
NORTHWESTERN UNIVERSITY

The Monitor Calculus: Modular Metatheories for Contract Systems
Flexible Specification with Annotations and Reusable Metatheories with Transition Systems

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Shu-Hung You

EVANSTON, ILLINOIS

June 2025



2



3

Abstract

Modern contract systems generalize run-time assertions on boolean expressions to higher-order

functions and beyond, equipping programmers with a lightweight tool for specifying and moni-

toring the behavior of programs. To date, researchers have studied the theory of contract systems

in every little detail, from the design of expressive notations for contracts to the correct enforce-

ment of contracts for complex programming language constructs, and even to the asymptotic

behavior of the contract system.

Although each paper contributes unique insight to the study of contract systems, researchers

are bound to define custom contract calculi in order to formulate their desired metatheoretic

properties. Each new contract calculus may include additional annotations that track necessary

invariants for proving the metatheoretic property and custom evaluation rules of the contracts.

As a result, the literature contains a large number of similar but subtly different contract calculi

which require a considerable amount of repeated labor.

I address the problem with a novel transition-system-based representation of higher-order

contracts. The new representation allows for building connections between a contract system and

its proof invariants, and further permits the reuse of metatheories. Specifically, the transition-

system representation is based on a parameterized calculus which monitors higher-order values

with proxies and generates parameter-determined transition events. The calculus has a fixed

base language and a predetermined monitoring strategy, but the annotations that the proxies

carry are parameterized. Consequently, extra invariants needed for proving metaproperties can

be encoded as custom transition events generated by the proxies, and the collection of all events



4

naturally forms a transition system. With such transition systems, the metaproperties manifest

themselves as various transition structures and hence metatheories can be reused by relating

different transition systems with homomorphisms.

In this dissertation, I make three contributions based on the transition-system representation

of contracts. First, I present the monitor calculus and its transition-system-based metatheory.

Through the monitor calculus, I formulate properties of contract systems as particular transition

structures of transition systems. Second, I apply the new representation to contract systems in

the literature to construct a collection of reusable metatheories for contracts, including Findler

and Felleisen’s higher-order contract system, its blame tracking mechanism, and Greenberg’s

space-efficient contracts. Last, I mechanize the monitor calculus together with its metatheory

and applications in Agda for the modular development of the metatheory of contracts.



5

Glossary of Notations

Notation Terminology Page Location
(𝒜,𝒯) annotation language page 57 Section 4.2

The parameters of the monitor calculus, including the definition of 𝐴 and 𝑠 , and the
relations defining how annotations propagate and and how the global state changes in −→m.

𝐴 annotation page 59 Definition 4.7, Section 4.2
𝑠 global states page 59 Definition 4.7, Section 4.2
−→ the reduction relation page 60 Definition 4.8, Section 4.2
−→p program-related reduction relation page 55 Figure 4.3, Section 4.1

The reduction rules of non-boundary and non-proxy forms.
−→m monitor-related reduction relation page 61 Figure 4.4, Section 4.2

The reduction rules of boundary forms and proxy forms.
λm[𝒜;𝒯] an instantiation page 57 Definition 4.7, Section 4.2

An instantiation of the calculus where the parameters are instantiated with𝒜 and 𝒯.
Tind[𝒜;𝒯] the induced transition system page 68 Definition 5.3, Section 5.1

The transition system induced by the instance λm[𝒜;𝒯].
I interpretation of an annotation lan-

guage
page 70 Definition 5.4, Section 5.2,

A property of the annotations and the global states.

I ⊨ 𝑒 the satisfaction relation page 72 Figure 5.1, Section 5.2
I ⊨ 𝑗 𝑒 page 118 Figure 7.16, Section 7.4

The relation that determines whether a term 𝑒 satisfies I (at 𝑗).
Tsat[𝒜;𝒯;I] the interpretation-satisfying page 75 Definition 5.14, Section 5.3
Tsat[𝒜;𝒯;I, 𝑗] transition system

The transition system that satisfies I by construction.
(πA, πS) projection of annotation languages page 65 Definition 4.11, Section 4.3

The pair of functions that projects an annotation language to another annotation language.



6



7

Contents

Abstract 3

Glossary of Notations 5

Table of Contents 6

List of Figures 11

I Introduction 13

1 The Problem with Metatheory Reuse 15

1.1 Proxies in Finder-Felleisen Higher-Order Contracts . . . . . . . . . . . . . . . . . 17

1.2 Contracts as Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Reusable Metatheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 The Monitor Calculus: A Parameterized Contract Calculus 25

2.1 Intercepting Monitor-Related Events . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 A Unified Representation of Contracts and Proof Invariants . . . . . . . . . . . . . 28

2.3 Building Composite Instantiations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



Contents 8

3 Proving Properties of Contract Systems via Transition Systems 35

3.1 A Quick Recap of Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 From the Monitor Calculus to Transition Systems . . . . . . . . . . . . . . . . . . 38

3.3 Reusing Metatheories for Composite Languages . . . . . . . . . . . . . . . . . . . 42

3.4 A Class of Homomorphisms for the Monitor Calculus . . . . . . . . . . . . . . . . 44

II A Transition-System View of Contract Systems 49

4 The Monitor Calculus, Formally 51

4.1 Syntax and Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 The Language of Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Rule Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Languages of Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Projections of Annotation Languages . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 The Transition-System Representation of Contract Systems 67

5.1 Relating Calculus Instantiations to Transition Systems . . . . . . . . . . . . . . . 67

5.2 Interpretation of Annotation Languages . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Soundness of the Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Reusing Metatheories by Composing Homomorphisms . . . . . . . . . . . . . . . 78

III Applications to Contract Metatheories 81

6 Findler-Felleisen Contract System and the Non-masking Property 83

6.1 The Syntax of Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 The Contract Checking Transition Steps . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 The Satisfaction Relation of Contracts . . . . . . . . . . . . . . . . . . . . . . . . . 94



Contents 9

6.4 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 The Correct Blame of Contracts 97

7.1 The Blame Annotation Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Blame Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3 The Ownership Annotation Language . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Indexed Interpretations and Single-Owner Policy . . . . . . . . . . . . . . . . . . 116

7.5 Capturing Monitoring Strategies in the Framework . . . . . . . . . . . . . . . . . 121

7.6 Correct Blame and Single-Owner Policy . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Space-Efficient Contracts 127

8.1 Space-Efficient Contracts in Action . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2 Syntax and Transition Steps of Space-Efficient Contracts . . . . . . . . . . . . . . 131

8.3 Interlude: Size Parameters of Space-Efficient Contracts . . . . . . . . . . . . . . . 136

8.4 Space Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.5 The Time Complexity of Space-Efficient Contracts . . . . . . . . . . . . . . . . . . 139

8.6 Equivalence to Findler and Felleisen [2002]’s Contracts . . . . . . . . . . . . . . . 143

8.6.1 Syntax of the Combined Annotation Language . . . . . . . . . . . . . . . 143

8.6.2 Overview of the Equivalence Proof . . . . . . . . . . . . . . . . . . . . . . 145

8.6.3 Maintaining Equal Contract Checking Status . . . . . . . . . . . . . . . . 147

8.6.4 Preservation of the Simulation Relation . . . . . . . . . . . . . . . . . . . 149

8.6.5 Completing the Equivalence Proof . . . . . . . . . . . . . . . . . . . . . . 151

Conclusion 153

9 Conclusion 153

References 155



Contents 10



11

List of Figures

Name Content Page

Figure 3.1 The visualization of the transition system induced by an

instantiation.

38

Figure 3.2 The visualization of homomorphism-based proofs. 39

Figure 3.4 The visualization of the induced transition system of a

composite instantiation.

43

Figure 4.1 The syntax of the monitor calculus. 52

Figure 4.2 The typing rules of the monitor calculus. 53

Figure 4.3 The program-related reduction relation. 55

Figure 4.4 The rule templates of the monitor-related reduction rela-

tion.

61

Figure 5.1 The satisfaction relation. 72

Figure 7.16 The indexed satisfaction relation. 118



Contents 12



13

Part I

Introduction





15

Chapter 1

The Problem with Metatheory Reuse

Formal specification is an essential tool in the development of reliable software [Hoare 1969; Par-

nas 1972; Lamport 1994, 2002]. Such specifications document the expected behavior of software

in a formal language, thereby opening the door to automatic enforcement of specifications in

programming languages. Among many embodiments of the idea, Meyer [1991a, 1992]’s contracts

in Eiffel [Meyer 2005] systematically reorganize isolated run-time assertions into preconditions

and postconditions at function boundaries to specify the behavior of functions. The preconditions

describe the expectations of the function’s input so the clients of the functions understand what

to supply and the postconditions describe expectations of the function’s output so the author of

the function understands what to produce.

Although modern contract systems generalize run-time assertions on boolean expressions to

higher-order functions and beyond, they follow the same architecture as Eiffel contracts. More

concretely, Eiffel enforces the conditions prescribed by the contracts via monitoring each pre- and

post-condition at every function call. Whenever a value that passed through a function boundary

fails to comply with the contracts, the contract system signals an error to protect the body of the

function from unwanted inputs. Thus, Eiffel guarantees that the runtime behavior of all functions

meet the specifications coded in the contracts, effectively providing a tool for the programmers

to document the otherwise implicit behavior of their programs.



Chapter 1. The Problem with Metatheory Reuse 16

||monℓ𝑝 ,ℓ𝑛 (⌊even⌋ℓ𝑛→/c⌊odd⌋ℓ𝑝 , ||λ𝑥 .𝑥 ||ℓ𝑝 ) ||ℓ𝑛 ||5||ℓ𝑛 −→
||monℓ𝑝 ,ℓ𝑛 (⌊odd⌋ℓ𝑝 , ||λ𝑥 .𝑥 ||ℓ𝑝 ||monℓ𝑛,ℓ𝑝 (⌊even⌋ℓ𝑛 , ||5||ℓ𝑛 ) ||ℓ𝑝 ) ||ℓ𝑛 −→
Err(ℓ𝑛)

Figure 1.1: An example reduction sequence from CPCF

Contracts occupy a unique position in the landscape of formal specifications. They not only

enable the expression of custom and complex conditions [Dimoulas et al. 2016], their dynamic

nature also offers a low barrier when scaling to advanced language features [Strickland et al.

2013; Strickland and Felleisen 2009; Takikawa et al. 2013; Moy et al. 2024]. Both the expres-

siveness and the scalability of contracts contributed to their popularization as witnessed by the

Racket [Felleisen et al. 2015, 2018] programming language.

When establishing the metatheory of a new contract calculus, however, researchers often

need to introduce new syntactic constructs to track invariants needed by the metatheory, and

porting theorems from a previous contract calculus demands a considerable amount of tedious

routine work. As Greenberg [2016] writes in his study of space-efficient contracts, “changing our

calculus to have a more interesting notion of blame, like indy semantics [Dimoulas et al. 2011] or

involutive blame labels [Wadler and Findler 2009; Wadler 2015], would be a matter of pushing a

shallow change in the semantics through the proofs” (p. 31).

Figure 1.1 displays an concrete example reduction sequence for the contract calculus devel-

oped by Dimoulas et al. [2012]. In addition to the contract, ⌊even⌋ℓ𝑛→/c⌊odd⌋ℓ𝑝 , the expressions

in the figure include additional information such as the obligation labels on the contracts, ⌊−⌋ℓ ,

and the ownership annotations, ||− ||ℓ . Consequently, Dimoulas et al. [2012] need to augment their

language to handle the evaluation of these additional constructs and repeat proofs that have been

done for the original, unannotated language.

My work aims to solve this problem, in a very general sense. Specifically, I cast the problem

of reusing metatheories of contracts as the problem of composing contract calculi and reusing

the metatheories of the individual calculus. In this dissertation, I present a novel framework that

unifies the representation of contracts. The new representation supports building calculi that



Chapter 1. The Problem with Metatheory Reuse 17

capture extra artifacts needed for the metatheory of a contract system, proving properties about

the artifacts within the same framework, composing all the artifacts together on top of a fixed base

calculus, and transferring properties about the artifacts to the composite calculus. Furthermore,

the artifacts are reusable across different calculi, thus forming reusable metatheories of contract

systems. In the rest of the introduction, I shall analyze contract systems in the literature and

introduce the key idea of my work.

1.1 Proxies in Finder-Felleisen Higher-Order Contracts

While there are many different formalizations of contract systems, they share a common basis.

In Findler and Felleisen [2002]’s original design, monitors wrap around contracted functions to

intercept their applications and insert contract checks. Similarly, Siek and Taha [2006] design

the cast calculus to serve as an intermediate language for gradually type languages, with higher-

order casts guarding against functions to insert dynamic type checks. Subsequent research either

attach more information to monitors and casts such as Dimoulas et al. [2011, 2012]’s proof of the

Correct Blame Theorem for CPCF and Wadler and Findler [2009]’s addition of blame to the cast

calculus, or they enrich the computation of monitors with a merging operation to achieve space-

efficiency [Herman et al. 2010; Greenberg 2014, 2015, 2016]. Siek and Wadler [2010] particularly

study how a general class ofmerge operation should handle blame to achieve both space efficiency

and correctness of blame.

From this observation, I single out monitors — or casts in gradual typing — as the primary

syntactic construct for constructing a new representation of contracts. In my dissertation, I call

this construct proxies. Proxies replace contracts and blame labels on monitors by an abstract set

of annotations to reify proof invariants of contract systems merely as different kinds of annota-

tions. The merging of space-efficient contracts can be abstractly represented as computation on

the annotations. Consequently, the introduction of annotation-carrying proxies transforms the

combination of contracts and the invariants on them into the composition of annotations.



Chapter 1. The Problem with Metatheory Reuse 18

(a) Ok, proxy(even→/c odd, λ𝑥 .𝑥) 5 −→m

Ok, B#odd { (λ𝑥 .𝑥) (B#even { 5 }) } −→m

Err, B#odd {(λ𝑥 .𝑥) 5} −→p

Err, B#odd { 5 }

(b) (), proxy
(︁
⟨ℓ𝑛, ℓ𝑝⟩, λ𝑥 .𝑥

)︁
5 −→m

(), B#⟨ℓ𝑛, ℓ𝑝⟩
{︁
(λ𝑥 .𝑥) (B#⟨ℓ𝑝, ℓ𝑛⟩ { 5 })

}︁
−→m

(), B#⟨ℓ𝑛, ℓ𝑝⟩ {(λ𝑥 .𝑥) 5} −→p

(), B#⟨ℓ𝑛, ℓ𝑝⟩ { 5 } −→m (), 5

Figure 1.2: (a) An example contracted function and (b) labeling the owner of the expressions

To allow modular and reusable development of contract metatheories, I develop the monitor

calculus, a novel foundation for Findler and Felleisen [2002]’s higher-order contracts. Themonitor

calculus extends the lambda calculus with proxies that monitor the application of higher-order

functions. Although I choose a fixed set of language features and a predetermined monitoring

strategy for the monitor calculus, the proxies are augmented with annotations and each use of

the proxy can be associated with a custom action on the annotation.

To be more concrete, Figure 1.2 shows an example reduction sequence in my calculus. Its

constructs include a proxy, written as proxy(𝐴, 𝑣), that monitors a higher-order value, carrying a

custom annotation 𝐴, and intervenes on the evaluation when the higher-order value is accessed.

In the example on the left, the annotation even→/c odd is an actual contract that specifies the

behavior of the monitored value. The boundaries, written as B#𝐴 {𝑒}, are similar to proxies except

that they wrap around arbitrary expressions and only takes action when the nested expression

evaluates to a value.

In the monitor calculus, although the evaluation rules of proxies and boundaries are not cus-

tomizable, the annotations and their computation are. Beyond contracts, proof artifacts such as

the ownership labels [Dimoulas et al. 2011, 2012] are also expressible as annotations as displayed

on the right of Figure 1.2. In other words, the monitor calculus is capable of expressing not only

the base contract system, but also extra proof information needed for building the metatheory,

and all of these use cases are unified in a single calculus.

I defer the details of the monitor calculus to Chapter 2. Beyond these examples, the anno-

tations and their computation can be customized to approximate more contract systems in the

literature, and I have also used it to model Greenberg [2016]’s space-efficient contracts together



Chapter 1. The Problem with Metatheory Reuse 19

𝑠1

𝑒1 −→∗p 𝑒2 −→m

𝑠2

𝑒3 −→∗p 𝑒4 −→m

· · · ℎchecking
Ok Err

Figure 1.3: Proving properties for the transition system derived from the monitor calculus

with its two completely distinct types of proof artifacts for proving the time complexity and the

functional correctness of space-efficient contracts.

1.2 Contracts as Transition Systems

In the literature, proofs about contract systems often involve constructing an invariant of a cal-

culus that is annotated with additional proof artifacts, with the correct blame property [Dimoulas

et al. 2011, 2012; Takikawa et al. 2012] being a prominent example. While some other examples

such as Greenberg [2016]’s space-efficient contract do not introduce additional annotations on

contracts, its proof also establishes invariants on the contracts. This pattern—associating extra

structure on contracts, either in the calculus or in the proofs—can be abstracted and unified by

switching to a transition-system view of contract systems.

