example, figure 1 shows a simple Mandelbrot-set rendering pro-

gram, a classic embarrassingly-parallel computation.

In an ideal language implementation, the Mandelbrot computation could be parallelized through

a future for each point. Figure 2 shows such an implementation, where for/list is a list-

comprehension form that is used to create a list of list of futures, and then each future is touched in

order. This approach does not improve performance, however, because a single call to mandelbrot-

point is far simpler than the work of creating a parallel task and communicating the result.

Figure 3 shows a per-line parallelization of the Mandelbrot computation. Each line is rendered

independently to a buffer, and then the buffered lines are written in order. This approach is typical
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(define MAX-ITERS 50)

(define MAX-DIST 2.0)

(define N 1024)

(define (mandelbrot-point x y)

(define c (+ (- (/ (* 2.0 x) N) 1.5)

(* +i (- (/ (* 2.0 y) N) 1.0))))

(let loop ((i 0) (z 0.0+0.0i))

(cond

[(> i MAX-ITERS) (char->integer #\*)]

[(> (magnitude z) MAX-DIST)

(char->integer #\space)]

[else (loop (add1 i) (+ (* z z) c))])))

(for ([y (in-range N)])

(for ([x (in-range N)])

(write-byte (mandelbrot-point x y)))

(newline))

Figure 1: Sequential Mandelbrot plotting

(define fss

(for*/list ([y (in-range N)]

[x (in-range N)])

(future

(λ () (mandelbrot-point x y)))))

(for ([fs (in-list fss)])

(for ([f (in-list fs)])

(write-byte (touch f)))

(newline))

Figure 2: Naive Mandelbrot parallelization

for a system that supports parallelism, and it is a practical approach for the Mandelbrot program in

Racket.
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(define fs

(for/list ([y (in-range N)])

(define bstr (make-bytes N))

(future

(λ ()

(for ([x (in-range N)])

(bytes-set! bstr x (mandelbrot-point x y)))

bstr))))

(for ([f (in-list fs)])

(write-bytes (touch f))

(newline))

Figure 3: Per-line Mandelbrot parallelization

Perhaps surprisingly, then, the per-line refactoring for Mandelbrot rendering runs much slower

than the sequential version. The problem at this point is not the decomposition approach or inherent

limits in parallel communication. Instead, the problem is due to the key compromise between the

implementation of Racket and the needs of programmers with respect to parallelization.

Specifically, the problem is that complex-number arithmetic is currently treated as a “slow”

operation in Racket, and the implementation makes no attempt to parallelize slow operations, since

they may manipulate shared state in the runtime system. Programmers must learn to avoid slow

operations within parallel tasks—at least until incremental improvements to the implementation

allow the operation to run in parallel.

A programmer can discover the slow operation in this case by enabling debugging profiling,

which causes future and touch to produce output similar to:

future: 0 waiting for runtime at 126.741: *

The first line of this log indicates that a future computation was suspended because the * op-

eration could not be executed in parallel. A programmer would have to consult the documentation

to determine that * is treated as a slow operation when it is applied to complex numbers.
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(: mandelbrot-point (Integer Integer -> Integer))

(define (mandelbrot-point x y)

(define fx (->fl x))

(define fy (->fl y))

(define fn (->fl N))

(define c (make-rectangular

(- (/ (* 2.0 fx) fn) 1.5)

(- (/ (* 2.0 fy) fn) 1.0)))

(let loop : Integer ([i : Integer 0] [z : Float-Complex 0.0+0.0i])

(cond

[(> i MAX-ITERS) (char->integer #\*)]

[else

(define zq (* z z))

(if (> (magnitude zq) MAX-DIST)

(char->integer #\space)

(loop (add1 i)

(+ zq c)))])))

Figure 4: Mandelbrot core in Typed Racket

Another way in which an operation can be slow in Racket is to require too much allocation.

Debugging-log output of the form:

future: 0 waiting for runtime at 126.032: [acquire_gc_page]

indicates that a future computation had to synchronize with the main computation to allocate

memory. Again, the problem is a result of an implementation compromise, because Racket’s mem-

ory allocator is basically sequential, although moderate amounts of allocation can be performed in

parallel.

Figure 4 shows a Typed Racket version of mandelbrot-point for which per-line parallelism

offers the expected performance improvement. Note that we are not forced to sacrifice the use of

complex numbers. The Typed Racket compiler is smart enough to know that, given a value of
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type Float-Complex, we can avoid the slow path by extracting each component and performing

unchecked arithmetic on each one. The sequence of expressions:

(define zq (* z z))

(if (> (magnitude zq) MAX-DIST)

...

...)

Is translated into the following bytecode:

(let ((flonum123

(unsafe-fl-

(unsafe-fl* arg0-118 arg0-118)

(unsafe-fl* arg1-119 arg1-119))))

(let ((flonum130

(unsafe-fl+

(unsafe-fl* arg1-119 arg0-118)

(unsafe-fl* arg0-118 arg1-119))))

(if (unsafe-fl>
(unsafe-flsqrt

(unsafe-fl+

(unsafe-fl* flonum123 flonum123)

(unsafe-fl* flonum130 flonum130)))

’2.0)

...)))

The generated bytecode has defined two floating-point variables to hold the real and imaginary

components of z, and performs computations with them using flonum-specific arithmetic (i.e.,

operations that consume and produce only floating-point numbers). Flonum-specific operations

act as a hint to help the compiler “unbox” intermediate flonum results—keeping them in registers

or allocating them on a future-local stack, which avoids heap allocation (see chapter 6 for more on

mitigating flonum-related issues). Thus we are able to remain on the fast path without sacrificing

expressiveness.
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This version runs about 30 times as fast as the original version; a programmer who needs

performance will always prefer it, whether using futures or not. Meanwhile, for much the same

reason that it can run fast sequentially, this version also provides a speedup when run in parallel.

All else being equal, obtaining performance through parallelism is no easier in our design for

futures than in other systems for parallel programming. The programmer must still understand the

relative cost of computation and communication, and the language’s facilities for sequential perfor-

mance should be fully deployed before attempting parallelization. All else is not equal, however;

converting the initial Racket program to one that performs well is far simpler than, say, porting the

program to C. For more sophisticated programs, where development in Racket buys productivity

from the start, futures provide a transition path to parallelism that keep those productivity benefits

intact. Most importantly, our approach to implementing futures makes these benefits available at a

tractable cost for the implementer of the programming language.



Part 3

Programming with Futures
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CHAPTER 5

Conway’s Game of Life

As a more complete example, we will implement John Conway’s cellular automaton “Game of

Life” [22]. With a simple set of rules and no dependencies between loop iterations, this system is

ideal for parallelization in the same vein as the Mandelbrot set.

5.1. The Rules

The game is played on a two-dimensional grid (universe) of cells, each of which may be in one

of two states: alive or dead. Though the universe can have infinite size, we will model it here as

a fixed-size toroidal (wrapping) grid for simplicity. Changes to the state of the universe over time

occur in discrete time steps, where on each step the following rules are applied:

• Underpopulation. Any cell with fewer than two live neighbors dies.

• Survival. Any live cell with two or three live neighbors survives to the next generation.

• Overpopulation. Any live cell with greater than three neighbors dies.

• Reproduction. Any dead cell with exactly three live neighbors becomes a live cell.

Give some initial universe state (the seed), rules are applied on each time step instantaneously

to all cells in the grid.

5.2. Racket Implementation

Given these rules, it is straightforward to build a sequential implementation. The Racket code in

figure 5 shows one such implementation: because rules must be applied to all cells simultaneously,
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1 (define (step univ)

2 (define sz (universe-size univ))

3 (for* ([r (in-range sz)]

4 [c (in-range sz)])

5 (define nbs (live-neighbor-count univ r c))

6 (update-cell! univ r c

7 (cond

8 [(alive? univ r c)

9 (case nbs

10 [(2 3) ’alive]

11 [else ’dead])]

12 [else

13 (if (= 3 nbs)

14 ’alive

15 ’dead)])))

16 (send (universe-bmp univ)

17 set-argb-pixels

18 0 0 sz sz

19 (universe-write-buf univ))

20 (swap-buffers! univ))

Figure 5: Sequential time-step function

the code uses a double-buffered approach, where reads are confined to the universe’s read-buf

(the current universe state) and writes confined to write-buf.

The neighbor-counting function is given in figure 6— we simply take the sum of the return

values of one-if-alive for all the current cell’s neighbors.
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1 (define (one-if-alive univ r c)

2 (if (alive? univ r c)

3 1

4 0))

5

6 (define (live-neighbor-count univ r c)

7 (define MAX-IND (- (universe-size univ) 1))

8 (define prev-row (if (zero? r) MAX-IND (- r 1)))

9 (define next-row (if (< r MAX-IND) (+ r 1) 0))

10 (define prev-col (if (zero? c) MAX-IND (- c 1)))

11 (define next-col (if (< c MAX-IND) (+ c 1) 0))

12 (+ (one-if-alive univ prev-row prev-col)

13 (one-if-alive univ prev-row c)

14 (one-if-alive univ prev-row next-col)

15 (one-if-alive univ r next-col)

16 (one-if-alive univ next-row next-col)

17 (one-if-alive univ next-row c)

18 (one-if-alive univ next-row prev-col)

19 (one-if-alive univ r prev-col)))

Figure 6: Naive neighbor-counting code

Parallelizing the step Function

As noted previously, the time-stepping logic in the game of life is embarrassingly parallel—cell

updates in a given step can occur in any order, and only depend on the state of the universe in read-

buf. Thus, it is trivial to rewrite step to perform universe updates using statically-scheduled

parallel futures. Our new-and-improved version is shown in figure 7. Our inner loop remains

unchanged from the sequential version; the only addition is the for/list outer loop on line 5,
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1 (define (step univ)

2 (define sz (universe-size univ))

3 (define chunk-sz (quotient sz P))

4 (define fs

5 (for/list ([p (in-range P)])

6 (define start (* chunk-sz p))

7 (future

8 (λ ()

9 (for* ([r (in-range start (+ start chunk-sz))]

10 [c (in-range sz)])

11 (define nbs (live-neighbor-count univ r c))

12 (update-cell! univ r c

13 (cond

14 [(alive? univ r c)

15 (case nbs

16 [(2 3) ’alive]

17 [else ’dead])]

18 [else

19 (if (= 3 nbs)

20 ’alive

21 ’dead)])))))))

22 (for-each touch fs)

23 (send (universe-bmp univ)

24 set-argb-pixels

25 0 0 sz sz

26 (universe-write-buf univ))

27 (swap-buffers! univ))

Figure 7: Parallel time-step function with static scheduling

which gives us a list of futures as large as the number of processors in the machine. We then wait

on all of them to finish in line 22.

We can invoke Racket’s futures visualizer using the following script, which just advances the

state of the universe 10 times for a large (2048 x 2048) universe:

(define au (acorn-universe 2048))

(visualize-futures
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Figure 8: Profile for the parallel game of life

(for ([i (in-range 10)])

(step au)))

This yields a window similar to that shown in figure 8. Notice that the program is free of

barricades, indicated in the left-hand summary panel. Meanwhile, the execution timeline in the

center panel shows our program in action: there are two vertical bands of green bars, with each

individual green bar representing a future executing user code. The blue dots on the “runtime

thread” line (on top) represent new future creations. Given what we know about our program—

each step spawns processor-count futures, each with a fixed amount of work—we can infer

that these two bands correspond to two step invocations. The vertical stacking means we have



5.2. RACKET IMPLEMENTATION 28

lots of parallel work occurring, but even more importantly, each individual future is executing to

completion with no interruptions/synchronizations.
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CHAPTER 6

Parallel Ray Tracer

To demonstrate the value of the futures visualizer in spotting implementation-imposed perfor-

mance problems—as well as Typed Racket’s usefulness in avoiding such problems—we will add

support for parallel computation to selected functions in Racket’s images package. This pack-

age offers functions for generating ray-traced images and icons (some of which are used in the

DrRacket IDE)—one such function is plt-logo, which produces the image shown in figure 9.

Because ray tracing is computationally intensive and involves several independent passes over

large matrices, it is a good candidate for futures.

Each matrix in Racket’s ray tracer is represented as a flomap data structure, which is a con-

tainer of m x n floating-point vectors of length k. They are conceptually similar to bitmaps, but

with floats instead of whole numbers and with a user-specified number of components for each

element. An object is represented by four such flomaps representing four properties: alpha, RGB,

z (or height map), and surface normals.

The plt-logo function constructs two flomaps—one containing ARGB values and one con-

taining a height map—and passes them to library code which splits the former into separate flomaps

(alpha and RGB), and infers the normal flomap from the height map. Ray tracing is done in two

separate passes: pass (1) traces light from a single directional light source, calculating both a

shadow map (analogous to a photosensitve sheet of paper laying flat on a table beneath the ren-

dered object, collecting light that either passes through or is reflected off the object) and a diffuse

map; pass (2) traces light from objects in the scene to the viewer’s eye. Timing analysis shows
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Figure 9: Ray-traced PLT logo

that the core of the ray-tracing work can constitute roughly 85.0% of the overall running time of

plt-logo, and pass (1) tends to do the lion’s share of work, constituting as much as 67.0% of

plt-logo’s running time. Thus, pass (1) is the primary focus of the parallelization effort. Note

that, by Amdahl’s Law, we cannot hope for ideal speedup: even if we assume ideal speedup for

some parallelization of the ray-tracing core (both passes), 15.0% of the algorithm’s running time

remains serial. Maximum possible speedup as a function of processor count is showin in figure 10.

The ray-tracing library has two properties which make it ideal for parallelization using futures:

(1) it is written in Typed Racket, allowing the compiler to replace calls to arithmetic functions

such as * with their unsafe counterparts where appropriate; and (2) it is pervasively imperative,

dominated by arithmetic computation and updates to flvector containers.
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Figure 10: Possible theoretical plt-logo speedup with parallel ray-tracing core

6.1. Parallelizing plt-logo

Because the shadow map computation step depends on work done in the diffuse map step, these

two tasks cannot be run in parallel; instead, the core loops for each one are parallelized using static

scheduling. Each one consists of two nested loops, where the goal on each iteration is to compute

some value for a particular “dot” in a flomap. Parallelizing these loops yielded no barricades,



6.1. PARALLELIZING PLT-LOGO 32

but did show large amounts of allocation. The sources of this allocation, and the steps required

to mitigate them, are detailed in the following sections. Note that, though the solutions to each

problem were motivated by the need to reduce synchronizations in parallel programs, all of them

ultimately yield better performance in sequential programs as well.

Issue #1: Right-hand conditional boxing

Consider the following:

#lang typed/racket

(λ (fs i)

(define f (flvector-ref fs i))

...)

This expression might be compiled into the bytecode shown in figure 11. Here, the compiler

has wrapped flvector-ref access with a bounds check, where its unsafe counterpart can be

called if the index is within the vector’s bounds. However, it is easy to see that in either case

local120 will be a flonum.

This problem is unavoidable without changes to the Racket compiler. Specifically, we im-

proved the compiler such that it is able to detect such occurrences of if expressions where evalu-

ation of either branch is guaranteed to return a flonum (i.e., a given branch is either a reference to

a variable known to be a flonum or is an application of some function known by the compiler to

always return a flonum).

Issue #2: Cross-module function calls returning multiple values

Figure 12 shows a program implemented in two modules, A and B. The B module contains a func-

tion returning multiple values, each of which is a flonum; A calls this function inside a loop body.