Concretely, the reduction rules of the monitor calculus can be divided into two sets: those that

reduce boundaries and proxies, and those that reduce common language constructs like func-

tions. Figure 1.2 specifically marks monitor-related reductions using −→m and other reductions

using −→p. The −→m reductions capture the instantiation-specific actions associated with prox-

ies whereas the −→p reductions are identical for all instantiations. This separation of reductions

naturally gives a transition system that is the basis of a reusable metatheory.

As a visualization of the idea, the left of Figure 1.3 illustrates the transition system induced

by an instantiation of the monitor calculus. The states are formed by pairing the global states

with the set of expressions that are equivalent under −→p as visualized by dashed rectangles

in the figure. In addition, one state of the transition system can transit to another if there is a

boundary-related reduction (−→m) between any of the expressions in the two states.

The induced transition systems enable one to establish properties of the instantiations of the



Chapter 1. The Problem with Metatheory Reuse 20

⟨(),Ok⟩, proxy
(︁
⟨⟨ℓ𝑛, ℓ𝑝⟩, even→/c odd⟩, λ𝑥 .𝑥

)︁
5 −→m

⟨(),Ok⟩, B#⟨⟨ℓ𝑛, ℓ𝑝⟩, odd⟩
{︁
(λ𝑥 .𝑥) (B#⟨⟨ℓ𝑝, ℓ𝑛⟩, even⟩ { 5 })

}︁
−→m

⟨(), Err⟩,B#⟨⟨ℓ𝑛, ℓ𝑝⟩, odd⟩ {(λ𝑥 .𝑥) 5} −→p · · ·

𝑠1, 𝑠
′
1
−→m

𝑠2, 𝑠
′
2
−→m

· · ·

ℎproj1

ℎproj2

𝑠1
−→m

𝑠2
−→m

· · · ...
ℎchecking

𝑠′1
−→m

𝑠′2
−→m

· · · ...
ℎowner

Figure 1.4: Combining contracts with invariant.

monitor calculus by studying its behavior. For example, normally a contract violation immedi-

ately terminates the evaluation of programs. This means that in Figure 1.2 (b), once the global

state is changed fromOk to Err, it should never change back to Ok. Speaking in term of transition

systems, this property about the global state can be proven by establishing the homomorphisn

ℎchecking from the induced transition system at the left of Figure 1.3 to the one at the right, since

it has no edge from the state Err to the state Ok. In other words, the proof is the construction of

the transition system at the right of the figure and the fact that ℎchecking is a homomorphism.

This approach for proving properties generalizes to other instantiations of the monitor cal-

culus as well and I have applied it to re-establish Dimoulas et al. [2011, 2012]’s Correct Blame

Theorem for the instantiation of the monitor calculus in Figure 1.2 (c) using the same method. In

fact, the framework I develop includes a mechanized recipe for systematically constructing such

homomorphisms and transition systems.

1.3 Reusable Metatheory

In the general case, proving properties of the instantiated monitor calculus by establishing ho-

momorphisms is just as easy or difficult as proving them using a bespoke calculus, but the key

benefit of the transition system representation of contracts is metatheory reuse. Once properties

about the individual proof artifact have been proven, they can be easily carried to the complete

contract system by pairing annotations and global states.



Chapter 1. The Problem with Metatheory Reuse 21

Figure 1.4 illustrates this approach in pictures. The top half of the figure pairs up contracts and

ownership labels [Dimoulas et al. 2011] together in the instantiation. Similar to the visualization

in Figure 1.3, the bottom left shows the transition system corresponding to the reduction sequence

at the top of the figure, and proving properties of the combined instantiation amounts to studying

the behavior of this transition system.

Since the combined instantiation simply pairs the annotations and the global states, there are

homomorphisms ℎproj1 and ℎproj2
1 from the induced transition system of the combined instantia-

tion to that of the individual instantiations from Figure 1.2. Furthermore, since the composition

of homomorphisms is again a homomorphism, properties of the individual proof artifact auto-

matically hold for the combined one. In Figure 1.4, the bottom right illustrates this composition

in action. The homomorphism ℎchecking is just the same one from Figure 1.3 and it corresponds

to the proof that the global state never changes from Ok to Err.

1.4 Thesis Statement

Combining the monitor calculus, which is capable of capturing contract systems, and proof arti-

facts needed for their metatheory, with the idea that behaviors of the instantiations of themonitor

calculus can be studied through its induced transition system, my dissertation defends the fol-

lowing statement.

Thesis Statement. Transition-system-based theory offers a foundation for con-

structingmodular metatheories for contract systems.

To support the thesis, I develop the idea presented in Section 1.1 into a full-fledged and param-

eterized calculus that abstract over Findler and Felleisen [2002]’s contract system to capture its

variants. I further develop the metatheory of the this calculus and demonstrate that properties of

contract systems can be established through studying the behavior of the corresponding transi-

tion systems. The transition-system-based approach from Sections 1.2 and 1.3 also enables me to
1Technically, these are weak homomorphisms.



Chapter 1. The Problem with Metatheory Reuse 22

automate Greenberg [2016]’s “shallow change.” Specifically, the dissertation demonstrates how

to combine contracts and ownership labels [Dimoulas et al. 2011], just as Figure 1.4 illustrates.

Scope and Goals. The calculus presented in this dissertation fixes the base language, the set of

intervention points of the contract system, and the combinator language of contracts. However,

the calculus permits customizing the checking strategies of contracts and the additional artifacts

for tracking invariants of the contracts.

Validation. To validate the thesis statement, I have used my framework to prove Dimoulas

et al. [2011]’s blame correctness theorem for my model of CPCF, as well as the correctness of

Greenberg [2016]’s space-efficient contract in my calculus. The proofs and the framework are

mechanized in about 15k lines of Agda code and, more over, the instantiations are modular—the

mechanization of the annotations can be freely combined with new annotations, and the proofs

can be carried to the combined annotations without undue work. The metatheory of my calculus

and the applications presented in the dissertation are mechanized in Agda, available at

https://plt.cs.northwestern.edu/shuhung-phd/

1.5 Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No.

2237984 and Grant No. 2421308. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the views of

the National Science Foundation.

1.6 Related Work

My work lives in the context of the vast literature on the foundations of (higher-order) con-

tracts [Blume and McAllester 2004; Degen et al. 2012; Dimoulas and Felleisen 2011; Dimoulas

et al. 2011, 2014, 2009, 2012; Disney et al. 2011; Findler and Blume 2006; Findler and Felleisen

https://plt.cs.northwestern.edu/shuhung-phd/


Chapter 1. The Problem with Metatheory Reuse 23

2002; Greenberg 2015, 2016; Greenberg et al. 2010; Hinze et al. 2006; Keil and Thiemann 2015;

Melgratti and Padovani 2017; Sekiyama and Igarashi 2017; Strickland et al. 2013; Swords et al.

2015, 2018; Takikawa et al. 2013; Tov and Pucella 2010; Williams et al. 2018; Xu et al. 2009] and

those of contracts’ most prominent application, gradual typing [Ahmed et al. 2017; Allende et al.

2013; Feltey et al. 2018; Garcia 2013; Garcia et al. 2016; Gierczak et al. 2024; Greenman et al. 2023;

Greenman and Felleisen 2018; Greenman et al. 2019; Gronski and Flanagan 2007; Herman et al.

2010; Matthews and Ahmed 2008; New et al. 2019; Siek et al. 2009, 2015a, 2021; Siek and Chen

2021; Siek and Taha 2006, 2007; Siek and Tobin-Hochstadt 2016; Siek et al. 2015b; Siek andWadler

2010; Tobin-Hochstadt and Felleisen 2006; Takikawa et al. 2012; Vitousek et al. 2017; Wadler 2015;

Wadler and Findler 2009].

This vast literature is ample with formal models, and their theorems and proofs. Often, new

models build on previous ones by extending them with new features, or by modifying their se-

mantics to introduce new mechanisms for enforcing contracts and gradual types. But in most

cases, new models, which inevitably share features with previous ones, are similar but subtly

different from their predecessors. This variability trickles down to theorems and proofs; analo-

gous properties “feel” the same but look formally different from one model to another, and their

proofs have to be repeated. Even in publications, such as those of Greenman et al. [2019, 2023],

that claim to present a unifying framework for a spectrum of models, the shared part between

the models is the definition of their source syntax; semantics, theorems and proofs are redone for

every point in the spectrum.

Of course, I am not the first to observe that the metatheory of contract systems (and gradual

typing) is rife with repetition. Siek and Chen [2021] develop a parameterized cast calculus that

abstracts certain parts of the enforcementmechanism for gradual types away, allowing the blame-

subtyping theorem and the dynamic gradual guarantee to be reused across different instantiations

of their cast calculus. Gierczak et al. [2024] also introduce a parameterized model and use it to

streamline the design of the logical relations that underpin their vigilance property. But, despite

a uniform presentation of the property there is little reuse in terms of its proofs for the different



Chapter 1. The Problem with Metatheory Reuse 24

instances of the model. Swords [2019] and Swords et al. [2015, 2018] build a model based on

Concurrent ML that uniformly represents contract enforcement mechanisms as communicating

processes, essentially explicating their workings as programs. However, they stop short of taking

advantage of their model to abstract over properties and proofs. My work is the first that aims

for a general unifying framework for the metatheory of contracts that puts an emphasis on proof

reuse.

As a final note, besides the prior work on contracts that I revisit in the dissertation, an impor-

tant, direct source of inspiration for my endeavor is the work on the foundations of safe language

interoperability [Matthews and Findler 2007; Buro and Mastroeni 2019; Patterson 2022]. Specif-

ically, the design of the monitor calculus owes to that line of work the idea of boundaries and

proxies as the building block for a unifying, parameterized framework for the study of contract

systems.



25

Chapter 2

The Monitor Calculus

A Parameterized Contract Calculus

As a prelude to the full formal definition, I give a brief overview of the monitor calculus, the core

device in my dissertation for building the theory. To be more concrete, the monitor calculus

is a parameterized calculus that can be instantiated to capture various monitoring systems in

the literature including Findler and Felleisen [2002]’s contract system and Greenberg [2016]’s

variant of space-efficient latent contracts. In Section 2.1, I introduce the monitor calculus, which

is inspired byDimoulas and Felleisen [2011]’s CPCF. Section 2.2 summarizes the parameters of the

calculus together with the definition of certain terminology that I use throughout the dissertation.

Finally, Section 2.3 discusses an approach for building contract systems that can be composed

with other proof artifacts.

2.1 Intercepting Monitor-Related Events

The monitor calculus is a generalization of Dimoulas and Felleisen [2011]’s CPCF, a core calculus

for contracts. To capture contract systems, the monitor calculus adds two language constructs

to the conventional call-by-value λ-calculus: a boundary, B#𝜅 {𝑒}, that represents a component 𝑒

protected by the contract 𝜅 and a proxy, proxy(𝜅, 𝑣), a value 𝑣 carrying the contract 𝜅.



Chapter 2. The Monitor Calculus: A Parameterized Contract Calculus 26

Proxies can be attached to higher-order values such as functions and boxes. When a higher-

order value is wrapped by a proxy, all operations applied on it are intercepted by the proxy to

allow the intervention of the monitoring system. For example, consider the evaluation sequence

about the application of a contracted function in Figure 2.1.
Ok, proxy(isOdd→/c isEven, λ𝑥 .𝑥 + 2) 5

−→ Ok, B#isEven { (λ𝑥 .𝑥 + 2) (B#isOdd { 5 }) }
−→ Ok, B#isEven { (λ𝑥 .𝑥 + 2) 5 }
−→ Ok, B#isEven { 5 + 2 }
−→ Ok, B#isEven { 7 }
−→ Err, 7

Figure 2.1: An example of applying a contracted function

In Figure 2.1, the subject of the evaluation sequence is a pair that includes the global state of the

monitoring system and the program being evaluated. In this example, the global status is either

Ok or Err, indicating whether there have been any contract violations or not. The initial program

contains a function λ𝑥 .𝑥 + 2 that has the contract isOdd→/c isEven. This is denoted by a proxy

that carries both the contract and the function being monitored.

The example applies the contracted function to 5. After the application step, the program

reduces into two boundary terms where one guards the application’s result using the range con-

tract and the other guards the argument using the domain contract. In the last step, since the

result does not satisfy the range of isOdd→/c isEven, the monitoring system sets the global state

to Err.

The sharp reader may notice that contract violations only affect the global state of the mon-

itoring system rather than terminating the entire program with error like what CPCF does. In

fact, this is the first step towards representing contracts as transition systems. I shall discuss this

issue more in Chapter 3.

Themonitor calculus can also be used tomodelmonitoring systems other than contract check-

ers. For example, it can model the system that tracks the origin of each source component. In

Figure 2.2, I show an instance of this idea using the ownership information that Dimoulas et al.



Chapter 2. The Monitor Calculus: A Parameterized Contract Calculus 27

[2011, 2012] designed in their study of the blame correctness property. In their work, boundaries

divide the program into multiple parts where each part is assigned an ownership label. Concep-

tually, the ownership labels represent standalone source components in the original program.

Figure 2.2 repurposes the program from Figure 2.1 to demonstrate how the monitor calculus

can track the ownership labels. The program itself remains unchanged, but the boundaries and

proxies do not carry contracts anymore. Instead, they are annotated with a pair of labels naming

the owners outside and inside the boundaries.

The colors on the program distinguish the role of each subexpression and are synthesized from

the annotations. Black represents boundary or proxy terms dividing the program into different

components. Brown represents the caller λ𝑥 .𝑥 + 2 and blue represents the callee. This time, since

the ownership information is fully captured by the annotations, the global state of the monitor

calculus is the unit value, (), instead of Ok and Err.
(), proxy

(︁
⟨ℓ𝑛, ℓ𝑝⟩, λ𝑥 .𝑥 + 2

)︁
5

−→ (),B#⟨ℓ𝑛, ℓ𝑝⟩
{︁
(λ𝑥 .𝑥 + 2) (B#⟨ℓ𝑝, ℓ𝑛⟩ { 5 })

}︁
−→ (),B#⟨ℓ𝑛, ℓ𝑝⟩ { (λ𝑥 .𝑥 + 2) 5 }
−→ (),B#⟨ℓ𝑛, ℓ𝑝⟩ { 5 + 2 }
−→ (),B#⟨ℓ𝑛, ℓ𝑝⟩ { 7 }
−→ (), 7

Figure 2.2: Labeling the owner of the subexpressions

At the beginning of the evaluation sequence in Figure 2.2, the proxy carries the ownership labels

⟨ℓ𝑛, ℓ𝑝⟩. The label ℓ𝑛 is the name of the caller, [] 5, and ℓ𝑝 is the name of the callee, λ𝑥 .𝑥 + 2. In the

second step, the proxy intercepts the function call and pushes the argument 5 into the boundary.

Since the argument belongs to the callee, it is colored brown. The boundary around 5 flipped the

labels to be ⟨ℓ𝑝, ℓ𝑛⟩ as the context outside is part of the callee.

In the third step, 5 passes thought the boundary around it. Therefore, its color becomes blue,

signifying that it is part of ℓ𝑝 . The evaluation continues inside ℓ𝑝 until the last step where the

result of the function call, 7, passes through the boundary again to return to the caller. Thus, its

color changes from blue to brown in the last step.



Chapter 2. The Monitor Calculus: A Parameterized Contract Calculus 28

Ok, proxy(isOdd→/c isEven, λ𝑥 .𝑥 + 2) 5
−→m Ok, B#isEven { (λ𝑥 .𝑥 + 2) (B#isOdd { 5 }) }
−→m Ok, B#isEven { (λ𝑥 .𝑥 + 2) 5 }
−→p Ok, B#isEven { 5 + 2 }
−→p Ok, B#isEven { 7 }
−→m Err, 7

Figure 2.3: Classifying reduction steps into −→p and −→m

2.2 AUnifiedRepresentation ofContracts andProof Invari-

ants

The structural similarity of the programs in Figure 2.1 and Figure 2.2 is a hint at an abstraction

opportunity. In fact, the monitor calculus provides an unified account of extensions over con-

tract systems by abstracting the contracts on boundaries and proxies into annotations that can

be instantiated in different ways. Accompanying this change, evaluation rules that propagate

contracts are also generalized to include arbitrary computation over the annotations; the status

of monitoring systems is also replaced by arbitrary states. Reflecting changes into the notation,

I will use 𝐴 to denote the annotations, 𝑠 to denote the global states and use the −→m relation to

capture the so called monitor-related reductions. I will name other kinds of reductions by −→p,

the program-related reductions.

The −→m relation involves boundaries and proxies that carry annotations. Whereas the com-

putation of the annotations varies from monitoring system to monitoring system, the −→m rela-

tion determines the creation, the elimination and the propagation of boundaries and proxies, but

leaves open the computation rules of the annotations and the states. Since the −→p relation does

not reduce boundaries and proxies, the reduction steps are the same for all annotations. Figure 2.3

illustrates this classification of the reduction steps by labeling each evaluation step in Figure 2.1

as either −→m or −→p. To give a sense of the overall changes to the monitor calculus, here are



Chapter 2. The Monitor Calculus: A Parameterized Contract Calculus 29

two reduction rules in the −→m relation relevant to the evaluation sequence in Figure 2.3.

[R-Cross-Nat] 𝑠,B#𝐴 {𝑛 } −→m 𝑠′, 𝑛

[R-Proxy-β] 𝑠, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→m 𝑠′,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 { 𝑣 }) }

The [R-Cross-Nat] rule specifies how a number migrates through a boundary in the monitor

calculus. In this rule, it is entirely up to the individual instantiation of the monitor calculus to

specify the change of the global state from 𝑠 to 𝑠′. Next, the [R-Proxy-β] rule specifies the gen-

eral pattern of the application of a proxied function. The [R-Proxy-β] rule also allows potential

changes to the global state as the metavariables 𝑠 and 𝑠′ suggest. In addition, the rule shows that

the annotation 𝐴 turns into two new annotations 𝐴𝑎 and 𝐴𝑟 after a step. As with the case for the

global state, the relationship between 𝐴, 𝐴𝑎 and 𝐴𝑟 is up to the specific instantiation.

Annotation Languages, and Instantiations. Summarizing the changes up to this point, any

instantiation of the monitor calculus is determined by two parameters: the set of the annotations,

Ann ∋ 𝐴, the set of the global states, State ∋ 𝑠 , and their computation rules in the −→m relation.

Hereafter, I shall use𝒜 :≡ (Ann, State) to refer to the set of the annotations and the global states.

Similarly, I refer to 𝒯 as the transition steps and use it to denote the collection of annotation

computation rules in the −→m relation. Putting 𝒜 and 𝒯 together, an annotation language is a

pair (𝒜,𝒯). Given a specific annotation language (𝒜,𝒯), I shall denote the instantiated monitor

calculus, i.e. the instance, by λm[𝒜;𝒯].

Figure 2.4 shows the two annotation languages corresponding to the contract example from

Figure 2.1 and the ownership example from Figure 2.2. In the contract example, 𝒜ctc is the set

of contracts and the contract checking status. The transition steps, 𝒯c, describes the contract

checking process. In the ownership example,𝒜owner gives the annotations, the ownership labels,

and the global states, {()}. The transition steps,𝒯o, describes how the ownership labels propagate

in an −→m step.



Chapter 2. The Monitor Calculus: A Parameterized Contract Calculus 30

𝒜ctc = ({𝜅 | 𝜅 is a contract }, Status) 𝜅 ::= · · · Status ∋ st ::= {Ok, Err}
𝒯c is:

[R-Cross-Nat] Ok,B#𝜅 {𝑛 } −→m Ok, 𝑛 if 𝑛 satisfies 𝜅
Ok,B#𝜅 {𝑛 } −→m Err, 𝑛 if 𝑛 does not satisfy 𝜅
where 𝜅 is a predicate

[R-Cross-Lam] Ok,B#(𝜅𝑎→/c𝜅𝑟 ) { λ𝑥 .𝑒 } −→m Ok, proxy(𝜅𝑎→/c𝜅𝑟 , λ𝑥 .𝑒)
[R-Proxy-β] Ok, proxy(𝜅𝑎→/c𝜅𝑟 , λ𝑥 .𝑒) 𝑣 −→m Ok,B#𝜅𝑟 { (λ𝑥 .𝑒) (B#𝜅𝑎 { 𝑣 }) }

𝒜owner = ({⟨ℓ𝑛, ℓ𝑝⟩ | ℓ𝑝, ℓ𝑛 ∈ Label}, {()})
𝒯o is:
[R-Cross-Nat] (),B#⟨ℓ𝑛, ℓ𝑝⟩ {𝑛 } −→m (), 𝑛

[R-Cross-Lam] (),B#⟨ℓ𝑛, ℓ𝑝⟩ { λ𝑥 .𝑒 } −→m (), proxy
(︁
⟨ℓ𝑛, ℓ𝑝⟩, λ𝑥 .𝑒

)︁
[R-Proxy-β] (), proxy

(︁
⟨ℓ𝑛, ℓ𝑝⟩, λ𝑥 .𝑒

)︁
𝑣 −→m (),B#⟨ℓ𝑛, ℓ𝑝⟩

{︁
(λ𝑥 .𝑒)

(︁
B#⟨ℓ𝑝, ℓ𝑛⟩ { 𝑣 }

)︁ }︁
Figure 2.4: Selected rules of two instantiations of the monitor calculus

𝒜octc = ({ ⟨⟨ℓ𝑛, ℓ𝑝⟩, 𝜅⟩ | ℓ𝑝, ℓ𝑛 ∈ Label, 𝜅 is a contract }, {((),Ok), ((), Err)})
𝒯oc is:

[R-Cross-Nat] ⟨(),Ok⟩,B#⟨⟨ℓ𝑛, ℓ𝑝⟩, 𝜅⟩ {𝑛 } −→m

⟨(),Ok⟩, 𝑛 if 𝑛 satisfies 𝜅
⟨(),Ok⟩,B#⟨⟨ℓ𝑛, ℓ𝑝⟩, 𝜅⟩ {𝑛 } −→m

⟨(), Err⟩, 𝑛 if 𝑛 does not satisfy 𝜅
where 𝜅 is a predicate

[R-Cross-Lam] ⟨(),Ok⟩,B#⟨⟨ℓ𝑛, ℓ𝑝⟩, 𝜅𝑎→/c𝜅𝑟 ⟩ { λ𝑥 .𝑒 } −→m

⟨(),Ok⟩, proxy
(︁
⟨⟨ℓ𝑛, ℓ𝑝⟩, 𝜅𝑎→/c𝜅𝑟 ⟩, λ𝑥 .𝑒

)︁
[R-Proxy-β] ⟨(),Ok⟩, proxy

(︁
⟨⟨ℓ𝑛, ℓ𝑝⟩, 𝜅𝑎→/c𝜅𝑟 ⟩, λ𝑥 .𝑒

)︁
𝑣 −→m

⟨(),Ok⟩,B#⟨⟨ℓ𝑛, ℓ𝑝⟩, 𝜅𝑟 ⟩
{︁
(λ𝑥 .𝑒)

(︁
B#⟨⟨ℓ𝑝, ℓ𝑛⟩, 𝜅𝑎⟩ { 𝑣 }

)︁ }︁
Figure 2.5: A composite language of annotations



Chapter 2. The Monitor Calculus: A Parameterized Contract Calculus 31

2.3 Building Composite Instantiations

A full-scale model for proving the correct blame property of a contract system should not only

enforce contracts but also tracks the ownership information to facilitate identification of the cor-

rect blame. To the contrary, an annotation language often handles only one part of the calculus

in a proof. The 𝒜ctc annotation language in Figure 2.4, for example, handles the contract check-

ing aspect separately from the𝒜owner annotation language that handles the ownership tracking

aspect.

The annotation language that corresponds to a full-scale contract model should then combine

the contract part together with its proof artifact, the ownership tracking part. In Figure 2.5,

𝒜octc is one such instance that includes both contracts and ownership labels. The annotations

of 𝒜octc are pairs of contracts and ownership labels, and the transition steps propagates them

simultaneously.

To see how𝒜octc works, here is an example evaluation sequence of the combined monitoring

system that applies the same contracted function to 5.

⟨(),Ok⟩, proxy
(︁
⟨⟨ℓ𝑛, ℓ𝑝⟩, isOdd→/c isEven⟩, λ𝑥 .𝑥 + 2

)︁
5

−→ ⟨(),Ok⟩,B#⟨⟨ℓ𝑛, ℓ𝑝⟩, isEven⟩
{︁
(λ𝑥 .𝑥 + 2) (B#⟨⟨ℓ𝑝, ℓ𝑛⟩, isOdd⟩ { 5 })

}︁
−→ ⟨(),Ok⟩,B#⟨⟨ℓ𝑛, ℓ𝑝⟩, isEven⟩ { (λ𝑥 .𝑥 + 2) 5 }

−→ · · ·

From this evaluation sequence, it is clear that the composite instantiation propagates both the

ownership labels ⟨ℓ𝑛, ℓ𝑝⟩ and the contracts isOdd→/c isEven simultaneously without interfering

with each other. This example may not be particularly interesting, but a practical use case of

composite instantiations is to augment the transition steps and the global states of 𝒜ctc to track

contract checking costs without modifying the original transition steps 𝒯c. In that case, using a

composite instantiation offers more confidence that the addition of cost tracking does not alter

the semantics of contracts.

Although Figure 2.5 lists the syntax of the annotations and the transition steps, the composi-



Chapter 2. The Monitor Calculus: A Parameterized Contract Calculus 32

𝒜 = (Ann, State) 𝒜ctc = ({𝜅 | 𝜅 is a contract }, Status) 𝜅 ::= · · · Status ∋ st ::= {Ok, Err}
𝒯c′ is:

[R-Cross-Nat] 𝑠,B#𝐴 {𝑛 } −→m 𝑠, 𝑛

if 𝑛 satisfies 𝜅 and πS(𝑠) = Ok
𝑠,B#𝐴 {𝑛 } −→m 𝑠′, 𝑛

if 𝑛 does not satisfy 𝜅, πS(𝑠) = Ok, and 𝑠′ = put (𝑠, Err)
where πA(𝐴) = 𝜅 and 𝜅 is a predicate

[R-Cross-Lam] 𝑠,B#𝐴 { λ𝑥 .𝑒 } −→m 𝑠, proxy(𝐴′, λ𝑥 .𝑒)
where πS(𝑠) = Ok and πA(𝐴) = πA(𝐴′) = 𝜅𝑎→/c𝜅𝑟

[R-Proxy-β] 𝑠, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→m 𝑠,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 { 𝑣 }) }
where πS(𝑠) = Ok, πA(𝐴) = 𝜅𝑎→/c𝜅𝑟 , πA(𝐴𝑟 ) = 𝜅𝑟 , and πA(𝐴𝑎) = 𝜅𝑎 ,

Figure 2.6: Extensible specifications of an instantiation

tion can in fact partially reuse the annotation languages of the individual instantiations. The key

to enable this automation is to define the annotation languages in an extensible style.

Figure 2.6 rewrites (𝒜ctc,𝒯c) from Figure 2.4 in such extensible style. In the figure, the transi-

tion steps 𝒯c′ is defined for an unspecified annotation language 𝒜 such that there is a function

πA for extracting contracts from the annotation, another function πS for extracting the contract

checking status from the global state, and a third function put for updating the status in the global

state.

Note that in the figure, the syntax of contracts is still defined in the same manner as 𝒜ctc,

but the transition steps 𝒯c′ only specifies the contract-related part in the annotations and the

global states. As such, the annotation language in Figure 2.6 can be instantiated with 𝒜octc,

the composite annotation language that pairs contracts with ownership labels, by supplying the

appropriate πA, πS, and put functions that extract or update the corresponding components in

the annotations and the global states, e.g. by

πA(⟨⟨ℓ𝑛, ℓ𝑝⟩, 𝜅⟩) = 𝜅

πS(⟨(), st⟩) = st

put (⟨(), st⟩, st′) = ⟨(), st′⟩

In fact, this is the approach taken in my Agda implementation of the framework. For the purpose



Chapter 2. The Monitor Calculus: A Parameterized Contract Calculus 33

of readability, however, in the rest of the dissertation I omit the reference to the functions πA, πS,

and put since they make it difficult to read the rules for propagating the annotations.



Chapter 2. The Monitor Calculus: A Parameterized Contract Calculus 34



35

Chapter 3

Proving Properties of Contract Systems

via Transition Systems

In this chapter, I show how I view contract systems as transition systems. Specifically, for each

instantiation of the monitor calculus, there is a naturally associated transition system whose

transition behavior reflects properties of the instantiation in a natural way. As a result, studying

the behavior of the associated transition systemwith homomorphisms leads to the understanding

of the instantiation.

Starting from Section 3.1, I give a brief recap of transition systems and discuss how meta-

theoretic properties of contract systems can be reframed as structures of the corresponding tran-

sition system that is associatedwith the instantiations of themonitor calculus. Section 3.2 demon-

strates the idea through two specific properties of contracts and the corresponding transition sys-

tems. Moreover, as Section 3.3 explains, the proven properties can be reused when constructing

composite monitoring systems through the composition of homomorphisms. Finally, Section 3.4

explores the applications of transition systems from a different perspective: can the study of

transition systems offer a systematic method for proving properties of monitoring systems? Sec-

tion 3.4 answers this question with a “yes” with the interpretation of annotations.



Chapter 3. Proving Properties of Contract Systems via Transition Systems 36

3.1 A Quick Recap of Transition Systems

Instantiations of the monitor calculus naturally induce transition systems that help study the

behavior of the monitoring system and create reusable metatheory across instantiations. In my

setup, this is done by mapping the induced transition systems into ones that are either better un-

derstood or contain more information. In this section, I briefly go over the definition of transition

systems and their homomorphisms to prepare for the rest of the discussion.

Definition 3.1. A transition system T :≡ (𝑇,→𝑡 ) is a set 𝑇 and a binary relation→𝑡 ⊆ 𝑇 ×𝑇 .

The theory of transition systems is the formal foundation of many areas [Sangiorgi 2009],

including automata theory [Ginzburg 1968], the theory of concurrent processes [Hennessy and

Milner 1985], model checking [Clarke et al. 1986], and more. In the early study of the theory

of transition systems, homomorphisms are used to study the behavior of transition systems and

their equivalences [Sifakis 1983; Arnold and Dicky 1989; Arnold and Castellani 1996]. In my

work, homomorphisms are used for understanding the behavior of the transition system induced

by instantiations of the monitor calculus. Below, I recap several related concepts about transition

system homomorphisms needed in the dissertation.

Definition 3.2 (Homomorphism). Let S :≡ (𝑆,→𝑠) and T :≡ (𝑇,→𝑡 ) be two transition systems.

A homomorphism from S to T is a function ℎ : 𝑆 → 𝑇 such that (i) for all 𝑠, 𝑠′ ∈ 𝑆 , if 𝑠 →𝑠 𝑠
′ then

ℎ(𝑠) →𝑡 ℎ(𝑠′), and (ii) for all 𝑠 ∈ 𝑆 and 𝑡 ′ ∈ 𝑇 , if ℎ(𝑠) →𝑡 𝑡
′ then there exists 𝑠′ ∈ 𝑆 such that

ℎ(𝑠′) = 𝑡 ′ and 𝑠 →𝑠 𝑠
′.

Let me explain through an example how transition system homomorphisms help unravel spe-

cific behavior of a transition system that one may be interested in. Let ≼ be the smallest preorder

generated by Ok ≼ Err and consider the system Terr :≡ ({Ok, Err}, ≼). For any transition system

S :≡ (𝑆,→𝑠), if we can construct a homomorphism ℎ : 𝑆 → {Ok, Err} from S to Terr, it follows

that the states in the set ℎ−1({Ok}) can stay within the same group of states, or they can transit

to one of the states in ℎ−1({Err}). However, S has no transition from any state in ℎ−1({Err}) to

a state in ℎ−1({Ok}).



Chapter 3. Proving Properties of Contract Systems via Transition Systems 37

Instantiations of the monitor calculus can be regarded as transition systems, so their behavior

can be studied by mapping to other transition systems such as Terr as well. For example, both

instantiations of the monitor calculus in Section 2.2 are transition systems where the states are

the configuration, (𝑠, 𝑒), and the transitions are the respective −→ relation. In the example about

contracts, if it can be proved that the map projecting the first component of the configuration

is a homomorphism to Terr, one learns that the monitor calculus never changes the 𝑠 part of the

configuration from Err to Ok.

Apart from the standard definition of homomorphisms, two more concepts are useful for

studying the instantiations of the monitor calculus. First, in𝒜owner, the ownership labels exam-

ple in Figure 2.4, not all combinations of label annotations on boundaries are reasonable. There-

fore, only a subsystem of the transition system from the monitor calculus should be considered.

Second, when composing multiple instantiations of the monitor calculus into one, the resulting

instantiation may have a strictly “smaller” −→m relation because it may be the intersection of all

−→m relations of the individual instantiation. Consequently, a weaker notion of homomorphism

is needed to relate the transition system of the composite instantiation and the transition systems

of the individual instantiation.

Definition 3.3. Given a transition system T :≡ (𝑇,→𝑡 ), a subsystem of T consists of a subset

𝑆 ⊆ 𝑇 that is closed under→𝑡 together with the restriction of→𝑡 to 𝑆 . Formally, it is the system

(𝑆, {(𝑡, 𝑡 ′) | 𝑡, 𝑡 ′ ∈ 𝑆 and 𝑡 →𝑡 𝑡
′}).

Example 3.4. Given a transition system T :≡ (𝑇,→𝑡 ) and a state 𝑡 ∈ 𝑇 , the minimum subsystem

of T containing 𝑡 has as states the intersection of all 𝑇 ′ ⊆ 𝑇 such that 𝑡 ∈ 𝑇 ′ and 𝑇 ′ is closed

under→𝑡 . It also equals the subsystem obtained by restricting 𝑇 to those reachable from 𝑡 .

Definition 3.5 (WeakHomomorphism). LetS :≡ (𝑆,→𝑠) and T :≡ (𝑇,→𝑡 ) be two transition sys-

tems. A weak homomorphism from S to T is a function ℎ : 𝑆 → 𝑇 such that for all 𝑠, 𝑠′ ∈ 𝑆 , if

𝑠 →𝑠 𝑠
′ then ℎ(𝑠) →𝑡 ℎ(𝑠′).

Definition 3.5 removes condition (ii) from Definition 3.2, the definition of homomorphisms.