6.1. PARALLELIZING PLT-LOGO 33

(let ([local120

(if (if (unsafe-fx>= fixnum106 ’0)

(unsafe-fx<
fixnum106

(unsafe-flvector-length

arg6-98))

’#f)

(unsafe-flvector-ref arg6-98 fixnum106)

(flvector-ref arg6-98 fixnum106))])

...)

Figure 11: Flonum definition with right-hand-side conditional

;; Module A

(require racket/future

racket/flonum

math/flonum

"B.rkt")

(for ([i (in-range 0 (- SZ 6) 6)])

(define-values (x y z)

(make-values (flvector-ref vec i)

(flvector-ref vec (+ i 1))

(flvector-ref vec (+ i 2))

(flvector-ref vec (+ i 3))

(flvector-ref vec (+ i 4))

(flvector-ref vec (+ i 5))))

(flvector-set! vec i (+ x y z)))

;; Module B

(: make-values (Flonum Flonum Flonum

Flonum Flonum Flonum

-> (Values Flonum Flonum Flonum)))

(define (make-values a b c d e f)

(values (* a b)

(* c d)

(* e f)))

Figure 12: Allocation in define-values with a right-hand-side function call
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(let ((localv34 ?) (localv35 ?) (localv36 ?))

(begin

(set!-values (localv34 localv35 localv36)

(_make-values

(flvector-ref (#%checked _vec) arg1-31)

(flvector-ref (#%checked _vec) (+ arg1-31 ’1))

(flvector-ref (#%checked _vec) (+ arg1-31 ’2))

(flvector-ref (#%checked _vec) (+ arg1-31 ’3))

(flvector-ref (#%checked _vec) (+ arg1-31 ’4))

(flvector-ref (#%checked _vec) (+ arg1-31 ’5))))

(flvector-set!

(#%checked _vec)

arg1-31

(unsafe-fl+

(unsafe-fl+ localv34 localv35)

localv36))))

Figure 13: Bytecode for module A

(define-syntax (make-values stx)

(syntax-case stx ()

[(_ a b c d e f)

#’(values (* a b)

(* c d)

(* e f))]))

Figure 14: Inlining via macro

The bytecode compiler will emit code for the loop body similar to that shown in figure 13. The

localv34, localv35, and localv36 variables correspond to x, y, and z; however, the compiler

has created boxes for each of them, which are then updated with the results of the call to make-

values. We can see the problem in action by wrapping the code in a future and passing it to

visualize-future, which yields the trace in figure 15.
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Figure 15: Future visualizer trace for flonum-allocating program

Figure 16: Future visualizer trace for program with flonum unboxing

(define (foo x y z out-vec)

(for* ([i (in-range x)]

[j (in-range y)])

(vector-set! out-vec i (+ (* x i)

(* y j)

(* z i)))))

Figure 17: Nested loop with captures

Eliminating this problem altogether requires non-trivial improvements to the compiler, but it is

easily sidestepped by rewriting make-values as a macro (effectively inlining it in the loop body in

module A), as shown in figure 14. The futures visualizer shows a dramatic difference in figure 16.
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(#%closed

for-loop23

;arg0-106 = i, arg1-107 = x, arg2-108 = y

;arg3-109 = z, arg4-110 = out-vec, arg6-112 = j

(lambda (arg0-106 arg1-107 arg2-108

arg3-109 arg4-110 arg6-112)

(...)

(if (< arg6-112 arg2-108)

(begin

(vector-set!

arg4-110

arg0-106

(+

(* arg1-107 arg0-106)

(* arg2-108 arg6-112)

(* arg3-109 arg0-106)))

(for-loop23

arg0-106

arg1-107

arg2-108

arg3-109

arg4-110

(+ arg6-112 ’1)))

(void))))

Figure 18: Loop closure bytecode

Issue #3: Closure argument-count limits

Consider figure 17, which defines a function with a nested loop (the for* form generates an n-

level nested loop for n loop variables). Disregarding loop unrolling, the compiler will ultimately

transform the inner loop into a recursive function similar to that of figure 18. Note that we get a

set of arguments which roughly correspond to the program variables required by the loop body.

The ray tracer’s diffuse-map computation in pass (1) resembles such a program, but with a

much larger set of variables dependencies (32). For historical reasons, Racket’s JIT compiler will
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(define (foo/loop arg-vec out-vec)

(for* ([i (in-range x)]

[j (in-range y)])

(define x (vector-ref arg-vec 0))

(define y (vector-ref arg-vec 1))

(define z (vector-ref arg-vec 2))

(vector-set! out-vec i (+ (* x i)

(* y j)

(* z i)))))

(define (foo x y z out-vec)

(foo/loop (vector x y z) out-vec))

Figure 19: Reducing loop-body closure arity with argument vectors

not perform flonum unboxing for closures accepting more than 25 arguments; thus we end up

with hot-loop allocation which causes constant synchronization. Though the compiler could be

modified to support flonum unboxing in this case, such situations are fairly rare, and it is much

easier to work around the limitation: figure 19 lifts the loop out into a separate function taking a

single vector argument, the contents of which are extracted inside the loop body.



Part 4

Implementation
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CHAPTER 7

Futures

Since future does not promise to run a given thunk in parallel, a correct implementation

of future and touch is easily added to any language implementation; the result of future can

simply encapsulate the given thunk, and touch can call the thunk if no previous touch has called

it. Of course, the trivial implementation offers no parallelism. At the opposite extreme, in an ideal

language implementation, future would immediately fork a parallel task to execute the given

thunk—giving a programmer maximal parallelism, but placing a large burden on the language

implementation to run arbitrary code concurrently.

The future and touch constructs are designed to accommodate points in between these two

extremes. The key is to specify when computations can proceed in parallel in a way that is (1) sim-

ple enough for programmers to reason about and rely on, and (2) flexible enough to accommodate

implementation limitations. In particular, we are interested in starting with an implementation that

was designed to support only sequential computation, and we would like to gradually improve its

support for parallelism.

To add futures to a given language implementation, the language’s set of operations is parti-

tioned into three categories:

• A safe operation can proceed in parallel to any other computation without synchroniza-

tion. For example, arithmetic operations are often safe. An ideal implementation catego-

rizes nearly all operations as safe.
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• An unsafe operation cannot be performed in parallel, either because it might break guar-

antees normally provided by the language, such as type safety, or because it depends on

the evaluation context. Its execution must be deferred until a touch operation. Raising

an exception, for example, is typically an unsafe operation. The simplest, most conser-

vative implementation of futures categorizes all operations as unsafe, thus deferring all

computation to touch.

• A synchronized operation cannot, in general, run in parallel to other tasks, but by syn-

chronizing with other tasks, the operation can complete without requiring a touch. It

thus allows later safe operations to proceed in parallel. Operations that allocate memory,

for example, are often synchronized.

In a language like Racket, the key to a useful categorization is to detect and classify operations

dynamically and at the level of an operator plus its arguments, as opposed to the operator alone.

For example, addition might be safe when the arguments are two small integers whose sum is

another small integer, since small integers are represented in Racket as immediates that require no

allocation. Adding an integer to a string is unsafe, because it signals an error and the corresponding

exception handling depends on the context of the touch. Adding two flonums, meanwhile, is a

synchronized operation if space must be allocated to box the result; the allocation will surely

succeed, but it may require a lock in the allocator or a pause for garbage collection.

This partitioning strategy works in practice because it builds on an implicit agreement that ex-

ists already between a programmer and a language implementation. Programmers expect certain

operations to be fast, while others are understood to be slow. For example, programmers expect

small-integer arithmetic and array accesses to be fast, while arbitrary-precision arithmetic or dic-

tionary extension are relatively slow. From one perspective, implementations often satisfy such

expectations though “fast paths” in the interpreter loop or compiled code for operations that are
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expected to be fast, while other operations can be handled through a slower, more generic imple-

mentation. From another perspective, programmers learn from experimentation that certain opera-

tions are fast, and those operations turn out to be fast because their underlying implementations in

the runtime have been tuned to follow special, highly optimized paths.