Chapter 3. Proving Properties of Contract Systems via Transition Systems 38

global states
equivalence classes

of expressions

states of the
induced TS

𝑠1

𝑒1 −→∗p 𝑒2 −→m
𝒯

(𝑠1, [𝑒1]P) −→′m

𝑠2

𝑒′2 −→∗p 𝑒3 −→m
𝒯

(𝑠2, [𝑒′2]P) −→′m

𝑠3

𝑒′3 −→∗p 𝑒4 −→m
𝒯

(𝑠3, [𝑒′3]P) −→′m

· · ·

Figure 3.1: Tind[𝒜;𝒯], the transition system induced by the instantiation λm[𝒜;𝒯]

Conditions (i) and (ii) are also known as preservation and reflection of the transitions, respectively.

As I will discuss in Section 3.3, when using (weak) homomorphisms to back-transport properties

from all individual instantiations of the monitor calculus to the composite instantiation, the tran-

sitions of the composite instantiation are preserved but not all transitions from the individual

instantiation are reflected.

3.2 From the Monitor Calculus to Transition Systems

In this section, I explain how an instantiation of the monitor calculus gives rise to a transition sys-

tem and how properties of the instantiated calculus manifest as specific behaviors of the induced

transition system. Consequently, this system can be used to prove properties of the instantiation.

To illustrate this idea, I discuss two example properties about the contract annotation languages

and the ownership label annotation language and examine how the respective induced transition

system behaves.

Given an annotation language (𝒜,𝒯) where𝒜 :≡ (Ann, State), the notation Tind[𝒜;𝒯] rep-

resents the induced transition system of the instantiation1 λm[𝒜;𝒯]. Its states are the pairs formed

by one 𝑠 from State and one equivalence class of expressions partitioned by the −→p relation.

The transition between the states, −→′m, behaves like the −→m relation except that it is appro-

priately lifted to work on the sets of equivalence classes. More precisely, let Expr be the set of all

1The notations 𝒜,𝒯, and λm[𝒜;𝒯] are introduced in page 29 at the end of Section 2.2.



Chapter 3. Proving Properties of Contract Systems via Transition Systems 39

(a)

Tind[𝒜ctc;𝒯c]

Ok

−→′m
𝒯𝑐

Ok

−→′m
𝒯𝑐

· · ·

ℎchk

Terr

Ok Err

(b)

Tind[𝒜owner;𝒯o]

[𝑒∗𝑤]P

−→′m
𝒯𝑜

[𝑒′𝑤]P

−→′m
𝒯𝑜

· · ·

ℎown

Town

[𝑒∗𝑤]P ∩
WExprℓ∗

[𝑒′𝑤]P ∩
WExprℓ∗

Figure 3.2: Proving properties by mapping to other transition systems: (a) the state changes only
from Ok to Err, and (b) the ownership labels comply with the single-owner policy.

expressions of the monitor calculus, the induced transition system is

Tind[𝒜;𝒯] :≡ ({ (𝑠, [𝑒]P) | 𝑠 ∈ State ∧ 𝑒 ∈ Expr }, −→′m).

Here, [𝑒]P denotes the equivalence class of 𝑒 , i.e., it is the set {𝑒′ | 𝑒′ ∈ Expr ∧ 𝑒′ ∼P 𝑒} where ∼P

is the reflexive, symmetric and transitive closure of −→p. The relation −→′m is defined by lifting

−→m to the equivalence classes: 𝑠, [𝑒1]P −→′m 𝑠, [𝑒2]P iff 𝑠, 𝑒′1 −→m 𝑠′, 𝑒′2 for some 𝑒′1 ∈ [𝑒1]P and

𝑒′2 ∈ [𝑒2]P.

Figure 3.1 partially visualizes this induced transition system. In the figure, each dashed rect-

angle encloses one state of of the transition system and −→′m draws the transitions between the

states. For simplicity, the visualization only shows one −→p reduction sequence for each state

instead of drawing the entire equivalence class. In the actual transition system, multiple states

can transit to the same target.

The Non-masking Property of𝒜ctc. With the induced transition system of a given annotation

language in hand, let me demonstrate how properties of instantiations of themonitor calculus can

be reified as additional structures of the induced transition system using the contract annotation

language, λm[𝒜ctc;𝒯c], as the first example. Concretely, a contract violation in CPCF immediately

terminates the evaluation of the program. Whenmodeling contract systems with (𝒜ctc,𝒯c), how-

ever, the contract monitoring result is separately recorded in 𝑠 as either Ok or Err. Consequently,



Chapter 3. Proving Properties of Contract Systems via Transition Systems 40

the evaluation of the program may continue even after a contract violation has been detected.

To better match the behavior of CPCF, λm[𝒜ctc;𝒯c] should possess the non-masking property of

errors: if 𝑠 ever becomes Err, it will never change back to Ok.

The non-masking property of the instantiated calculus, λm[𝒜ctc;𝒯c], naturally transcribes to

a property about the behavior of Tind[𝒜ctc;𝒯c], i.e. its induced transition system: the 𝑠 part in

states of the induced transition system admits a preorder. Let (𝑠1, [𝑒1]P) ≼′ (𝑠2, [𝑒2]P) if and only

if 𝑠1 = Ok or 𝑠2 = Err, it can be seen that ≼′ equips the induced transition system of λm[𝒜ctc;𝒯c]

with an additional preorder structure on its states. This preorder ≼′ formally expresses that

the induced transition system can transit from (Ok, [𝑒1]P) to (Err, [𝑒2]P) for some 𝑒1, 𝑒2 or stay

unchanged, but the state never changes from (Err, [𝑒2]P) to (Ok, [𝑒1]P) for any 𝑒1, 𝑒2.

While it is straightforward to verify that the transition of the states via −→′m is monotonic

with respect to ≼′, an alternative and more systematic approach is to relate the induced transi-

tion system to a simpler transition system whose state transitions are obviously correct. As an

example, recall that the transition system Terr is defined as ({Ok, Err}, ≼) where ≼ is the smallest

preorder generated by Ok ≼ Err. By showing that ℎchk : (𝑠, [𝑒]P) ↦−→ 𝑠 is a homomorphism from

Tind[𝒜ctc;𝒯c] to Terr, the monotonicity of the states is proved using the argument in Section 3.1.

Figure 3.2 (a) visualizes the proof of the non-masking property that uses ℎchk . The top of

Figure 3.2 (a) is the induced transition system of λm[𝒜ctc;𝒯c] and the bottom is Terr. The map ℎchk

ignores the expressions of the induced transition system, leaving only the 𝑠 part of the states. By

inspecting Terr, it is apparent that Err in λm[𝒜ctc;𝒯c] cannot be changed to Ok because there is

no corresponding transition in Terr.

The Single-Owner Property of𝒜owner. More generally, properties of the instantiations of the

monitor calculus can be rephrased as certain transition behavior of its induced transition system

and subsequently proved by establishing homomorphisms from the induced transition system

into a better understood one. This time, other than contracts, I show that the preservation of the

single-owner property of (𝒜owner,𝒯o), the language of ownership labels from Figure 2.4, can be

addressed with the same idea.



Chapter 3. Proving Properties of Contract Systems via Transition Systems 41

ℓ ⊩ 𝑒
ℓ𝑝 ⊩ 𝑒

ℓ𝑝 ⊩ λ𝑥 .𝑒
ℓ𝑝 ⊩ 𝑒1 ℓ𝑝 ⊩ 𝑒2

ℓ𝑝 ⊩ 𝑒1 𝑒2

ℓ𝑝 = ℓ𝑞 ℓ𝑟 ⊩ 𝑒

ℓ𝑝 ⊩ B#⟨ℓ𝑞, ℓ𝑟 ⟩ {𝑒}
ℓ𝑝 = ℓ𝑞 ℓ𝑟 ⊩ 𝑒

ℓ𝑝 ⊩ proxy
(︁
⟨ℓ𝑞, ℓ𝑟 ⟩, λ𝑥 .𝑒

)︁
Figure 3.3: Well-formedness of ownership labels. Adapted from Dimoulas et al. [2012].

When labeling the owners of subexpressions in the ownership annotation language, the labels

on nested boundaries or proxies must match each other. This corresponds to the single-owner

policy from Dimoulas et al. [2011, 2012]. As a concrete example, it ought to be the case that

ℓ𝑝 = ℓ𝑞 in the following expression in order to sensibly assign an owner to the region containing

the application of the function λ𝑥 . 𝑥 + 2.

B#⟨ℓ𝑛, ℓ𝑝⟩
{︁
(λ𝑥 . 𝑥 + 2) (B#⟨ℓ𝑞, ℓ𝑟 ⟩ { 5 })

}︁
Dimoulas et al. [2012] characterize the single-owner policy using the well-formedness judg-

ment ℓ ⊩ 𝑒 . Figure 3.3 displays some of the inference rules adapted from their work. In the

judgement, the label to the left of ⊩ indicates the owner of the current expression. Therefore, in

the boundary case, the premise ℓ𝑝 = ℓ𝑞 requires that the outer label on the boundary matches the

label of the current owner. In the other premise of the boundary case, the owner changes to the

inner label on the boundary, signifying that the owner of 𝑒 is ℓ𝑟 . Similarly, the premises of the

proxy case match the label to the left of ⊩ with the labels on the proxy.

The compliance of the single-owner policy or, more formally, the preservation of the well-

formedness for all expressions, can be proved in terms of transition system homomorphisms, too.

Let WExprℓ be the set of expressions that are well formed under label ℓ , i.e.,

WExprℓ :≡ {𝑒𝑤 | ℓ ⊩ 𝑒𝑤 }.

If an initial expression 𝑒∗𝑤 is a member ofWExprℓ∗ for some specific label ℓ∗, I shall prove that the

monitor calculus preserves this membership relationship when taking reduction steps with the

homomorphism ℎown from a subsystem of Tind[𝒜owner;𝒯o] containing 𝑒∗𝑤 to Town, the transition

system at the bottom of Figure 3.2 (b).

The transition system Town in particular satisfies the single-owner policy by construction:

it is defined in a manner similar to the induced transition system of λm[𝒜ctc;𝒯c] except that the



Chapter 3. Proving Properties of Contract Systems via Transition Systems 42

states only include the equivalence classes of expressions that satisfy the well-formedness judge-

ment. As Figure 3.2 (b) depicts, for each state [𝑒𝑤 ]P at the top, the corresponding state at the

bottom intersects the equivalence class with WExprℓ∗ . The transitions are adjusted accordingly

and, moreover, states whose intersection is empty are removed. Formally, the transition system

at the bottom is:

Town :≡
(︁{︁
((), [𝑒𝑤 ]P ∩WExprℓ∗) | 𝑒𝑤 ∈ WExprℓ∗

}︁
, −→′′m

)︁
where for any 𝑒1, 𝑒2, the transition relation −→′′m relates two states if and only if there exists 𝑒′1, 𝑒′2
such that 𝑒′1 ∈ [𝑒1]P ∩WExprℓ∗ , 𝑒′2 ∈ [𝑒2]P ∩WExprℓ∗ , and (), 𝑒′1 −→m (), 𝑒′2. By definition, all

reduction sequences captured by this transition system preserve the well-formedness judgement

since the states are subsets ofWExprℓ∗ .

That the instantiation λm[𝒜ctc;𝒯c] complies with the single-owner policy can be established

by proving that for any 𝑒∗𝑤 ∈ WExprℓ∗ ,ℎown defined by ((), [𝑒]P) ↦−→ ((), [𝑒]P∩WExprℓ∗) is a well-

defined function from the minimum subsystem of Tind[𝒜owner;𝒯o] containing ((), [𝑒∗𝑤 ]P) to Town,

and thatℎown is a homomorphism. To understand why, recall fromDefinition 3.3 that a subsystem

is closed under transitions. Therefore, the minimum subsystem of Tind[𝒜owner;𝒯o] that includes

the state ((), [𝑒∗𝑤 ]P) precisely contains the reduction sequence starting from ((), 𝑒∗𝑤 ). As a result,

when ℎown is a homomorphism from this subsystem to Town, it follows that all subsequent expres-

sions in the reduction sequence are members ofWExprℓ∗ . Hence, the well-formedness judgement

is preserved.

3.3 Reusing Metatheories for Composite Languages

Proving properties of contract systems using transition system homomorphisms has the benefit

that the proofs can be easily reused as the composition of homomorphisms is again another

homomorphism. To demonstrate this concept, let us revisit the annotation language 𝒜octc from

Figure 2.5 in page 30, Section 2.3.

Since𝒜octc is morally a combination of𝒜ctc and𝒜owner, both the non-masking property and



Chapter 3. Proving Properties of Contract Systems via Transition Systems 43

⟨Ok,()⟩,
[𝑒1 ]P

−→m
𝒯

⟨Ok,()⟩,
[𝑒2 ]P

−→m
𝒯

· · ·

ℎproj2 ℎproj1

Ok

−→m
𝒯c

Ok

−→m
𝒯c

· · ·

Terr

ℎchk

[𝑒1]P

−→′m
𝒯o

[𝑒2]P

−→′m
𝒯o

· · ·

Town

ℎown

Figure 3.4: The induced transition systems of the composite instantiation.

the compliance of the single-owner policy discussed in Section 3.2 should hold for𝒜octc as well.

In other words, the contract checking status of 𝒜octc would not be reset Ok if it ever becomes

Err, and the ownership labels annotated on boundaries always adhere to the single-owner policy.

Nonetheless, repeating the proofs from𝒜ctc and𝒜owner again for𝒜octc is a waste of effort. As

I argue in Section 2.3, the transition steps of𝒜octc can be formed by appropriately setting the πA,

πS, and put functions in Figure 2.6 in page 32. As a result, any reduction step of λm[𝒜octc;𝒯oc] gives

rise to a reduction step of λm[𝒜ctc;𝒯c] through the πA and πS functions and, intuitively, it should

be possible to lift properties about the reduction sequences of λm[𝒜ctc;𝒯c] to the corresponding

sequences of λm[𝒜octc;𝒯oc].

Fortunately, this is indeed the case if we take a close look at the two induced transition

systems, Tind[𝒜octc;𝒯oc] and Tind[𝒜ctc;𝒯c]. With functions like (πA, πS), the transition system

Tind[𝒜octc;𝒯oc] comes with two weak homomorphisms, ℎproj2 and ℎproj1 , to the transition systems

Tind[𝒜owner;𝒯o] and Tind[𝒜ctc;𝒯c], respectively.

Figure 3.4 depicts the transition systems and homomorphisms. The one on the left projects the

contract part of the annotations, and the other one on the right projects the ownership labels part.

Recall from Figure 3.2 that the non-masking property is proved using the homomorphism ℎchk

from Tind[𝒜ctc;𝒯c] to Terr. By composing ℎchk and ℎproj2 , we obtain a weak homomorphism ℎchk ◦

ℎproj2 from Tind[𝒜octc;𝒯oc] to Terr. Thus, the non-masking property holds for the instantiation



Chapter 3. Proving Properties of Contract Systems via Transition Systems 44

λm[𝒜octc;𝒯oc]. Similarly, through the composition homomorphism ℎown ◦ℎproj1 , the single-owner

property holds for λm[𝒜octc;𝒯oc].

In summary, viewing contract systems as transition systems introduces a unified approach to

proving the contract systems’ properties. Building on this formulation, the transition systems in

Figure 3.4 illustrate how properties proven for the individual instantiation can be transferred to

the composite one by composing homorphisms. More generally, when working with composite

contract systems, the problem of bringing properties from the original contract system to the

composite one is reduced to studying the relationship between the respective induced transition

systems.

3.4 A Class of Homomorphisms for the Monitor Calculus

As Sections 3.2 and 3.3 show, the transition system representation of contracts helps one build

reusablemetatheories. Unfortunately, when proving properties in this approach, constructing the

appropriate transition systems that capture the desired properties and establishing the respective

homomorphisms are two challenging and sometimes tedious steps. To overcome this difficulty, I

systematically construct a class of interpretation-satisfying transition systems that capture prop-

erties one wants to prove by construction together with the corresponding the homomorphisms

from the induced transition system. In fact, the interpretation-satisfying transition systems and

the homomorphisms to them are generalization of ℎchk and ℎown from Figure 3.2. Each transition

system and each homomorphism at the bottom of Figure 3.2 represents a useful kind properties

in the metatheory of contract systems.

The construction is adapted from a common practice that applies logic to study the behavior

of transition systems [Sifakis 1983; van Benthem and Bergstra 1994]. Typically, one designs a

logic and takes transition systems as its semantics using a satisfaction relation that determines

whether a formula is satisfied from a given state. Then, one examines the classes of transition

systems that satisfy different formulas. This approach reduces the problem of understanding



Chapter 3. Proving Properties of Contract Systems via Transition Systems 45

Iℓ𝑝 ⊨ λ𝑥 .𝑒 iff Iℓ𝑝 ⊨ 𝑒
Iℓ𝑝 ⊨ 𝑒1 𝑒2 iff Iℓ𝑝 ⊨ 𝑒1 and Iℓ𝑝 ⊨ 𝑒2
Iℓ𝑝 ⊨ B#⟨ℓ𝑞, ℓ𝑟 ⟩ {𝑒} iff ℓ𝑝 = ℓ𝑞 and Iℓ𝑟 ⊨ 𝑒
Iℓ𝑝 ⊨ proxy

(︁
⟨ℓ𝑞, ℓ𝑟 ⟩, λ𝑥 .𝑒

)︁
iff ℓ𝑝 = ℓ𝑞 and Iℓ𝑟 ⊨ 𝑒

...
Figure 3.5: A family of interpretations for proving the single-owner policy.

the behavior of transition systems into the design of logic systems and has applications to the

theory of concurrent processes [Hennessy and Milner 1985; van Benthem et al. 1994], model

checking [Clarke et al. 1986], runtime verification and temporal logic [Pnueli 1977; Lamport 1994].