The key insight behind this work is that fast paths in a language implementation tend to be safe

to run in parallel and that it is not difficult to barricade slow paths, preventing them from running

in parallel. An implementation’s existing internal partitioning into fast and slow paths therefore

provides a natural first cut for distinguishing safe and unsafe operations. The implementation

strategy is to set up a channel from future to the language implementation’s fast path to execute a

future in parallel. If the future’s code path departs from the fast path, then the departing operation

is considered unsafe, and the computation is suspended until it can be completed by touch.

The details of applying the technique depend on the language implementation. Based on ex-

perience converting two implementations and knowledge of other implementations, certain details

may be expected to be common among many implementations. For example, access to parallelism

normally builds on a POSIX-like thread API. Introducing new threads of execution in a language

implementation may require that static variables within the implementation are converted to thread-

local variables. The memory manager may need adjustment to work with multiple threads; as a first

cut, all allocation can be treated as an unsafe slow path. To support garbage collection and similar

global operations, the language implementation’s fast path needs hooks where the computation can

be paused or even shifted to the slow path.

Figure 20 illustrates the general methodology. The process begins with the addition of low-

level support for parallelism, then experimenting with the paths in the implementation that are

affected. Based on that exploration, one can derive a partitioning of the language’s operations
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Figure 20: Incremental parallelization methodology

into safe and unsafe. Having partitioned the operations, we must implement a trapping mecha-

nism capable of suspending a parallel task before it executes an unsafe operation. Finally, we

refine the partitioning of the operations (perhaps designating and implementing some operations

as synchronized), incrementally, as guided by the needs of applications.

7.1. Futures in Racket

The Racket runtime system is implemented by roughly 100k lines of C code. It includes

a garbage collector, macro expander, bytecode compiler, bytecode interpreter, just-in-time (JIT)

compiler, and core libraries. The core libraries include support for threads that run concurrently



7.1. FUTURES IN RACKET 43

at the Racket level, but internally threads are implemented as co-routines (i.e., they are “user

threads”).

Execution of a program in the virtual machine uses a stack to manage the current continuation

and local bindings. Other execution state, such as exception handlers and dynamic bindings, are

stored in global variables within the virtual-machine implementation. Global data also includes

the symbol table, caches for macro expansion, a registry of JIT-generated code, and the garbage

collector’s metadata. In addition, some primitive objects, such as those representing I/O streams,

have complex internal state that must be managed carefully when the object is shared among

concurrent computations.

The virtual machine’s global and shared-object states present the main obstacles to parallelism

for Racket programs. An early attempt to implement threads as OS-level threads—which would

provide access to multiple processors and cores as managed by the operating system—failed due

to the difficulty of installing and correctly managing locks within the interpreter loop and core

libraries. Since that early attempt, the implementation of Racket has grown even more complex.

A related challenge is that Racket offers first-class continuations, which allow the current ex-

ecution state to be captured and later restored, perhaps in a different thread of execution. The

tangling of the C stack with execution state means that moving a continuation from one OS-level

thread to another would require extensive changes to representation of control in the virtual ma-

chine.

The design of futures side-steps the latter problem by designating operations that inspect or

capture the current execution state as unsafe; thus, they must wait until a touch. Meanwhile, the

notions of unsafe and synchronized operations correspond to using a single “big lock” to protect

other global state in the virtual machine.
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The following sections provide details regarding both the adjustment of the implementation of

execution state and the operation-partitioning in Racket.

Compilation, Execution, and Safety Categorization

Execution of a Racket program uses two phases of compilation. First, the bytecode compiler

performs the usual optimizations for functional languages, including constant and variable propa-

gation, constant folding, inlining, loop unrolling, closure conversion, and flonum unboxing. The

bytecode compiler is typically used ahead of time for large programs, but it is fast enough for in-

teractive use. Second, when a function in bytecode form is called, the JIT compiler converts the

function into machine code. The JIT creates inline code for simple operations, including type tests,

arithmetic on small integers or flonums, allocations of cons cells, array accesses and updates, and

structure-field operations. When the JIT compiler is disabled, bytecode is interpreted directly.

The first step in supporting useful parallelism within Racket was to make the execution-state

variables thread-local at the level of OS threads, so that futures can be executed speculatively in

new OS-level threads. To simplify this problem, attention was confined to the execution state that is

used by JIT-generated code. Consequently, the first cut at categorizing operations was to define as

safe any operation that is implemented directly in JIT-generated code (i.e. any operation that can be

translated by the JIT compiler into machine instructions which do not include function calls back

into runtime code), and any other operation was unsafe. This first-cut strategy offered a convenient

starting point for the incremental process, in which performance-critical unsafe operations are

modified to make them future-safe.

When a future is created in Racket, the corresponding thunk is JIT-compiled and then added to

a queue of ready futures. The queue is served by a pool of OS-level future threads, each of which

begins execution of the JIT-generated code. At points where execution would exit JIT-generated



7.1. FUTURES IN RACKET 45

Figure 21: Parallel threads in Racket.

code, a future suspends to wait on the result of an unsafe operation. The operation is eventually

performed by the original runtime thread when it executes a touch for the future. In the current

implementation, a future remains blocked as long as it waits for the runtime thread to complete

an unsafe operation; however, a future is not bound to any specific OS thread for the duration of

its work. When a future needs to synchronize, it can be suspended and the OS thread executing it

freed to execute other ones.

Using Thread-Local Variables

Since the JIT compiler was designed to work for a non-parallelized runtime system, the code that

it generates uses several global variables to manage execution state. In some cases, state is kept

primarily in a register and occasionally synchronized with a global variable. Changing the relevant
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Figure 22: The lifetime of a parallel future thread.

typedef (*primitive)(int argc, Scheme_Object **argv);

Scheme_Object *handler(int argc, Scheme_Object **argv, primitive func) {

Scheme_Object *retval;

if (pthread_self() != g_runtime_thread_id) {

/* Wait for the runtime thread */

retval = do_runtimecall(func, argc, argv);

return retval;

} else {

/* Do the work directly */

retval = func(argc, argv);

return retval;

}

}

Figure 23: Typical primitive trap handler

global variables to be thread-local variables in the C source of the Racket implementation allowed
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Figure 24: Timeline for a future with an unsafe operation

multiple JIT-generated code blocks to execute in parallel.1 To make this work, the JIT compiler

was adjusted to access a global variable through an thread-specific indirection. The thread-specific

indirection is supplied on entry to JIT-generated code.

Handling Unsafe Operations

When JIT-generated code invokes an operation that is not implemented inline, it invokes one of a

handful of C functions that call back into the general interpreter loop. When a future thread takes

this path out of JIT-generated code, the call is redirected to send the call back to the runtime thread

and wait for a response. Figure 23 illustrates the general form of such functions. Each first checks

whether it is already executing on the runtime thread. If so, it performs the external call as usual.

If not, the work is sent back to the runtime thread via do_runtimecall.

The runtime thread does not execute the indirect call until touch is called on the corresponding

future. Figure 24 illustrates the way that an unsafe operation suspends a future until its value can

be computed by the runtime thread in response to a touch. Note that the touch function itself is

considered unsafe, so if touch is called in a future thread, then it is sent back to the runtime thread.

Thus, the touch function need only work in the runtime thread.

1On some platforms, we could simply annotate the variable declaration in C with thread. On other platforms, we use
pre-processor macros and inline assembly to achieve similar results.
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Figure 25: Timeline for a synchronized operation

Synchronized Operations

Like unsafe operations, synchronized operations always run on the runtime thread. Unlike unsafe

operations, however, the runtime thread can perform a synchronized operation on a future thread’s

behalf at any time, instead of forcing the future thread to wait until touch is called.

As part of its normal scheduling work to run non-parallel threads, the runtime system checks

whether any future thread is waiting on a synchronized operation. If so, it immediately performs

the synchronized operation and returns the result; all synchronized operations are short enough to

be performed by the scheduler without interfering with thread scheduling.

Currently, the only synchronized operations are allocation and JIT compilation of a procedure

that has not been called before. More precisely, allocation of small objects usually can be per-

formed in parallel (as described in the next section), but allocation of large objects or allocation of

a fresh page for small objects requires cooperation and synchronized with the memory manager.

Figure 25 illustrates the synchronized allocation of a new page with the help of the runtime thread.
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Memory Management

Racket uses a custom garbage collector that, like the rest of the system, was written for sequential

computation. Specifically, allocation updates some global state and collection stops the world.

As in many runtime systems, the virtual machine and its garbage collector cooperate in many

small ways that make inserting a third-party concurrent garbage collector prohibitively difficult.

Similarly, converting the garbage collector to support general concurrency would be difficult. For-

tunately, adapting the collector to support a small amount of concurrency is relatively easy.

The garbage collector uses a nursery for new, small objects, and then compacting collection for

older objects. The nursery enables inline allocation in JIT-generated code by bumping a pointer.

That is, a memory allocation request takes one of the following paths:

• Fast Path — the current nursery page has enough space to accommodate the current re-

quest. In this case, a page pointer is incremented by the size of the object being allocated,

and the original page pointer is returned to the caller. This path is executed purely in line

(a small number of instructions with no callbacks into unsafe C functions).

• Slow Path — the current page being used by the allocator does not have enough space

to accommodate the current request. In this case, a new page must either be fetched

from either the virtual machine’s own internal page cache, or must be requested from the

operating system. If the entire heap space has been exhausted, a garbage collection is

triggered.

The nursery itself is implemented as a collection of pages, so adding additional thread-specific

pages was straightforward. As long as it is working on its own page, a future thread can safely

execute the inline-allocation code generated by the JIT compiler. Figure 26 illustrates the use of

future-specific nurseries.
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Figure 26: Per-future allocation

Figure 27: Rendezvous for garbage collection

Acquiring a fresh nursery page, in contrast, requires synchronization with the runtime thread,

as described in the previous section. The size of the nursery page adapts to the amount of allocation

that is performed by the future requesting the page.
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Garbage collection still requires stopping the world, which includes all future threads. The JIT

compiler generates code that includes safe points to swap Racket-level threads. When safe code is

running in a future, it never needs to stop for other Racket threads, but the same safe points can be

repurposed as garbage-collection safe points. That is, the inlined check for whether the computa-

tion should swap threads is instead used as a check for whether the future thread should pause for

garbage collection. Meanwhile, garbage collection in the runtime thread must not be allowed un-

less all future threads are blocked at a safe point. Figure 27 illustrates the synchronization required

for a garbage collection.

Besides providing support for thread-specific nursery pages, the garbage collector requires

minor adjustments to support multiple active execution contexts to be treated as roots. Roughly,

the implementation uses fake Racket threads that point to the execution state of a computation in a

future thread.

Implementing touch

To tie all of the preceding pieces together, the implementation of touch is as follows:

• If the future has produced a result already, return it.

• If a previous touch of the future aborted (e.g., because the future computation raised an

exception), then raise an exception.

• If the future has not started running in a future thread, remove it from the queue of ready

futures and run it directly, recording the result (or the fact that it aborts, if it does so).

• If the future is running in a future thread, wait until it either completes or encounters an

unsafe operation:

– If the future thread has encountered an unsafe operation, perform the unsafe opera-

tion, return the result, and wait again. If performing the unsafe operation results in an
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exception or other control escape, tell the future thread to abort and record the abort

for the future.

– If the future completes in a future thread, record and return the result.

In addition, the scheduler loop must poll future threads to see if any are waiting on synchro-

nized operations; if so, the operation can be performed and the result immediately returned to the

future thread. By definition, a synchronized operation cannot raise an exception.

7.2. Futures in Parrot

Parrot is a register-based virtual machine with heap-allocated continuation frames. Compil-

ers target Parrot by emitting programs in the Parrot intermediate language, which is a low-level,

imperative assembly-like programming language, but with a few higher-level features, including

garbage collection, subroutines, dynamic container types, and a extensible calling convention.

Three key characteristics made adding futures to the Parrot VM machine relatively easy:

• an existing abstraction and wrapping of OS-level threads;

• a concurrency or green thread implementation that abstracts and encapsulates thread of

execution state; and

• a pluggable runloop (i.e., interpreter loop) construct that allows switching between dif-

ferent interpreter cores.

With such groundwork in place, the following enhancements to the Parrot C implementation

were needed:

• refactoring of representation of threads to allow them to be reused for futures,

• allowing an unfinished future computation to be completed by the main interpreter after

an OS-level join, and
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• creating a new runloop that executes only safe (for parallelism) operations and reverts

back to the main thread for unsafe operations.

In Parrot, spawning a future consists of creating a new interpreter and specifying what data, if

any, to share between the parent and child OS-level threads. Parrot futures have their own execution

stack, but they share the same heap and bytecodes. To implement touch, Parrot waits for the future

thread to return and then checks to see if the future returned a value, in which case the value is

returned. If the future encountered an unsafe instruction, the future thread returns a computation,

which is completed in the caller.

Parrot’s runloop is the core of the interpreter, where bytecodes are fetched and executed. Parrot

has several different runloops that provide debugging, execution tracing, profiling, and experimen-

tal dispatching. Parallel futures adds a future runloop that checks each bytecode just before it is

executed to see if it is safe to execute or if the future needs to be suspended and executed sequen-

tially in the main interpreter. This runtime safety checking includes argument type checking and

bounds checking on container data structures.

Parrot is a highly dynamic virtual machine. Many bytecodes are actually virtual function calls

on objects that can be user-defined; for example, the array get and set opcodes may be translated

into virtual method calls on a wide variety of container object types. Some container object types

have fixed size at construction time, while others grow dynamically. This indirection inherent in

the bytecode makes compile-time safety checking difficult. To deal with this problem, the future

runloop checks at run time that an operand container object is of the fixed-size variety (and thus

safe to run in parallel), not a dynamically growing variant.

Because it is mostly a proof-of-concept, Parrot futures implementation does not include special

handling for synchronized operations or future-local allocation, and the future runloop treats most

opcodes as unsafe operations. Arithmetic, jumps, and fixed-container accesses and updates are
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the only operations designated as safe—enough to run a parallel benchmark which scales with

multiple processors. Experience working with both the Parrot and Racket runtime systems suggest

that the work required to add those features to the Parrot would be similar in nature to that of the

Racket system.
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CHAPTER 8

Future Visualizer

Racket’s future visualizer, introduced in part III, provides feedback regarding CPU utilization,

allocation frequency, and barricading penalties incurred by both future and place programs.

It is essentially a trace-reconstruction tool, taking as input a collection of program log messages

extracted via Racket’s logging system (as shown briefly in chapter 4) and producing a visualization

of those messages.

8.1. Profiling Futures

Whenever a future is started, blocked, etc., the runtime system logs an event that records the

future’s identity, the OS-level thread in which the event took place, a symbol representing the

future-related action, the wall-clock time at which the action occurred, and optionally the name of

a Racket-level procedure to help correlate the event with the program source. The visualizer can

then reconstruct a trace of the computation from information in the logged events.

Since logging support is always enabled in a Racket build, the visualizer requires no addi-

tional low-level hooks into the runtime system. Like other logging systems, Racket’s logging

system keeps track of event consumers, so that log-entry producers can detect whether events are

worth reporting and avoid the overhead of logging information that would be ignored. To track

consumers, the log is not an object that can be read directly; instead, logged events are received

through log receiver objects that include a particular level, such as “error,” “warning,” or “debug.”