For the monitor calculus, I adapt the preceding approach and define the satisfaction relation

over expressions. It is written as I ⊨ 𝑒 where I refers to an interpretation of the annotation lan-

guages, and 𝑒 is any expression. Letme assume that there is an ambient logic—themetalanguage—

that is referenced when proving properties about the monitor calculus. The relation I ⊨ 𝑒 asserts

that 𝑒 satisfies the interpretation I. Here, an interpretation I includes two functions, B⟦𝐴, 𝑒 ⟧

and P⟦𝐴, 𝑒𝑚 ⟧, that map any boundary expression B#𝐴 {𝑒} and any proxy value proxy(𝐴, 𝑒𝑚) to

propositions of the metalanguage. The satisfaction relation further lifts these two functions to

all expression forms. Therefore, it helps one systematically select specific subsets of expressions

through specially defined interpretations. Generally speaking, an interpretation I can describe

the desired properties with appropriate choices of the B and P functions. Then, the set expres-

sions that satisfy the property captured by I is simply {𝑒 | 𝑒 ∈ Expr ∧ I ⊨ 𝑒}.

An implication of this observation is that no additional judgements are needed to characterize

specific subsets of the expressions. Rather, it is sufficient to supply an appropriate annotation

interpretation to the satisfaction relation. For now, I illustrate this idea by reformulating the

well-formedness judgment, ℓ𝑝 ⊩ 𝑒 that captures the single-owner policy in Figure 3.3 in terms of

the satisfaction relation with the interpretation given in Figure 3.5. Although the presentation

does not fully match the technical definition of interpretations, it demonstrates the overall idea.

The family of interpretations {Iℓ𝑝 }ℓ𝑝∈Label given in Figure 3.5 is defined structurally on the

expressions 𝑒 . For example, Iℓ𝑝 ⊨ 𝑒1 𝑒2 holds if and only if both Iℓ𝑝 ⊨ 𝑒1 and Iℓ𝑝 ⊨ 𝑒2 hold.



Chapter 3. Proving Properties of Contract Systems via Transition Systems 46

The cases for boundaries (B#⟨ℓ𝑞, ℓ𝑟 ⟩ {𝑒}) and proxies (proxy
(︁
⟨ℓ𝑞, ℓ𝑟 ⟩, λ𝑥 .𝑒

)︁
) are defined similarly

except that Iℓ𝑝 supplies the additional condition ℓ𝑝 = ℓ𝑞 in the shaded area, thereby enforcing the

single-owner policy. With this interpretation, Iℓ𝑝 ⊨ 𝑒 holds if and only if ℓ𝑝 ⊩ 𝑒 holds. Thus, the

well-formedness judgement ℓ𝑝 ⊩ 𝑒 is subsumed by instantiating the satisfaction relation with the

family of interpretations {Iℓ𝑝 }ℓ𝑝∈Label.

[Note: Readers familiar with logic may find the satisfaction relation of the monitor calculus

different from the common definition in several places. Typically, a transition system,M, instead

of I is placed on the left-hand side of ⊨ and M is considered to be a model of a formula 𝐹 if

it satisfies 𝐹 at every state. For the monitor calculus, I is the interpretation of boundary and

proxy terms. The transition systems that satisfy an interpretation are implicit in the satisfaction

relation. Moreover, the right-hand side of ⊨ is usually a logic formula that can include modal

operators to express the behavior of state transitions. In the monitor calculus, the right-hand

side of ⊨ are expressions. As the counterpart of proof systems for logic, the −→m relation and the

−→p relation both act as the deduction system of expressions. — end note]

Recall that the overall goal of introducing the annotation interpretations and the satisfaction

relation is to systematically construct a class of transition systems that have homomorphisms

from the induced transition system in order to establish properties of the instantiated monitor

calculus. Taking the preservation of the single-owner policy in Figure 3.2 (b) as an example,

the family of interpretations {Iℓ𝑝 }ℓ𝑝∈Label has captured the well-formedness judgement ℓ𝑝 ⊩ 𝑒 .

That is, ℓ𝑝 ⊩ 𝑒 holds if and only if Iℓ𝑝 ⊨ 𝑒 holds. Hence, replacing set WExprℓ∗ by the definition

{𝑒 | 𝑒 ∈ Expr ∧ Iℓ∗ ⊨ 𝑒} does not affect the construction of the transition system Town and the

homomorphismℎown . However, since {Iℓ𝑝 }ℓ𝑝∈Label is just one of themany possible interpretations,

this immediately generalizes the proof in the second part of the Section 3.2 to all other properties

that can be described through the combinations of annotation interpretations and the satisfaction

relation!

To see how the generalization works, let me rephrase the proof in Section 3.2. In this section,

however, I shall replace the special-purpose set of expressions WExprℓ∗ with the more general



Chapter 3. Proving Properties of Contract Systems via Transition Systems 47

definition. Specifically, Let IExpr(I) be the set of expressions that satisfy I, i.e.,

IExpr(I) :≡ {𝑒 | I ⊨ 𝑒}.

If an initial expression 𝑒∗ belongs to the set IExpr(I), I shall prove that the monitor calculus

preserves this membership relationship when taking reduction steps by constructing a homo-

morphism ℎsat from the transition system Tind[𝒜;𝒯] to one that satisfies I by construction.

Specifically, the transition system Tsat that satisfies I by construction is defined by inter-

secting the states of Tind[𝒜;𝒯] with IExpr(I). Formally, the definition of Tsat is:

Tsat :≡
(︁
{(𝑠, [𝑒]P ∩ IExpr(I)) | 𝑠 ∈ State ∧ 𝑒 ∈ IExpr(I)} , −→′′m

)︁
where for any 𝑒1, 𝑒2, the transition relation −→′′m relates two states if and only if there exists

𝑒′1, 𝑒
′
2 such that 𝑒′1 ∈ [𝑒1]P ∩ IExpr(I), 𝑒′2 ∈ [𝑒2]P ∩ IExpr(I), and 𝑠, 𝑒′1 −→m 𝑠′, 𝑒′2. By definition,

all reduction sequences captured by this transition system preserve the satisfaction of I as the

states are subsets of IExpr(I).

To finish the proof and bring the property captured by I from Tsat back to the instantiation

λm[𝒜;𝒯], I only need to prove that for any 𝑒∗ ∈ IExpr(I), the map ℎsat defined by (𝑠, [𝑒]P) ↦−→

(𝑠, [𝑒]P ∩ IExpr(I)) is a well-defined function from the smallest subsystem of Tind[𝒜;𝒯] con-

taining (𝑠, [𝑒∗]P) to Tsat, and that ℎsat is a homomorphism.

Summarizing the development so far, proving a property in the transition-system-based the-

ory includes only two steps. First, define an interpretation I to capture the desired property

through appropriately chosen B and P functions. Second, with the interpretation I, the con-

struction of the interpretation-satisfying transition system Tsat and the candidate homomorphism

ℎsat are defined above; verify that ℎsat is indeed a homomorphism. Overall, the introduction of

interpretations provides a systematic way for constructing transition-system-based proofs.

In Chapter 5, I refine the procedure developed in this section further by introducing two

conditions on interpretations that can help verify the well-definedness of ℎsat and that it is a

homomorphism. The framework developed in Chapter 5 also incorporates the preorder structure

that ℎchk utilizes, reducing the boilerplate needed by the proofs.



Chapter 3. Proving Properties of Contract Systems via Transition Systems 48



49

Part II

A Transition-System View

of Contract Systems





51

Chapter 4

The Monitor Calculus, Formally

In this chapter, I present the monitor calculus, its syntax, operational semantics, and its param-

eters. Section 4.1 opens the chapter by giving the syntax and the program-related reduction

relation of the calculus. Section 4.2 formally defines annotation languages and the operational

semantics of the monitor calculus. Last, Section 4.3 briefly discusses how annotation languages

can be made extensible through the projections of annotation languages.

Based on the framework in this chapter, I have mechanized the monitor calculus as an Agda

library. My Agda library implementation allows one to define annotation languages in direct

style and build reusable metatheory for different contract systems. All annotation languages and

theorems presented in Chapters 6 to 8 are mechanized as reusable components using this library.

4.1 Syntax and Operational Semantics

The monitor calculus, or λm for short, is a calculus that supports monitoring of higher-order

values. It is a parameterized extension of the call-by-value simply typed lambda calculus that

includes unit, natural numbers, pairs, disjoint sums, recursive types and immutable reference

cells. The calculus is parameterized by annotation languages, which specifies the behavior of the

monitoring system. It is covered in the next section.

Figure 4.1 defines the syntax of λm and Figure 4.2 gives its type system. I shall explain the lan-



Chapter 4. The Monitor Calculus, Formally 52

𝜏 ::= 𝑡 | unit | nat | 𝜏1 × 𝜏2 | 𝜏1 + 𝜏2 | Box𝜏 | 𝜏𝑎 → 𝜏𝑟 | 𝜇𝑡 .𝜏
𝐴 ∈ Ann

𝑒 ::= B#𝐴 {𝑒} | proxy(𝐴, 𝑒𝑚) | ()
| zero | suc(𝑒) | foldnat(𝑒, 𝑒𝑧, 𝑥 𝑦. 𝑒𝑠) | assert 𝑒 | ⟨𝑒1, 𝑒2⟩ | π1(𝑒) | π2(𝑒)
| inl(𝑒) | inr(𝑒) | case 𝑒 of {𝑥 .𝑒1 | 𝑦.𝑒2} | box(𝑒) | unbox(𝑒)
| 𝑥 | λ𝑥 .𝑒 | 𝑒1 𝑒2 | unroll(𝑒) | roll𝜏 (𝑒) | fix𝑥 .𝑒 | 𝑒; 𝑒1

𝑒𝑚 ::= box(𝑒) | λ𝑥 .𝑒

𝑛,𝑚 ::= zero | suc(𝑛)
𝑣 ::= () | 𝑛 | ⟨𝑣1, 𝑣2⟩ | inl(𝑣) | inr(𝑣)
| roll𝜏 (𝑣) | box(𝑣) | λ𝑥 .𝑒 | proxy(𝐴, 𝑒𝑚)

𝐸 ::= suc(𝐸) | foldnat(𝐸, 𝑒𝑧, 𝑥 𝑦. 𝑒𝑠) | assert𝐸 | ⟨𝐸, 𝑒⟩ | ⟨𝑣, 𝐸⟩ | π1(𝐸) | π2(𝐸)
| inl(𝐸) | inr(𝐸) | case𝐸 of {𝑥 .𝑒1 | 𝑦.𝑒2} | box(𝐸) | unbox(𝐸)
| 𝐸 𝑒 | 𝑣 𝐸 | unroll(𝐸) | roll𝜏 (𝐸) | 𝐸; 𝑒1
| B#𝐴 {𝐸}

𝑟 ::= B#𝐴 {()} | B#𝐴 {𝑛} | B#𝐴 { ⟨𝑣1, 𝑣2⟩ } | B#𝐴 { inl(𝑣) } | B#𝐴 { inr(𝑣) }
| B#𝐴 { roll𝜏 (𝑣) } | B#𝐴 { box(𝑣) } | B#𝐴 { λ𝑥 .𝑒 }
| B#𝐴 { proxy(𝐴′, box(𝑒)) } | B#𝐴 { proxy(𝐴′, λ𝑥 .𝑒) }
| unbox( proxy(𝐴, box(𝑒)) ) | proxy(𝐴, λ𝑥 .𝑒) 𝑣

Figure 4.1: The syntax of the monitor calculus

guage constructs together with their typing rules. Before that, let me go over what eachmetavari-

able denotes in the figure. The metavariable 𝜏 ranges over types;𝐴 ranges over annotations, Ann,

which is part of the annotation language. Then, the metavariable 𝑒 ranges over expressions. Ad-

ditionally, 𝑒𝑚 syntactically distinguishes terms that can be monitored.

The next four metavariables define the grammar of terms that are relevant to the evaluation

of the programs. The metavariables 𝑛 and 𝑚 syntactically recognize values that are numbers;

𝑣 ranges over all values; 𝐸 denotes evaluation contexts. The metavariable 𝑟 denotes redexes

related to the evaluation of boundaries and proxies. There are two types of evaluation in λm,

one concerns boundaries and proxies and the other concerns non-boundary expressions. The

−→p relation defines the evaluation of non-boundary expressions whereas 𝑟 captures all other



Chapter 4. The Monitor Calculus, Formally 53

⊢ 𝐴 : Ann𝜏 ⊢ 𝑒 : 𝜏
Γ ⊢ B#𝐴 {𝑒} : 𝜏

⊢ 𝐴 : Ann𝜏 ⊢ 𝑒𝑚 : 𝜏
Γ ⊢ proxy(𝐴, 𝑒𝑚) : 𝜏 Γ ⊢ () : unit

Γ ⊢ zero : nat
Γ ⊢ 𝑒 : nat

Γ ⊢ suc(𝑒) : nat
Γ ⊢ 𝑒 : nat

Γ ⊢ assert 𝑒 : unit

Γ ⊢ 𝑒 : nat Γ ⊢ 𝑒𝑧 : 𝜏 Γ, 𝑥 : nat, 𝑦 : 𝜏 ⊢ 𝑒𝑠 : 𝜏
Γ ⊢ foldnat(𝑒, 𝑒𝑧, 𝑥 𝑦. 𝑒𝑠) : 𝜏

Γ ⊢ 𝑒1 : 𝜏1 Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ ⟨𝑒1, 𝑒2⟩ : 𝜏1 × 𝜏2

Γ ⊢ 𝑒 : 𝜏1 × 𝜏2
Γ ⊢ π1(𝑒) : 𝜏1

Γ ⊢ 𝑒 : 𝜏1 × 𝜏2
Γ ⊢ π2(𝑒) : 𝜏2

Γ ⊢ 𝑒1 : 𝜏1
Γ ⊢ inl(𝑒1) : 𝜏1 + 𝜏2

Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ inr(𝑒2) : 𝜏1 + 𝜏2

Γ ⊢ 𝑒 : 𝜏1 + 𝜏2 Γ, 𝑥 : 𝜏1 ⊢ 𝑒1 : 𝜏 Γ, 𝑦 : 𝜏2 ⊢ 𝑒2 : 𝜏
Γ ⊢ case 𝑒 of {𝑥 .𝑒1 | 𝑦.𝑒2} : 𝜏

Γ ⊢ 𝑒 : 𝜏
Γ ⊢ box(𝑒) : Box𝜏

Γ ⊢ 𝑒 : Box𝜏
Γ ⊢ unbox(𝑒) : 𝜏

Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 : 𝜏
Γ, 𝑥 : 𝜏𝑎 ⊢ 𝑒 : 𝜏𝑟

Γ ⊢ λ𝑥 .𝑒 : 𝜏𝑎 → 𝜏𝑟

Γ ⊢ 𝑒 : 𝜏𝑎 → 𝜏𝑟 Γ ⊢ 𝑒𝑎 : 𝜏𝑎
Γ ⊢ 𝑒 𝑒𝑎 : 𝜏𝑟

Γ ⊢ 𝑒 : 𝜏 [𝜇𝑡 .𝜏 / 𝑡]
Γ ⊢ roll𝜏 (𝑒) : 𝜇𝑡 .𝜏

Γ ⊢ 𝑒 : 𝜇𝑡 .𝜏
Γ ⊢ unroll(𝑒) : 𝜏 [𝜇𝑡 .𝜏 / 𝑡]

Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏
Γ ⊢ fix𝑥 .𝑒 : 𝜏

Γ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝑒1 : 𝜏1
Γ ⊢ 𝑒; 𝑒1 : 𝜏1

Figure 4.2: The typing rules of the monitor calculus

reducible expressions. For more on this, see the Progress lemma and Section 4.2.

Let me now explain the grammar of λm and its typing rules. The two most important con-

structs of λm are boundaries and proxies. To begin with, boundary terms are written as B#𝐴 {𝑒}.

Since boundaries separate expressions into different components, the inner expression (𝑒) has to

be closed (⊢ 𝑒 : 𝜏). A boundary term with inner expression of type 𝜏 is annotated with an anno-

tation of type Ann𝜏 . The types of annotations (Ann𝜏 ) are part of the annotation language and are

indexed by the types of the expressions they annotate. Proxy terms are written as proxy(𝐴, 𝑒𝑚).

Similar to boundaries, the monitored term (𝑒𝑚) must be closed (⊢ 𝑒𝑚 : 𝜏). Moreover, they must be

syntactic immutable reference cells, box(𝑒), or syntactic functions, λ𝑥 .𝑒 .