8.2. PROFILING PLACES 56

The current effective logging level (the highest level at which a receiver is active) can be queried

and compared against the level of a potential log event.

The log-level test is cheap enough for the runtime thread to use at any time, but it involves

enough objects and caches that it would not be safe within a future. Instead of using the log di-

rectly, each future thread maintains its own queue of events, which the runtime thread periodically

converts into regular log events (if there is any relevant receiver). A future thread’s log queue

is a fixed-size array that contains only atomic values, which minimizes its locking and memory-

management requirements. Furthermore, entries are added to the log queue only for events that

require some other synchronization, such as changing the state of a future, so log-queue locking

piggy-backs on existing locks. Since the log queue has a fixed size, it can overflow, in which

case a “queue overflow” event replaces the most recent event; log overflow is rare, and the explicit

event ensures that the visualizer can fall back to reporting approximate information if an overflow

occurs.

Despite efforts to minimize the cost of logging, when many events are generated and consumed

by a receivers, overhead is unavoidable. Such a setting, however, corresponds to a slow program

whose performance is being analyzed, so the overhead remains small relative to the computation

and worthwhile to the user.

8.2. Profiling Places

Racket is also multi-paradigm in its approach to parallelism; while futures offer lightweight,

task-based, shared-memory parallelism, places [39, 40] offer a complementary approach with a

different set of restrictions. In Racket, places are separate instances of the runtime system, each

with their own memory space and garbage collector. They may communicate via message passing,

in which values are sent across channels and copied from one place to another.
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Because each place retains its own internal runtime structures, the dangers to these structures

inherent in a shared-memory setting do not exist; thus they offer unrestricted parallelism in the

sense that no slow-path barricades exist. However, a place is more expensive to create than a future,

and the set of communicable objects is limited to a simple class of mutable values or immutable

ones.

Because futures and places may be used in conjunction with one another in the same pro-

gram, the futures visualizer supports profiling of both per-place future traces and places cre-

ation/communication patterns.

8.3. Trace Analysis

The futures visualizer expects input in the form of an S-expression, where atoms are log mes-

sages which may be any of the following structure types: future-event, gc-info, or place-

event. Though the implementation of the logging mechanism generally means the structure of this

S-expression will mimic the topology of the places network used in the program (with futures-only

programs generating a single flat list), the visualizer does not rely on this structure to reconstruct

the trace, because places log events recording every place creation and communication. Thus the

visualizer effectively flattens the input tree before building the trace history.

For each place in the program, the analysis constructs a trace structure, which contains an

entry for each OS-level thread in the system. These entries contain lists (sorted chronologically) of

future-related events, so visual representation of thread timelines is straightforward. In addition,

each future event is wrapped by an event-info structure which also contains forward and back

pointers to other events which occurred on the same future as its own.



Part 5

Evaluation
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CHAPTER 9

Developer Effort

Because the slow-path barricading approach was developed in the context of the Racket run-

time system, the parallel Racket implementation is the most mature. Given that, one might expect

to see substantial development effort; however, this is not the case. Figure 28 lists the overall de-

velopment costs (in person-hours) required to apply the approach to Racket. Costs are partitioned

Person Hours
Task expert non-expert
General Steps
Naive implementation 6 40
Exploration and discovery - 480
Unsafe-operation handling 6 16
Blocked-future logging 1 -
Total General: 13 536
Implementation-specific Steps
Thread-local variables 8 -
Future-local allocation 8 -
Garbage-collection sync 6 -
Thread-local performance 6 -
Total Specific: 28 -
Overall Total: 41 536

Figure 28: Racket implementation effort by task. Adding a release-quality futures implementation
to Racket using our approach required only one week of expert time, and one academic quarter of
non-expert time.
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Person Hours
Task expert
General Steps
Naive implementation 8
Exploration and discovery 24
Unsafe-operation handling 8
Total General: 40
Implementation-specific Steps
Wrapping OS-level threads 8
Future runloop 4
Total Specific: 12
Overall Total: 52

Figure 29: Parrot implementation effort by task. Adding a proof-of-concept implementation of
futures to Parrot using our approach required only about a week of expert time.

into two categories: general and implementation-specific. The general category reflects the first

three steps described in figure 20; the implementation-specific category reflects the incremental

parallelization step, which includes work that was necessary for Racket, but may not apply in other

runtime adaptation work.

The columns in figure 28 show the efforts of two developers, the expert being the designer and

primary implementer of the Racket runtime and the non-expert being a first-year graduate student

(working in a different city). Notice that with roughly one week of expert time, and one academic

quarter of non-expert time, it was possible to apply the approach to a widely used,1 mature2 runtime

system and achieve reasonable performance results. Furthermore, the effort produced a parallel

futures implementation that has been part of the main-line release of Racket for several years.

Having gained experience with our approach, we also applied it to the Parrot VM to ensure our

experience is not Racket-specific. Figure 29 lists the development time we required to add a first-

cut futures implementation. The Parrot effort was undertaken by a third-year Ph.D. student who,

1The Racket distribution is downloaded more than 300 times per day.
2The runtime system has been in continuous development since 1995.
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while not a core developer of Parrot, is intimately familiar with its internals (and was also familiar

with the Racket effort). The upshot of figure 29 is that adding a proof-of-concept implementation

of futures to Parrot using SPB required only about a week of expert time.

That the same approach has been applied successfully and efficiently to two very different

runtime systems suggests that it is quite general.
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CHAPTER 10

Performance

10.1. Testbed, Metrics, and Benchmarks

Performanc of the two futures implementations was evaluated using two different machines and

five benchmarks. The commonplace parallel systems performance metrics of strong scalability and

raw performance are used here, and results are compared against the same algorithms implemented

in other languages.

Machines

Performance evaluations were conducted on both a high-end desktop workstation with two quad-

core processors (8 cores), and a mid-range server machine with four quad-core processors (16

cores). The detailed configuration of these machines is given in figure 30. During the execution of

a given benchmark, no other significant load was placed on the machine. I verified that separate

threads of execution used by the runtime system were in fact mapped to separate processing cores.

Metrics

The number of threads used by each of the benchmarks is a runtime parameter. I measured the

wall-clock execution time of each benchmark as a function of this parameter, and present both the

raw numbers and a speedup curve. The speedup curve shows the wall-clock time of the parallel

implementation using a single thread divided by the wall-clock time of the parallel implementation
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Penghu Cosmos
OS OS X 10.6.2 CentOS 5.4
Processor Type Intel Xeon AMD Opteron

8350
Processors 2 4
Total Cores 8 16
Clock Speed 2.8 GHz 2.0 GHz
L2 Cache 12 MB 4x512 KB
Memory 8 GB 16 GB
Bus Speed 1.6 GHz 1 GHz
Racket 5.0 (32-bit) 5.0 (64-bit)
GCC 4.2.1 (Apple) 4.1.2 (Red Hat)
Java Java SE 1.6 OpenJDK 1.6

Figure 30: Machine configurations used for benchmarks

using the indicated number of threads. The problem size remains constant as the number of threads

increases; thus the speedup curve measures “strong scaling.”

For several benchmarks, I also measured the wall-clock time of sequential implementations in

various languages, including optimized C and Java.

Benchmarks

Figure 31 lists the benchmarks used to evaluate the performance of parallel futures in the Racket

and Parrot VM implementations. Several of the evaluation programs are not drawn from a partic-

ular benchmark suite; rather, they are common implementations of well-known algorithms. Note

that not all programs have a Parrot VM implementation.
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Program Implementation
Microbenchmarks
(self-developed)

MV-Sparse Racket
Mergesort Racket
Signal Convolution Racket, Parrot
NAS Parallel Benchmarks [4]
Integer Sort Racket, Java
Fourier Transform Racket, Java

Figure 31: Benchmarks, sources, and parallel implementations. Sequential implementations in C,
Java, Racket, and Parrot are also used for comparison.

Signal convolution is a signal-processing algorithm used to determine the output signal of a

system given its impulse response or kernel, which defines how the system will respond given an

impulse function applied to the input signal. For any input signal x, we can compute each value in

the corresponding output signal y using the following equation:

yn =
∑
{k .. -k} xk * hn-k

where k is time and h is the impulse response/kernel. My implementation computes an output

signal given a one-dimensional input signal and kernel, both of which are made up of floating-point

values.

Signal convolution was implemented in sequential Racket, Racket with futures, sequential Par-

rot, Parrot with futures, and sequential C.

Mergesort sorts a vector of floating-point numbers. Two variants of the mergesort algorithm

are considered: one that is readily parallelizable, and one that is not, but runs significantly faster

than the parallel version on one processor [27]. I implemented both of the algorithms in sequential

Racket, Racket with futures, and sequential C.

MV-Sparse does sparse matrix-vector multiplication using the compressed row format to store

the matrix. For those unfamiliar with compressed row format, the essential idea is to flatten the
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matrix into a single 1D array and combine it with parallel 1D arrays indicating both where rows

begin and what the column indices are. I implemented MV-Sparse in sequential Racket, Racket

with futures, and sequential C. The Racket version employs the higher-level nested data parallel

primitive called a gather, which we have implemented using futures.

The NAS Parallel Benchmarks [4] are a suite of benchmarks derived from computational fluid

dynamics applications of interest to NASA. They are widely used in the parallel systems commu-

nity as application benchmarks. Only two of them are considered here.

NAS Integer Sort (IS) sorts an array of integer keys where the range of key values is known at

compile-time. Sorting is performed using the histogram-sort variant of the bucket sort algorithm.

NAS IS was implemented both in sequential and parallel Racket. The performance of those two

implementations is compared against the publicly available sequential and parallel Java reference

implementations [21].

NAS Fourier Transform (FT) is the computational kernel of a 3-dimensional Fast Fourier

Transform. Each iteration performs three sets of one-dimensional FFT’s (one per dimension).

As with Integer Sort, NAS FT was implemented in both sequential and parallel Racket. I again

compare against the publicly available sequential and parallel Java reference implementations.

10.2. Performance is Reasonable

Using futures implemented via the SPB approach to incrementally parallelizing existing se-

quential runtime systems, it is possible to achieve both reasonable raw performance and good

scaling for the benchmarks we tested.
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Figure 32: Signal convolution wall-clock times

������

������������������������������������������������������������������������������������������������������������

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

��������� ������������������ ������������������

���������

������������������

������������������ ���������������������������������������������������������������������������������������������������������������������

������������������������������������������������������

������

������������������������������������������������������������������������������������������������������������

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

��������� ��������� ��������� ���������

���������

���������

���������

���������

���������������������������������������������������������������������������������������������������������������������

������������������������������������������������������

Figure 33: Signal convolution speedups
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Figure 34: Mergesort wall-clock times
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Figure 35: Mergesort speedups
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Figure 36: Sparse matrix-vector multiplication wall-clock times

������

������������������������������������������������������������������������������������������������������������

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

��������� ������������������ ������������������

���������

������������������

������������������ ���������������������������������������������������������������������������������������������������������������������

������������������������������������������������������

������

������������������������������������������������������������������������������������������������������������

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

�
�
��
�
�
�
��
��
��
��
��
��
��
��
�
��
��
��

��������� ��������� ��������� ���������

���������

���������

���������

���������

���������������������������������������������������������������������������������������������������������������������

������������������������������������������������������

Figure 37: Sparse matrix-vector multiplication speedups
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Racket

Figures 32, 34, and 36 show running time for the Racket implementations of the three microbench-

marks listed in figure 31; figures 33, 35, and 37 show their corresponding speedup curves. The

results confirm that using futures, implemented using the developer-efficient incremental paral-

lelization approach, it is feasible to achieve reasonable parallel performance on commodity desk-

tops and servers, both in terms of raw performance and speedup.

Though the Racket implementations are slower than the optimized C versions in the sequential

case, all three parallel Racket versions are able to yield better performance than sequential C after

employing relatively small numbers of processors (2 for both convolution and MV-sparse, and 6 for

mergesort). The parallel convolution implementation exhibits good scaling through the maximum

number of processors available on both machine configurations, owing to the tight nested-loop

structure of the algorithm, which involves only floating-point computations. Here the parallel

convolution is able to avoid slow-path exits by using Racket’s floating point-specific primitives.

The Racket benchmarks also use unsafe versions of the arithmetic and array indexing operations.

Figures 38 and 40 show running time for the Racket implementations of the NAS IS and FT

benchmarks, while figures 39 and 41 show speedup curves. Racket’s performance is compared

with both sequential and parallel Java reference implementations.

While sequential Racket implementations for these benchmarks are considerably slower than

the Java implementations, the parallel implementations scale better. However, this scaling does

not allow us to catch up with the parallel Java implementation in absolute terms. It is likely that,

especially in the case of the IS benchmark, this is due to the majority of work being performed

in the parallel portion of the benchmark being array accesses (e.g. vector-ref and vector-

set! in Racket), operations, which are more heavily optimized in the Java runtime system. The
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Figure 38: NAS Integer Sort wall-clock time
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Figure 39: NAS Integer Sort speedups
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Figure 40: NAS Fourier Transform wall-clock time
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Figure 41: NAS Fourier Transform speedups
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Figure 42: Signal convolution wall-clock times (Parrot)

Racket with futures implementation of NAS FT, however, is able to outperform sequential Java

after 3 processors (on the Cosmos machine configuration), and generally exhibits similar scaling

characteristics to the reference parallel Java implementation.

As with the self-developed benchmarks (Signal Convolution, Mergesort, and MV-Sparse), the

results demonstrate that the approach to incremental parallelization of sequential runtimes can lead

to reasonable parallel performance.

Parrot

The prototype implementation of Parrot with futures was only tested using the convolution bench-

mark. The results, as can be seen in figures 42 and 43, are comparable to those seen with Racket

with futures in terms of speedup (compare to figures 32, 34, and 36). This is supportive of the
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Figure 43: Signal convolution speedup (Parrot)

claim that, overall, the approach leads to reasonable parallel performance (it yields effective paral-

lel programming constructs).

It is important to point out that the raw performance is not comparable, however. This is the

result of the implementation being preliminary (contrast figure 28 and figure 29). More specifically,

the current implementation is based on a version of Parrot in which the JIT is in a state of flux. Our

benchmark results reflect interpreted performance without the JIT, and thus should be taken with a

grain of salt. The current implementation of futures in Parrot only supports operations on unboxed

floating-point numbers.

Caveats notwithstanding, the results for the Parrot with futures proof-of-concept implementa-

tion suggest that the approach can be generalized to other high level language implementations.



Part 6

Related Work



Language Support for Shared-Memory Parallelism

This work builds on the ideas of futures from [23], a parallel dialect of Scheme. Parallelism in

MultiLisp is also expressed via future. However, MultiLisp does not require an explicit touch

on the part of the programmer. Instead, touches are implicitly performed whenever the value of

a future is needed. Also unlike our work, futures in Multilisp always execute in parallel, whereas

ours only execute in parallel when it is safe (based on the constraints of the runtime system).

Many language communities face the problem of retrofitting their implementations to support

parallelism. The typical approach is to allow arbitrary threads of computation to run in parallel, and

to adapt the runtime system as necessary. Some succeed in the transition through substantial re-

implementation efforts; threads in the original Java 1.1 virtual machine where implemented as user

threads, but many re-implementations of Java now support threads that use hardware concurrency.

Others succeed in the transition with the help of their language designs; Erlang and Haskell are

prime examples of this category, where the purely functional nature of the language (and much

of the language implementation) made a transition to support for parallelism easier, through it

required substantial effort [2, 26]. Finally, many continue to struggle with the transition; our

own attempts to map Racket-level threads to OS-level threads failed due to the complexity of the

runtime system, and frequent attempts to rid the main Python and Ruby implementations of the

global interpreter lock (GIL) have generally failed [6, 34]. An attempt to support OS-level threads

in OCaml has so far produced an experimental system [10].