Next, natural numbers are created using either zero or suc(𝑒). The fold of natural numbers is

written as foldnat(𝑒, 𝑒𝑧, 𝑥 𝑦. 𝑒𝑠). The expression 𝑒𝑧 handles the base case of fold and 𝑒𝑠 handles the

recursive case. I include the predecessor in the recursive case for convenience, so 𝑒𝑠 additionally

has 𝑥 : nat and 𝑦 : 𝜏 in the environment which binds the predecessor and the result of recursion,

respectively. The expression assert 𝑒 asserts that 𝑒 evaluates to a non-zero number.



Chapter 4. The Monitor Calculus, Formally 54

Recursive types in λm are created by roll𝜏 (𝑒) and eliminated by unroll(𝑒). For a type 𝜏 that

contains one free type variable 𝑡 , the constructor roll takes an expression of type 𝜏 [𝜇𝑡 .𝜏 / 𝑡] and

wraps it into an expression of type 𝜇𝑡 .𝜏 . The eliminator unroll does the opposite. Recursive types

in the monitor calculus are strict; roll𝜏 (𝑒) fully evaluates its argument.

The monitor calculus also includes immutable reference cells (or references for short) for

the purpose of monitoring arbitrary values. That is, while only functions and references can be

monitored, any kinds of values can be stored in references. Subsequently, the access of thosed that

are stored in references are tracked by the monitor calculus. A reference storing values of type

𝜏 has type Box𝜏 . They are created using box(𝑒) and their contents can be accessed by unbox(𝑒).

In the calculus, immutable references are essentially structs with a single field.

Immutable reference cells can be used to encode lazy contracts [Findler et al. 2008]. For exam-

ple, when modeling contracts in the monitor calculus, a contracted pair ⟨𝑣1, 𝑣2⟩ will immediately

check both of its components (cf. the [R-Cross-Cons] rule in Figure 4.4). On the contrary, for a

contracted pair that stores references, i.e. ⟨box(𝑣1), box(𝑣2)⟩, the contract will be checked only

when the respective component is accessed using unbox(−).

Finally, the remaining constructs are standard. The expression () has type unit and is the unit

value. Pairs and the projection of pairs are ⟨𝑒1, 𝑒2⟩ and π𝑖 (𝑒), respectively. Disjoint sums are cre-

ated by either inl(𝑒) or inr(𝑒) and eliminated through the case expression, case 𝑒 of {𝑥 .𝑒1 | 𝑦.𝑒2}.

Variables, λ-functions and function applications have their usual syntax and typing rules. λm

also include the fixed-point combinator, fix𝑥 .𝑒 , to support general recursion. Sequencing, 𝑒; 𝑒1,

is included for convenience.

I prove the Substitution lemma following the framework developed by McBride [2005]; Allais

et al. [2017, 2018]. A parallel Renaming lemma is presented, then an extension operation on the

context (Proposition 4.2), and finally the parallel Substitution lemma of the expressions.

Lemma 4.1 (Renaming). Let Γ :≡𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 and Γ′ :≡𝑦1 : 𝜏′1, . . . , 𝑦𝑚 : 𝜏′𝑚 be given. If

Γ ⊢ 𝑒 : 𝜏 and Γ′ ⊢ 𝑦𝑎𝑖 : 𝜏𝑖 for some 1 ≤ 𝑎𝑖 ≤ 𝑚 for 𝑖 = 1 . . . 𝑛 then Γ′ ⊢ 𝑒
[︁
𝑦𝑎1 . . . 𝑦𝑎𝑛 /𝑥1 . . . 𝑥𝑛

]︁
: 𝜏 .

Proposition 4.2. Let Γ′ ⊢ 𝑒𝑖 : 𝜏𝑖 for 𝑖 = 1 . . . 𝑛 be given. Then, for any 𝜏0 and any fresh variable



Chapter 4. The Monitor Calculus, Formally 55

foldnat(zero, 𝑒𝑧, 𝑥 𝑦. 𝑒𝑠) −→p 𝑒𝑧

foldnat(suc(𝑛), 𝑒𝑧, 𝑥 𝑦. 𝑒𝑠) −→p 𝑒𝑠 [𝑛 /𝑥] [foldnat(𝑛, 𝑒𝑧, 𝑥 𝑦. 𝑒𝑠) /𝑦]
assert suc(𝑛) −→p ()

π1(⟨𝑣1, 𝑣2⟩) −→p 𝑣1

π2(⟨𝑣1, 𝑣2⟩) −→p 𝑣2

case inl(𝑣) of {𝑥 .𝑒1 | 𝑦.𝑒2} −→p 𝑒1 [𝑣 /𝑥]
case inr(𝑣) of {𝑥 .𝑒1 | 𝑦.𝑒2} −→p 𝑒2 [𝑣 /𝑦]

unbox(box(𝑣)) −→p 𝑣

(λ𝑥 .𝑒) 𝑣 −→p 𝑒 [𝑣 /𝑥]
unroll(roll𝜏 (𝑣)) −→p 𝑣

fix𝑥 .𝑒 −→p 𝑒 [fix𝑥 .𝑒 /𝑥]
𝑣 ; 𝑒 −→p 𝑒

Figure 4.3: The program-related reduction relation

𝑥0 : 𝜏0, there is a sequence Γ′′ ⊢ 𝑒𝑖 : 𝜏𝑖 for 𝑖 = 0 . . . 𝑛 where Γ′′ :≡ Γ′, 𝑥0 : 𝜏0 and 𝑒0 :≡𝑥0.

Proposition 4.2 simply extends the context of the given sequence of typing derivations with

a new variable. It is used for weakening the contexts in the proof of the Substitution lemma.

Lemma 4.3 (Substitution). Let Γ :≡𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 and some Γ′ be given. If Γ ⊢ 𝑒 : 𝜏 and

Γ′ ⊢ 𝑒𝑖 : 𝜏𝑖 for 𝑖 = 1 . . . 𝑛 then Γ′ ⊢ 𝑒 [𝑒1 . . . 𝑒𝑛 /𝑥1 . . . 𝑥𝑛] : 𝜏 .

Figure 4.3 defines the −→p relation, or the program-related reduction relation that covers the

evaluation of non-boundary expressions. Since they do not involve annotations, the reduction

rules are the same across all instantiations of λm. Note that the −→p relation is slightly different

from the introduction in Section 2.2 in that it does not evaluate under evaluation contexts. The

reduction relation that accounts for whole expressions for the entire calculus is written as 𝒯 ⊢

𝑠, 𝑒 −→ 𝑠′, 𝑒′. I defer their explanation to the next section as they include the global states (𝑠) and

the transition steps (𝒯) from the annotation language.

The reduction rules in the−→p relation are standard, but a few of them are worth mentioning.

First, to reduce foldnat(suc(𝑛), 𝑒𝑧, 𝑥 𝑦. 𝑒𝑠), the −→p relation evaluates to 𝑒𝑠 and replaces 𝑦 with

the result of recursion, or foldnat(𝑛, 𝑒𝑧, 𝑥 𝑦. 𝑒𝑠). For conveniences, it also replaces 𝑥 by the

predecessor, 𝑛. Next, the assert 𝑣 expression reduces if and only if 𝑣 is suc(𝑛). When 𝑣 is zero, the



Chapter 4. The Monitor Calculus, Formally 56

evaluation gets stuck. Last, the expression unbox(𝑣′) simply extracts the content of the reference

cell when 𝑣′ is box(𝑣). Because references are immutable, I directly treat box(𝑣) as values and use

substitution-based semantics rather than introducing a separate store.

The −→p relation admits the typical properties. It preserves types; it is deterministic; values

do not reduce under −→p. All of these are to be expected, as boundaries and proxies have yet to

come into play. Lemma 4.4 and Proposition 4.5 give their formal statements.

Lemma 4.4 (Preservation). If ⊢ 𝑒 : 𝜏 and 𝑒 −→p 𝑒
′ then ⊢ 𝑒′ : 𝜏 . Extending to evaluation contexts,

if ⊢ 𝐸 [𝑒𝑟 ] : 𝜏 , ⊢ 𝑒𝑟 : 𝜏𝑟 and 𝑒𝑟 −→p 𝑒
′ then ⊢ 𝐸 [𝑒′] : 𝜏 .

Proposition 4.5. The −→p relation has the following properties.

1. For all values 𝑣 , 𝑣 ̸−→p.

2. If 𝑒 −→p 𝑒1 and 𝑒 −→p 𝑒2 then 𝑒1 = 𝑒2.

3. If 𝑒 = 𝐸1 [𝑒1] = 𝐸2 [𝑒2] with 𝑒1 −→p 𝑒
′
1 and 𝑒2 −→p 𝑒

′
2 then 𝐸1

[︁
𝑒′1

]︁
= 𝐸2

[︁
𝑒′2

]︁
.

In addition to the Preservation lemma, the other type safety property is the Progress lemma.

Intuitively, an expression 𝑒 either is a value, getting stuck due to assert zero, or canmake progress.

However, only non-boundary expressions can always make progress. When a value needs to flow

out of an enclosing boundary or an elimination operation is applied to a proxy, the monitor calcu-

lus has to consult its parameter—the annotation language—so the Progress lemma only identifies

the redex 𝑟 in the evaluation context.

Lemma 4.6 (Progress). If ⊢ 𝑒 : 𝜏 then one of the following is true.

• 𝑒 is a value, i.e. 𝑒 adheres to the grammar of the non-terminal 𝑣 .

• 𝑒 = 𝐸 [𝑒𝑟 ] and 𝑒𝑟 −→p 𝑒
′.

• 𝑒 = 𝐸 [assert zero].

• 𝑒 = 𝐸 [𝑟 ].



Chapter 4. The Monitor Calculus, Formally 57

4.2 The Language of Annotations

Annotation languages, what the monitor calculus is parameterized over, specify the set of anno-

tations on boundaries and proxies, the global states of the monitoring systems, and determines

the computation rules of the annotations and the global states. However, I have been inprecise

about what the computation rules are in annotation languages until this point. To clear up the

matter, I introduce rule templates to better characterize computation rules. Then, I specify a set

of rule templates for the monitor calculus that each annotation language follows when defining

their specific version of the computation rules.

4.2.1 Rule Templates

Informally speaking, a rule template is a schema where the metavariables ranging over the an-

notations and the states are designated as placeholders for more concrete definitions. Each of the

rule template in the monitor calculus describes how a value flows out of a boundary or how an

elimination operation on a proxy creates new boundaries. When the annotation languages define

computation rules following the rule templates, these placeholder metavariables are replaced by

more specific (meta-level) expressions to describe the actual computation.

To give an intuitive idea of what rule templates look like, recall that Section 2.2 presents an

annotation languages that describes a contract system and an annotation language that tracks

the ownership information. In Figure 2.4, both annotation languages gives their own version of

the [R-Proxy-β] rule that defines how to apply proxy functions. The two versions are similar

except that the 𝒯ctc version decomposes the contract 𝜅𝑎→/c𝜅𝑟 into separate pieces whereas the

𝒯own version propagates and swaps the ownership labels. Here is a copy of the two rules.

𝒯ctc Ok, proxy(𝜅𝑎→/c𝜅𝑟 , λ𝑥 .𝑒) 𝑣 −→m Ok,B#𝜅𝑟 { (λ𝑥 .𝑒) (B#𝜅𝑎 { 𝑣 }) }

𝒯own (), proxy
(︁
⟨ℓ𝑛, ℓ𝑝⟩, λ𝑥 .𝑒

)︁
𝑣 −→m (),B#⟨ℓ𝑛, ℓ𝑝⟩

{︁
(λ𝑥 .𝑒)

(︁
B#⟨ℓ𝑝, ℓ𝑛⟩ { 𝑣 }

)︁ }︁
Here is the corresponding rule template of [R-Proxy-β].

[R-Proxy-β] 𝑠, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→m 𝑠′,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 { 𝑣 }) }



Chapter 4. The Monitor Calculus, Formally 58

The rule template of [R-Proxy-β] has the metavariables𝐴,𝐴𝑟 , 𝐴𝑎 in place of contracts in𝒯ctc and

ownership labels in𝒯own. The template also has the metavariables 𝑠, 𝑠′ in place of the states. For

any specific [R-Proxy-β] rule that is defined along the rule template, these five metavariables

are the only places that can be changed. For example, in 𝒯ctc, the placeholder 𝐴 is replaced by

𝜅𝑎→/c𝜅𝑟 and the placeholders 𝐴𝑎 , 𝐴𝑟 are replaced by the metavariables 𝜅𝑎 and 𝜅𝑎 , respectively.

Similarly, in𝒯own, the placeholders𝐴 and𝐴𝑟 are replaced by ⟨ℓ𝑛, ℓ𝑝⟩ and𝐴𝑎 is replaced by ⟨ℓ𝑝, ℓ𝑛⟩.

The same correspondence between the computation rules and the rule templates applies to

other types of boundaries and proxies as well. As another example, consider the [R-Cross-Nat]

rule from𝒯ctc that checks the annotated contract when a number crosses a boundary. The corre-

sponding rule template replaces Ok and Errwith themetavariables 𝑠 and 𝑠′. The contract𝜅 is also

replaced with the metavariable 𝐴. Spelling everything out below, the rule in the first two lines

are the specific computation rule from 𝒯ctc and the third line is the corresponding rule template

in the monitor calculus.

[R-Cross-Nat] Ok,B#𝜅 {𝑛 } −→m Ok, 𝑛 if 𝑛 satisfies 𝜅

Ok,B#𝜅 {𝑛 } −→m Err, 𝑛 if 𝑛 does not satisfy 𝜅

where 𝜅 is a predicate

[R-Cross-Nat] 𝑠,B#𝐴 {𝑛 } −→m 𝑠′, 𝑛

Of course, the [R-Cross-Nat] rule in the first two lines seemingly consist of two rules. How can

it be an instance of a single rule template in the third line? The answer is that the [R-Cross-Nat]

rule can be framedmore compactly in one rule by capturing the contract, the number crossing the

boundary and the states in a relation. Let Checked be a relation over annotations, numbers and

states defined as {(𝑛, 𝜅,Ok,Ok) | 𝑛 satisfies 𝜅} ∪ {(𝑛, 𝜅,Ok, Err) | 𝑛 fails 𝜅}, then the [R-Cross-

Nat] rule in 𝒯ctc can be rewritten using Checked to match the rule template.

[R-Cross-Nat] 𝑠,B#𝜅 {𝑛 } −→m 𝑠′, 𝑛 where (𝑛, 𝜅, 𝑠, 𝑠′) ∈ Checked

Generally speaking, the replacement of placeholder metavariables by other meta-level expres-

sions can be viewed as constraining the placeholder metavariables with an additional relation



Chapter 4. The Monitor Calculus, Formally 59

and that the relation is also a premise of the computation rule. Both the [R-Cross-Nat] rule

and the [R-Proxy-β] rule are exemplars of this pattern. The [R-Cross-Nat] rule in 𝒯ctc is cap-

tured by the Checked relation, and the [R-Proxy-β] rule can be similarly captured by the relation

ArrowCtc :≡ {(𝜅, 𝜅𝑎, 𝜅𝑟 ,Ok,Ok) | 𝜅 = 𝜅𝑎→/c𝜅𝑟 }.

[R-Proxy-β] 𝑠, proxy(𝜅, λ𝑥 .𝑒) 𝑣 −→m 𝑠′,B#𝜅𝑟 { (λ𝑥 .𝑒) (B#𝜅𝑎 { 𝑣 }) }

where (𝜅, 𝜅𝑎, 𝜅𝑟 , 𝑠, 𝑠′) ∈ ArrowCtc

Expressing the above in terms of rule templates, the contracts should be replaced by placeholder

metavariables and the ArrowCtc relation should be replaced by some general relation 𝑅.

[R-Proxy-β] 𝑠, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→m 𝑠′,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 { 𝑣 }) }

where (𝐴,𝐴𝑎, 𝐴𝑟 , 𝑠, 𝑠
′) ∈ 𝑅𝑥,𝑒,𝑣

Note that 𝑅 must govern all placeholder metavariables, i.e. those that range over the annotations

and the states. Optionally, 𝑅 can refer to any othermetavariables in the rule template as explicated

in its index.

More importantly, for a fixed set of rule templates, using relations like 𝑅 gives a uniform rep-

resentation of specialized computation rules. In the monitor calculus, the annotation languages

need only provide one such relation for each of the rule template when defining their own variant

of the computation rules. I shall collectively call these relations in the annotation languages as

transition steps and range over them with 𝒯. I will also refer to the set of specialized compu-

tation rules as the −→m relation, or the monitor-related reduction relation, and use the notation

𝒯 ⊢ 𝑠, 𝑒 −→m 𝑠′, 𝑒′ to denote reductions captured by the −→m relation.

4.2.2 Languages of Annotations

Definition 4.7 (Language of Annotations). An annotation language is a pair (𝒜,𝒯) where

𝒜 is the set of annotations and the set of states, (Ann, State), and 𝒯 is the transition steps that

specifies the relation of placeholder metavariables in the rule templates.

When instantiating the monitor calculus with an annotation language (𝒜,𝒯), I shall denote



Chapter 4. The Monitor Calculus, Formally 60

the instantiated monitor calculus by λm[𝒜;𝒯].

Definition 4.8. For an annotation language𝒯, the reduction relation of λm[𝒜;𝒯] is denoted by

−→. It contains the −→p relation and the −→m relation. In the [R-Bdr] rule, the non-terminal 𝑟

includes redexes related to boundaries and proxies. See Figure 4.1 for its productions.