Our approach of introducing parallelism through constrained futures is somewhat similar to

letting external C code run outside the GIL (and therefore concurrently) in Python or Ruby. Instead

of pushing parallelism to foreign libraries, however, our approach draws parallelism into a subset

of the language. Our approach is also similar to adding special-purpose parallel operators to a

language, as in data-parallel operations for Data Parallel Haskell [11]; instead of constraining
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the set of parallel operations a priori, however, our approach allows us to gradually widen the

parallelism available through existing constructs.

In adding support for parallelism to Racket, we hope to move toward the kind of support for

parallelism that is provided by languages like NESL [8] , X10 [13], Chapel [12], Fortress [1], Man-

ticore [20], and Cilk [9], which were all designed to parallelism from the start. Adding parallelism

to a sequential run-time system is a different problem than designing a parallel language from

scratch, but we take inspiration from designs that largely avoid viewing parallelism as concurrent

threads of arbitrary computation.

Concurrent Caml Light [15] relies on a compile-time distinction between mutable and im-

mutable objects to enable thread-local collection. Concurrent Caml Light gives its threads their

own nurseries, but the threads all share a global heap. Concurrent Caml Light is more restric-

tive than Racket places. In Concurrent Caml Light, only immutable objects can be allocated from

thread-local nurseries; mutable objects must be allocated directly from the shared heap. Concurrent

Caml Light presumes allocation of mutable objects is infrequent and mutable objects have longer

life spans. Racket’s garbage collector performs the same regardless of mutable object allocation

frequency or life span.

Erlang [37] is a functional language without destructive update. The Erlang implementation

uses a memory management system similar to Racket’s master and place-local GCs. All Erlang

message contents must be allocated from the shared heap; this constraint allows O(1) message

passing, assuming message contents are correctly allocated from the shared heap, and not from the

Erlang process’s local nursery. The Erlang implementation employs static analysis to try to deter-

mine which allocations will eventually flow to a message send and therefore should be allocated in

the shared heap. Since messages are always allocated to the shared heap, Erlang must collect the

share heap more often then Racket, which always allocates messages into the destination place’s
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local heap. Erlang’s typical programming model has many more processes than CPU cores and

extensive message exchange, while places are designed to be used one place per CPU core and

with less message-passing traffic.

Haskell [31, 32] is a pure functional language with support for concurrency. Currently, Haskell

garbage collection is global; all threads must synchronize in order to garbage collect. The Haskell

implementors plan to develop local collection on private heaps, exploiting the predominance of

immutable objects similarly to Concurrent Caml Light’s implementation. In contrast to pure func-

tional languages, Racket programs often include mutable objects, so isolation of local heaps, not

inherent immutability, enables a place in Racket to independently garbage-collect a private heap.

Manticore [19] is designed for parallelism from the start. Like Erlang and Haskell, Manticore

has no mutable datatypes. In contrast, places add parallelism to an existing language with mutable

datatypes. As the implementation of places matures, we hope to add multi-level parallelism similar

to Manticore.

Matlab provides programmers with several parallelism strategies. First, compute intensive

functions, such as BLAS matrix operations, are implemented using multi-threaded libraries. Sim-

ple Matlab loops can be automatically parallelized by replacing for with parfor. Matlab’s au-

tomatic parallelization can handle reductions such as min, max and sum, but it does not paral-

lelize loop dependence. Matlab also provides task execution on remote Matlab instances and MPI

functionality. Rather than adding parallelism through libraries and extensions, places integrate

parallelism into the core of the Racket runtime.

Python’s multiprocessing library [35] provides parallelism by forking new processes, each

of which has a copy of the parent’s state at the time of the fork. In contrast, a Racket place is

conceptually a pristine instance of the virtual machine, where the only state a place receives from

its creator is its starting module and a communication channel. More generally, however, Python’s
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multiprocessing library and Racket’s places both add parallelism to a dynamic language without

retrofitting the language with threads and locks.

Communication between Python processes occurs primarily through OS pipes. The multipro-

cessing library includes a shared-queue implementation, which is implemented by using a worker

thread to send messages over pipes to the recipient process. Any “picklable” (serializable) python

object can be sent through a multiprocessing pipe or queue. Python’s multiprocessing library also

provides shared-memory regions implemented via mmap(). Python’s pipes, queues and shared-

memory regions must be allocated prior to forking children, which need to use them. Racket’s ap-

proach offers more flexibility in communication; channels and shared-memory vectors can be cre-

ated and sent over channels to already-created places; and channels can communicate immutable

data without the need for serialization.

Python and Ruby implementors, like Racket implementors, have tried and abandoned at-

tempts to support OS-scheduled threads with shared data [6, 34, 38]. All of these languages were

implemented on the assumption of a single OS thread—which was a sensible choice for simplicity

and performance throughout the 1990s and early 2000s—and adding all of the locks needed to

support OS-thread concurrency seems prohibitively difficult. A design like futures could be the

right approach for those languages, too.

Futures are based on similar constructs in Multilisp [23], but differ in that Racket’s futures

require an explicit touch and may not exhibit parallelism because of the legacy code in the runtime

system.

Profiling and Visualization

Threadscope [25] is a visualization tool for Parallel Haskell. It organizes trace information

into a timeline displaying work done by individual Haskell Execution Contexts, which roughly

correspond to operating system threads. The tool uses a non-allocating, buffered per-thread logging
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scheme that incurs minimal overhead (similar to Racket’s future logging). Berthold and Loogen [7]

developed the Eden Trace Viewer, a similar tool, for Eden, a parallel extension to Haskell that

supports distributed computation. The Eden viewer is designed to assist in performance tuning and

provides visual displays of state and communication data at the machine, thread, and process level.

Runciman and Wakeling [36] demonstrated the use of a “parallelism profile graph” to aid in the

subtle problem of the optimal placement of parallel annotations. Instead of processing logs from

actual parallel execution, they used a compiler extension to produce programs that simulate paral-

lelism, which generated logs used to construct their profile graphs. Racket has a similar construct:

would-be-future, that runs sequentially, but produces the same logging that future would. This

helps the Racket programmer determine the extent to which his/her program encounters barricades.

Various tools have been developed to aid in optimizing parallel programs designed for dis-

tributed environments. Jumpshot [42] is a free visualizer for MPI programs that displays both

communication patterns and timelines of process state on a per-node and global basis.

VAMPIR [30] is a commercial visualization tool which can be used to profile programs in both

distributed and shared-memory environments. The tool is capable of using multiple methods of

instrumentation depending on program environment and libraries used (MPI, OpenMP), and offers

graphical displays for a large array of metrics. VAMPIR uses an open trace format [29], which is

shared with a number of other tools. While reusing that trace format would give us interoperability

with these existing tools, our traces record Racket-specific information that cannot be accomodated

by OTF; restricting logging to such a format would greatly limit the usefulness of our visualizer.

Kergommeaux et al. [28] developed Paje for ATHAPASCAN, a system leveraging two levels

of parallelism using a distributed network of shared-memory multi-processor nodes. Paje reads

log information into a simulator which is used to produce interactive timeline visualizations at the

network, node, and processor levels.
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Cilkview [24] is an analysis tool targeting the Cilk++ extensions to C++. It is able to give upper

and lower bounds on the parallelism available in a specific program by running it sequentially and

recording some information about its behavior. It also provides a harness to run the program at

different levels of parallelism to test the results of its analysis.

IBM’s Tuning Fork [3] is a trace-based visualization tool targeting real-time systems. It pro-

vides both real-time and replayable information display in an extensible framework with some

innovative default visualizations, notably an “oscilloscope” view that can show behavior across a

wide range of time scales.
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