𝑒 −→p 𝑒
′

[R-Redex]
𝒯 ⊢ 𝑠, 𝐸 [𝑒] −→ 𝑠, 𝐸 [𝑒′]

𝒯 ⊢ 𝑠, 𝑟 −→m 𝑠′, 𝑒′ [R-Bdr]
𝒯 ⊢ 𝑠, 𝐸 [𝑟 ] −→ 𝑠′, 𝐸 [𝑒′]

Proposition 4.9. If ⊢ 𝑟 : 𝜏 and 𝒯 ⊢ 𝑠, 𝑟 −→m 𝑠′, 𝑒′ then ⊢ 𝑒′ : 𝜏 .

Lemma 4.10 (Preservation). If ⊢ 𝑒 : 𝜏 and 𝒯 ⊢ 𝑠, 𝑒 −→ 𝑠′, 𝑒′ then ⊢ 𝑒′ : 𝜏 .

Connecting rule templates to computation rules through relations over placeholder metavari-

ables allows one to establish meta-theoretic properties of the monitor calculus itself. For ex-

ample, these relations provide a concrete formulation of annotation language compositions in

Section 5.4. When discussing the applications of the monitor calculus, however, I shall avoid

explicitly writing down the relations that are used in specializing the rule templates.

For the purpose of understanding themonitor calculus and its application to reusablemetathe-

ories of contracts, presenting the computation rules in the style of Figure 2.4 is sufficient. For the

interested readers, the Agda implementation gives the precise definition of placeholder metavari-

ables and rule templates in Syntax.Template and Annotation.Language.

The complete list of rule templates that the monitor calculus includes is given in Figure 4.4.

All of the rule templates have the form 𝑠, 𝑟 −→m 𝑠′, 𝑒 where 𝑟 is a redex related to boundaries or

proxies. In the figure, the column on the left shows the name and the column on the right shows

the corresponding rule template. Roughly speaking, there is one rule for each kind of values

describing how it flows out of a boundary. Similarly, for each kind of monitorable value, there is

one rule describing how an elimination operation applies to a proxy.

Let me give a high-level overview of the rule templates. For the [R-Cross-Unit] rule and

the [R-Cross-Nat] rule, the value directly flows out of the enclosing boundary. The computa-

tion rules correspond to these two rule templates may optionally change the states, but no new

boundaries are created. For the next four rule templates, the monitor calculus pushes the bound-



Chapter 4. The Monitor Calculus, Formally 61

Name 𝑠, 𝑟 −→m 𝑠′, 𝑒′

[R-Cross-Unit] 𝑠,B#𝐴 { () } −→m 𝑠′, ()

[R-Cross-Nat] 𝑠,B#𝐴 { 𝑛 } −→m 𝑠′, 𝑛

[R-Cross-Cons] 𝑠,B#𝐴 { ⟨𝑣1, 𝑣2⟩ } −→m 𝑠′, ⟨B#𝐴1 {𝑣1} , B#𝐴2 {𝑣2} ⟩
[R-Cross-Inl] 𝑠,B#𝐴 { inl(𝑣) } −→m 𝑠′, inl(B#𝐴′ {𝑣})
[R-Cross-Inr] 𝑠,B#𝐴 { inr(𝑣) } −→m 𝑠′, inr(B#𝐴′ {𝑣})

[R-Cross-Roll] 𝑠,B#𝐴 { roll𝜏 (𝑣) } −→m 𝑠′, roll𝜏 (B#𝐴′ {𝑣})
[R-Cross-Box] 𝑠,B#𝐴 { box(𝑣) } −→m 𝑠′, proxy(𝐴′, box(𝑣))
[R-Cross-Lam] 𝑠,B#𝐴 { λ𝑥 .𝑒 } −→m 𝑠′, proxy(𝐴′, λ𝑥 .𝑒)

[R-Proxy-Unbox] 𝑠, unbox(proxy(𝐴, box(𝑒))) −→m 𝑠′,B#𝐴′ { unbox(box(𝑒)) }
[R-Proxy-β] 𝑠, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→m 𝑠′,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 {𝑣}) }

[R-Merge-Box] 𝑠,B#𝐴 { proxy(𝐴′, box(𝑒)) } −→m 𝑠′, proxy(𝐴′′, box(𝑒))
[R-Merge-Lam] 𝑠,B#𝐴 { proxy(𝐴′, λ𝑥 .𝑒) } −→m 𝑠′, proxy(𝐴′′, λ𝑥 .𝑒)

In the rule templates, the annotations𝐴,𝐴′, 𝐴𝑎, 𝐴𝑟 , and the global states 𝑠, 𝑠′ are collectively called
the placeholder metavariables.

Figure 4.4: The rule templates of the monitor-related reduction relation

ary into the constructor. The values in the constructor may undergo further inspection while

the constructor flows out as-is. Next, the [R-Cross-Box] rule handles immutable reference cells

and the [R-Cross-Lam] rule handles higher-order functions. These two types are monitorable,

and the monitor calculus wraps the value in the boundary with a new proxy to intercept any

follow-up elimination operations on them.

At the bottom, the [R-Proxy-Unbox] rule describes how an unbox operation eliminates a

proxied reference and the [R-Proxy-β] rule describes how to apply a proxy function. When ac-

cessing the content of a proxied reference, the [R-Proxy-Unbox] rule applies the unbox operation

to the reference in the proxy and creates a new boundary around the whole term to guard the

result of unbox(−). Similarly, when applying a proxy function, the [R-Proxy-β] rule sends the

argument 𝑣 to the function in the proxy. Additionally, the [R-Proxy-β] rule creates two new

boundaries, one guarding the argument and one guarding the result of application.

Finally, the [R-Merge-Box] rule and the [R-Merge-Lam] rule merge boundaries into proxies.



Chapter 4. The Monitor Calculus, Formally 62

When a proxy flows out of a boundary, the monitor calculus merges the two annotations into a

new one on the proxy instead of creating nested proxies. It is not just the two R-Merge rules

avoid creating nested proxies, but the grammar of proxy(𝐴, 𝑒𝑚) in the monitor calculus only

allow immutable references and functions to appear inside proxies in the first place.

Readers familiar with contracts may notice that in the monitor calculus, the design of proxies

is different from that of other contract systems. As Chapter 6 shows, this design decision does

not lose any expressiveness because the annotation language can record a list of annotations on

boundaries and proxies. Additionally, merging annotations on boundaries and proxies allows for

expressing different merging strategies using the annotation languages. Chapter 8 utilizes this

design to model space-efficient contracts.

4.2.3 Examples

As an demonstration of the definitions, I present two example annotation languages, one is trivial

and the other simply counts the number of monitor-related reduction steps.

The Trivial Annotation Language. The trivial language (𝒜unit,𝒯unit) where 𝒜unit :≡ (𝐴, 𝑠)

is defined by setting all annotations and the global state to just unit, (). There is no information

being attached in the annotations, and nothing is tracked in the global states. It serves as a kind



Chapter 4. The Monitor Calculus, Formally 63

𝐴 ::= (unspecified; a parameter) N ∋ 𝑠 ::= 𝑘

[R-Cross-Unit] 𝑘,B#𝐴 { () } −→m 𝑘 + 1, ()
[R-Cross-Nat] 𝑘,B#𝐴 { 𝑛 } −→m 𝑘 + 1, 𝑛
[R-Cross-Cons] 𝑘,B#𝐴 { ⟨𝑣1, 𝑣2⟩ } −→m 𝑘 + 1, ⟨B#𝐴1 {𝑣1} , B#𝐴2 {𝑣2}⟩
[R-Cross-Inl] 𝑘,B#𝐴 { inl(𝑣) } −→m 𝑘 + 1, inl(B#𝐴′ {𝑣})
[R-Cross-Inr] 𝑘,B#𝐴 { inr(𝑣) } −→m 𝑘 + 1, inl(B#𝐴′ {𝑣})

[R-Cross-Roll] 𝑘,B#𝐴 { roll𝜏 (𝑣) } −→m 𝑘 + 1, roll𝜏 (B#𝐴′ {𝑣})
[R-Cross-Box] 𝑘,B#𝐴 { box(𝑣) } −→m 𝑘 + 1, proxy(𝐴′, box(𝑣))
[R-Cross-Lam] 𝑘,B#𝐴 { λ𝑥 .𝑒 } −→m 𝑘 + 1, proxy(𝐴′, λ𝑥 .𝑒)

[R-Proxy-Unbox] 𝑘, unbox(proxy(𝐴, box(𝑒))) −→m 𝑘 + 1,B#𝐴′ { unbox(box(𝑒)) }
[R-Proxy-β] 𝑘, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→m 𝑘 + 1,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 {𝑣}) }

[R-Merge-Box] 𝑘,B#𝐴 { proxy(𝐴′, box(𝑒)) } −→m 𝑘 + 1, proxy(𝐴′′, box(𝑒))
[R-Merge-Lam] 𝑘,B#𝐴 { proxy(𝐴′, λ𝑥 .𝑒) } −→m 𝑘 + 1, proxy(𝐴′′, λ𝑥 .𝑒)

The definition of the annotation language (𝒜cnt,𝒯cnt) where 𝒜cnt :≡ (𝐴, 𝑠).

Figure 4.5: The annotation language that counts monitor-related reduction steps.

of “unit” of the annotation languages.

𝐴 ::= () 𝑠 ::= ()

[R-Cross-Unit] (),B#() { () } −→m (), ()

[R-Cross-Nat] (),B#() { 𝑛 } −→m (), 𝑛

[R-Cross-Cons] (),B#() { ⟨𝑣1, 𝑣2⟩ } −→m (), ⟨B#() {𝑣1} , B#() {𝑣2}⟩

[R-Cross-Lam] (),B#() { λ𝑥 .𝑒 } −→m (), proxy((), λ𝑥 .𝑒)

[R-Proxy-β] (), proxy((), λ𝑥 .𝑒) 𝑣 −→m (),B#() { (λ𝑥 .𝑒) (B#() {𝑣}) }

[R-Merge-Lam] (),B#() { proxy((), λ𝑥 .𝑒) } −→m (), proxy((), λ𝑥 .𝑒)

Counting Monitor-Related Reduction Steps. A slightly more interesting presented in Fig-



Chapter 4. The Monitor Calculus, Formally 64

ure 4.5 is the counting language, an annotation language that counts the number of monitor-

related reduction steps. It leaves the definition of the annotations unspecified—as a parameter

that can be further instantiated by other annotation languages—and the global state tracks how

many −→m steps there have been by incrementing the global state for each −→m reduction. In

Chapter 8, I use the counting language to measure the cost of space-efficient contracts since the

monitor calculus encapsulates all computation needed by the annotations in the transition steps.

Figure 4.5 has presented the transition steps of the counting language, 𝒯cnt, in a more con-

ventional style. The formal definition of 𝒯cnt is actually a set of twelve relations as follows, one

for each rule template:

name relation

[R-Cross-Unit] 𝑅 :≡ { (𝐴,𝑘, 𝑘 + 1) | 𝑘 ∈ N }

[R-Cross-Nat] 𝑅𝑛 :≡ { (𝐴,𝑘, 𝑘 + 1) | 𝑘 ∈ N }

[R-Cross-Cons] 𝑅𝑣1,𝑣2 :≡ { (𝐴,𝐴1, 𝐴2, 𝑘, 𝑘 + 1) | 𝑘 ∈ N }

[R-Cross-Inl] 𝑅𝑣 :≡ { (𝐴,𝐴′, 𝑘, 𝑘 + 1) | 𝑘 ∈ N }

[R-Cross-Inr] 𝑅𝑣 :≡ { (𝐴,𝐴′, 𝑘, 𝑘 + 1) | 𝑘 ∈ N }

[R-Cross-Roll] 𝑅𝑣 :≡ { (𝐴,𝐴′, 𝑘, 𝑘 + 1) | 𝑘 ∈ N }

[R-Cross-Box] 𝑅𝑣 :≡ { (𝐴,𝐴′, 𝑘, 𝑘 + 1) | 𝑘 ∈ N }

[R-Cross-Lam] 𝑅𝑥,𝑒 :≡ { (𝐴,𝐴′, 𝑘, 𝑘 + 1) | 𝑘 ∈ N }

[R-Proxy-Unbox] 𝑅𝑒 :≡ { (𝐴,𝐴′, 𝑘, 𝑘 + 1) | 𝑘 ∈ N }

[R-Proxy-β] 𝑅𝑥,𝑒,𝑣 :≡ { (𝐴,𝐴𝑟 , 𝐴𝑎, 𝑘, 𝑘 + 1) | 𝑘 ∈ N }

[R-Merge-Box] 𝑅𝑒 :≡ { (𝐴,𝐴′, 𝐴′′, 𝑘, 𝑘 + 1) | 𝑘 ∈ N }

[R-Merge-Lam] 𝑅𝑥,𝑒 :≡ { (𝐴,𝐴′, 𝐴′′, 𝑘, 𝑘 + 1) | 𝑘 ∈ N }



Chapter 4. The Monitor Calculus, Formally 65

4.3 Projections of Annotation Languages

Having formally defined annotation languages, I turn to the characterization of their composition.

Section 2.3 already explains how composition can be done by writing the annotation languages

in an extensible style in the first place. However, how can one be certain that an individual

language such as 𝒯c′ from Figure 2.6 in page 32 is correctly defined? How can one express the

intuition that 𝒜octc from Section 2.3 is the composition of 𝒜ctc and 𝒜owner? To answer these

questions, I introduce the projection of annotation languages in Definition 4.11, a concept derived

from the usage of the πA, πS, and put functions in Section 2.3 that mathematically formulate the

relationship between a composite annotation language and its constituents.

Definition 4.11 utilizes the relations in the transition steps of an annotation language. When

an annotation language is a combination of multiple basic annotation languages, there should

be a projection from the composite language to the basic languages such that precomposing the

projectionwith the relations of the composite languages gives the relations of the basic languages.

Definition 4.11 (Projection of Annotation Language). Let (𝒜,𝒯) and (𝒜′,𝒯′) be two an-

notation languages where 𝒜 :≡ (Ann, State) and 𝒜
′ :≡ (Ann′, State′). An annotation-language

projection from (𝒜,𝒯)to (𝒜′,𝒯′) is a pair of functions (πA, πS) such that

1. πA : Ann→ Ann′ maps the annotations of𝒜 to the annotations of𝒜′.

2. πS : State→ State′ maps the states of𝒜 to the states of𝒜′.

3. For any relation 𝑅 in𝒯, if some annotations and states are related by 𝑅, their images under

πA(−) and πS(−) are also related by the corresponding relation 𝑅′ in𝒯
′.

Since the monitor-related redution relation encapsulates all transition steps under a single name,

condition (3) means that if𝒯 ⊢ 𝑠1, 𝑒1 −→m 𝑠2, 𝑒2 then𝒯′ ⊢ πS(𝑠1), πexpr(𝑒1) −→m πS(𝑠2), πexpr(𝑒2)

where the πexpr(−) function recursively applies πA(−) to the given expression.

Example 4.12. For any annotation language (𝒜,𝒯), there is a trivial projection (πA, πS) from

(𝒜,𝒯) to (𝒜unit,𝒯unit), the trivial annotation language introduced in Section 4.2.3.



Chapter 4. The Monitor Calculus, Formally 66

Example 4.13. Let Label be the set of labels, Ctc𝜏 be the set of contracts for values of type 𝜏 ,

and Status be the set of contract-checking status. The pair of functions, (πA, πS), taken from

Section 2.3, is a projection from (𝒜octc,𝒯oc) to (𝒜ctc,𝒯c).

πA : (Label × Label) × Ctc𝜏 → Ctc𝜏
πA(⟨⟨ℓ𝑛, ℓ𝑝⟩, 𝜅⟩) = 𝜅

πS : unit × Status→ Status
πS(⟨(), st⟩) = st

It should be noted that projections of annotation languages only determine the relationship

between the composite language and its parts. The projections themselves do not indicate how

the constituent languages are put together and, as Chapter 8 shows, there are multiple possibil-

ities when composing complex annotation languages. Nonetheless, the concept of projection is

sufficient for developing reusable metatheories of annotation languages.



67

Chapter 5

The Transition-System Representation

of Contract Systems

In this chapter, I develop a transition-system-based metatheory of the monitor calculus. Sec-

tion 5.1 explains how instantiations of the monitor calculus induce transition systems that can

be used to prove properties about the instantiated calculus. Section 5.2 introduces annotation

interpretations and the satisfaction relation. Together, they interpret annotation languages as

property-carrying propositions in the language. Subsequently, Section 5.3 relates annotation in-

terpretations to transition systems and develops a systematic method for proving properties of

the instantiated calculus. Finally, Section 5.4 explains how metatheories of annotation languages

can be reused by lifting projections of annotation languages to a relation between the induced

transition systems.

5.1 Relating Calculus Instantiations to Transition Systems

For any annotation language (𝒜,𝒯) with 𝒜 :≡ (Ann, State), the instantiated monitor calcu-

lus λm[𝒜;𝒯] induces a transition system, denoted byTind[𝒜;𝒯], whose states are formed by

𝑠 ∈ State togetherwith the equivalence classes of expressions generated by the−→p relation. Sec-

tion 3.2 has examined the observation that specific properties of the instantiatedmonitor calculus,



Chapter 5. The Transition-System Representation of Contract Systems 68

λm[𝒜;𝒯], can be reflected as specific behaviors of the induced transition system, Tind[𝒜;𝒯]. Due

to this observation, proving properties of λm[𝒜;𝒯] amounts to proving that Tind[𝒜;𝒯] possesses

certain behavior.

In this section, I formally define the induced transition system of an instantiated monitor

calculus. To ease the exposition, I also give the formal definition of the equivalence classes of

expressions generated by the −→p relation. Furthermore, throughout this section, all defini-

tions are stated with respect to a particular, but unspecified, annotation language (𝒜,𝒯) where

𝒜 :≡ (Ann, State).

Definition 5.1. In order to formulate the equivalence classes of expressions generated by the

−→p relation, I define two accompanying relations based on the −→p relation.

1. The −→P relation is the closure of −→p over evaluation contexts, i.e. 𝑒1 −→P 𝑒2 iff 𝑒1 =

𝐸
[︁
𝑒′1

]︁
, 𝑒2 = 𝐸

[︁
𝑒′2

]︁
and 𝑒′1 −→p 𝑒

′
2 for some 𝐸, 𝑒′1 and 𝑒′2.

2. The ∼P relation is the reflexive, symmetric, and transitive closure of −→P.

Definition 5.2. For any closed expression 𝑒 , [𝑒]P denote the equivalence class of 𝑒 with respect

to ∼P, i.e. i.e. 𝑒′ ∈ [𝑒]P ⇐⇒ 𝑒′ ∼P 𝑒 .

With the definition of the equivalence classes, the states of the induced transition system can

be expressed as the set of the pairs (𝑠, [𝑒]P) for 𝑠 ∈ State and 𝑒 ∈ Expr. The transition is roughly

the same as the −→m relation, except that it has to be appropriately lifted to the equivalence

classes.

Definition 5.3 (Induced Transition System). For any annotation language (𝒜,𝒯), the induced

transition system of λm[𝒜;𝒯], which I shall denote as Tind[𝒜;𝒯], is the transition system

({ (𝑠, [𝑒]P) | 𝑠 ∈ State, 𝑒 ∈ Expr }, −→M)

where −→M is a binary relation over the states of Tind[𝒜;𝒯] such that 𝑠1, [𝑒1]P −→M 𝑠2, [𝑒2]P if

and only if there exists 𝐸, 𝑒′1 and 𝑒′2 such that 𝐸
[︁
𝑒′1

]︁
∈ [𝑒1]P, 𝐸

[︁
𝑒′2

]︁
∈ [𝑒2]P, and 𝒯 ⊢ 𝑠1, 𝑒′1 −→m

𝑠2, 𝑒
′
2. That is, the −→M relation is constructed by first closing the −→m relation over evaluation



Chapter 5. The Transition-System Representation of Contract Systems 69

contexts and then lifting the result to work with [𝑒]P for 𝑒 ∈ Expr.

5.2 Interpretation of Annotation Languages

Having introduced induced transition systems in Section 5.1, now I develop a systematic method

for proving that the induced transition system of an instantiated monitor calculus has certain be-

havior using annotation interpretations. Recall from Section 3.2 that for an annotation language

(𝒜,𝒯), properties of the instantiated calculus (λm[𝒜;𝒯]) are manifested as specific behaviors

of the induced transition system (Tind[𝒜;𝒯]) and these behaviors are established using homo-

morphisms that map Tind[𝒜;𝒯] to some better understood transition systems. In this section, I

formally define annotation interpretations and the satisfaction relation introduced in Section 3.4,

both of which are the central tools for systematically building a new class of well-understood

transition systems.

[Note: I will formulate the definitions using type-theoretic concepts and notations [Univalent

Foundations Program 2013, Chapter 1 and Appendix A]whereU denotes the universe(s) of types,

⊥ is the empty type, ⊤ is the unit type, 𝐴 × 𝐵 is the product type, and 𝐴 + 𝐵 is the sum type.

Furthermore,
∑︁

𝑎:𝐴 𝐵 is the Σ-type and
∏︁

𝑎:𝐴 𝐵 is the Π-type (or, the dependent function type).

Under the propositions-as-types reading, inhabitants of U can be thought of as propositions;

⊥ : U represents falsity; ⊤ : U represents the true proposition; for 𝐴 : U and 𝐵 : U, the type

𝐴 × 𝐵 : U represents the conjunction of 𝐴 and 𝐵; similarly, 𝐴 + 𝐵 : U represents disjunction of

𝐴 and 𝐵;
∑︁

𝑎:𝐴 𝐵 : U represents existential quantification and
∏︁

𝑎:𝐴 𝐵 : U represents universal

quantification. — end note.]

I initiate the discussion with the formal definition of annotation interpretations. As in the

previous section, I will assume that an arbitrary but fixed annotation language (𝒜,𝒯) is given

throughout this section where𝒜 :≡ (Ann, State).

An annotation interpretations of (𝒜,𝒯) includes a predicate over of 𝑠 ∈ State for identifying

a subset of State of interest, a preorder over the subset of State, two functions that separately



Chapter 5. The Transition-System Representation of Contract Systems 70

interpret boundary terms and proxy terms as propositions in the metalanguage, and a law that

regulate the interaction of thetwo functions and the reduction relation. The preorder and the two

functions can be chosen to formulate the properties of λm[𝒜;𝒯] that one wants to prove or, in

terms of the induced transition system, some specific behaviors of Tind[𝒜;𝒯] that one wants to

establish.

I divide the formal definition of annotation interpretations into a raw definition and the law it

has to satisfy. Annotation Pre-interpretation covers the raw definition part that gives the signa-

tures of the functions in annotation interpretations and explains their roles. Interpretation Law

state the law that an annotation interpretation must adhere to.

Definition 5.4 (Annotation Interpretation). An annotation interpretation is an annotation

pre-interpretation I that satisfies the interpretation law.

Definition 5.5 (Annotation Pre-interpretation). An annotation pre-interpretation, I, is a

four-tuple (S, ≼,B, P) where their types are:

S : State→U
≼ :

∑︁
𝑠:State S(𝑠) →

∑︁
𝑠:State S(𝑠) → U

B⟦−,−⟧ : Ann𝜏 → Expr→U
P⟦−,−⟧ : Ann𝜏 → Expr→U

In Definition 5.5, the S function is a predicate over State. Per the convention from type theory,

predicates over State are expressed as functions of type State→U. Note that functions of type

State→U can produce the types ⊤ : U and ⊥ : U which are the “true” and “false” propositions

in type theory, so this representation of predicates is the type-theoretic analogue of functions

that assign truth values.

On top of the S function, the ≼ relation is a preorder of
∑︁

𝑠:State S(𝑠). The dependent sum type∑︁
𝑠:State S(𝑠) represents the subset of State whose elements all satisfy S. In Section 3.2, as moti-

vated by the non-masking property of 𝒜ctc, the preorder ≼ can express specific behavior of the

global states. For example, Figure 3.2 (a) gives a preorder asserting that the contract annotation

language never changes 𝑠 ∈ State from Err to Ok.



Chapter 5. The Transition-System Representation of Contract Systems 71

Since the preorder ≼ in Definition 5.5 is defined on the subset of State whose elements all

satisfy S, I will also use 𝑠 and 𝑠′ to denote elements of
∑︁

𝑠:State S(𝑠) when discussing states that

adhere to the preorder ≼. For example, I shall write 𝑠 ≼ 𝑠′ when it is clear from the context that

both S(𝑠) and S(𝑠′) hold without formally supplying the inhabitants of
∑︁

𝑠:State S(𝑠).

Next, the B⟦−,−⟧ function interprets a boundary term as a proposition of the metalanguage

which can describe a property about the annotations and the nested expressions of the given

boundary term. Specifically, for any boundary term, B#𝐴 {𝑒}, B⟦𝐴, 𝑒 ⟧ returns some type𝐶 : U.

Under the propositions-as-types reading, the type𝐶 is just a proposition involving𝐴 and 𝑒 , hence

B⟦𝐴, 𝑒 ⟧ essentially expresses certain invariant of 𝐴 and 𝑒 . The P⟦−,−⟧ function is defined

similarly but for proxy terms rather than boundary terms; for any term proxy(𝐴, 𝑒𝑚), P⟦𝐴, 𝑒𝑚 ⟧

is a proposition of the metalanguage that can carry additional invariant about 𝐴 and 𝑒𝑚 .

Example 5.6 concretely illustrates how B⟦−,−⟧ and P⟦−,−⟧ can help capture relationships

between annotations and expressions using the interpretation, Ival, that captures proxies con-

taining only syntactic values. Note that the grammar of the monitor calculus only ensures that

proxies contain terms of form box(𝑒) or λ𝑥 .𝑒 , but it is not immediate that a box(𝑒) in a proxy will

always be a value during evaluation. Going forward, the Ival interpretation helps me prove that

the monitor calculus does ensure the strictness of proxies in Proposition 5.20.

Example 5.6. Let the annotation interpretation Ival :≡ (Sval, ≼val,Bval, Pval) be defined as:

Sval(𝑠) :≡ ⊤
𝑠 ≼val 𝑠

′ :≡ ⊤
Bval⟦𝐴, 𝑒 ⟧ :≡ ⊤
Pval⟦𝐴, 𝑒 ⟧ :≡ is-value(𝑒)

The Pval function captures proxies that carry syntactic values. Here, the is-value(−) predicate

holds iff a given term is a syntactic value; I shall omit its definition.

Recall that the goal of introducing annotation interpretations is to systematically construct

property-satisfying transition systems such that the transition system induced by the instanti-

ated monitor calculus has homomorphisms into them. Because the properties that the annotation

interpretations can deal with also includes the monotonicity of state transitions as promised at



Chapter 5. The Transition-System Representation of Contract Systems 72

I ⊨ B#𝐴 {𝑒} iff B⟦𝐴, 𝑒 ⟧ and I ⊨ 𝑒
I ⊨ proxy(𝐴, 𝑒𝑚) iff P⟦𝐴, 𝑒𝑚 ⟧ and I ⊨ 𝑒𝑚

I ⊨ ()
I ⊨ zero
I ⊨ suc(𝑒) iff I ⊨ 𝑒
I ⊨ foldnat(𝑒, 𝑒𝑧, 𝑥𝑛 𝑦. 𝑒𝑠) iff I ⊨ 𝑒, I ⊨ 𝑒𝑧 and I ⊨ 𝑒𝑠,
I ⊨ assert 𝑒 iff I ⊨ 𝑒
I ⊨ ⟨𝑒1, 𝑒2⟩ iff I ⊨ 𝑒1 and I ⊨ 𝑒2
I ⊨ π𝑖 (𝑒) iff I ⊨ 𝑒
I ⊨ inl(𝑒) iff I ⊨ 𝑒
I ⊨ inr(𝑒) iff I ⊨ 𝑒
I ⊨ case 𝑒 of {𝑥 .𝑒1 | 𝑦.𝑒2} iff I ⊨ 𝑒, I ⊨ 𝑒1 and I ⊨ 𝑒2,
I ⊨ box(𝑒) iff I ⊨ 𝑒
I ⊨ unbox(𝑒) iff I ⊨ 𝑒
I ⊨ 𝑥 (where 𝑥 is bound)
I ⊨ λ𝑥 .𝑒 iff I ⊨ 𝑒
I ⊨ 𝑒 𝑒𝑎 iff I ⊨ 𝑒 and I ⊨ 𝑒𝑎
I ⊨ unroll(𝑒) iff I ⊨ 𝑒
I ⊨ roll𝜏 (𝑒) iff I ⊨ 𝑒
I ⊨ fix𝑥 .𝑒 iff I ⊨ 𝑒
I ⊨ 𝑒; 𝑒1 iff I ⊨ 𝑒 and I ⊨ 𝑒1

Figure 5.1: The satisfaction relation

the end of Section 3.4, the functions in an annotation pre-interpretation must satisfy the Inter-

pretation Law.

Definition 5.7 (Interpretation Law). Let I :≡ (S, ≼,B, P) be any pre-interpretation. The inter-

pretation law regulating the ≼ and the B and P functions are formally stated as:

• ≼ is a preorder.

• B is sound with respect to the transition steps𝒯.

If S(𝑠), S(𝑠′), 𝑠 ≼ 𝑠′ and 𝒯 ⊢ 𝑠, 𝑒 −→ 𝑠′, 𝑒′, then B⟦𝐴, 𝑒 ⟧ implies B⟦𝐴, 𝑒′ ⟧.

As discussed in Section 3.4, the satisfaction relation lifts an interpretation of annotations, I,



Chapter 5. The Transition-System Representation of Contract Systems 73

to all expressions in the instantiation λm[𝒜;𝒯]. Figure 5.1 shows its definition. The satisfaction

relation is a binary relation I ⊨ 𝑒 that determines whether or not an expression 𝑒 satisfies an

interpretation I where the satisfaction of an expression means that the B and the P functions

hold for all annotations appearing in 𝑒 . Taking Ival from Example 5.6 as an example, Ival ⊨ 𝑒

would hold if an only if all proxies in 𝑒 only stores syntactic values.

The satisfaction relation is defined structurally over expressions. Most caseswork in a straight-

forward manner, but there are two noteworthy exceptions. To say that a boundary expression is

satisfied by I, that is, I ⊨ B#𝐴 {𝑒} holds, the satisfaction relation extracts the B function from

the annotation interpretation I and requires that B⟦𝐴, 𝑒 ⟧ holds, in addition to the requirement

that I ⊨ 𝑒 recursively holds. Similarly, for I ⊨ proxy(𝐴, 𝑒𝑚) to hold, the satisfaction relation

requires that both the interpreted result P⟦𝐴, 𝑒𝑚 ⟧ and the recursive component I ⊨ 𝑒𝑚 holds.

As another example of annotation interpretations, I define the Iempty interpretation that in-

terprets all boundary and proxy terms as falsity in Example 5.8. If a term 𝑒 contains any boundary

expressino or any proxy value, Iempty ⊨ 𝑒 is unsatisfiable. Therefore, Iempty helps the satisfaction

relation precisely capture terms that do not contain boundaries and proxies.

Example 5.8. Let the annotation interpretation Iempty :≡ (Sempty, ≼empty,Bempty, Pempty) be:

Sempty(𝑠) :≡ ⊤
𝑠 ≼empty 𝑠

′ :≡ ⊤
Bempty⟦𝐴, 𝑒 ⟧ :≡ ⊥
Pempty⟦𝐴, 𝑒𝑚 ⟧ :≡ ⊥

As in Section 4.1, I follow the framework developed by McBride [2005]; Allais et al. [2017,

2018] to prove the Substitution lemma and the accompanying lemmas such as renaming and

extension. These lemmas are similar to Lemmas 4.1 and 4.3 and Proposition 4.2 except that they

are substituting the satisfaction relation.

Lemma 5.9 (Renaming). Let Γ :≡ (𝑥1 : 𝜏1), . . . , (𝑥𝑛 : 𝜏𝑛) and Γ′ :≡ (𝑦1 : 𝜏′1), . . . , (𝑦𝑚 : 𝜏′𝑚) be given.

Assume that Γ ⊢ 𝑒 : 𝜏 and Γ′ ⊢ 𝑦𝑎𝑖 : 𝜏𝑖 for some 1 ≤ 𝑎𝑖 ≤ 𝑚 for 𝑖 = 1 . . . 𝑛. If I ⊨ 𝑒 then

I ⊨ 𝑒
[︁
𝑦𝑎1 . . . 𝑦𝑎𝑛 /𝑥1 . . . 𝑥𝑛

]︁
.



Chapter 5. The Transition-System Representation of Contract Systems 74

Proposition 5.10. Assume that Γ′ ⊢ 𝑒𝑖 : 𝜏𝑖 for 𝑖 = 1, . . . , 𝑛 and let any 𝑥0 : 𝜏0 be given.

Let Γ′′ ⊢ 𝑒′0 : 𝜏0, . . . , Γ′′ ⊢ 𝑒′𝑛 : 𝜏𝑛 be the sequence given by Proposition 4.2 where Γ′′ :≡ Γ′, 𝑥0 : 𝜏0,

𝑒′0 :≡𝑥0 and 𝑒′𝑖 :≡ 𝑒𝑖 for 𝑖 = 1, . . . , 𝑛. Then, if I ⊨ 𝑒𝑖 for 𝑖 = 1, . . . , 𝑛, there is a sequence I ⊨ 𝑒′𝑖 for

𝑖 = 0, . . . , 𝑛 as well.

Lemma 5.11 (Substitution). Let Γ :≡𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 and some Γ′ be given. Assume that Γ ⊢

𝑒 : 𝜏 and Γ′ ⊢ 𝑒𝑖 : 𝜏𝑖 for 𝑖 = 1 . . . 𝑛. If I ⊨ 𝑒 and I ⊨ 𝑒𝑖 for 𝑖 = 1 . . . 𝑛 then I ⊨ 𝑒 [𝑒1 . . . 𝑒𝑛 /𝑥1 . . . 𝑥𝑛].

Proposition 5.12 (Decomposition). If I ⊨ 𝑒 and 𝑒 = 𝐸 [𝑒𝑟 ] then I ⊨ 𝑒𝑟 .

5.3 Soundness of the Interpretations

For an annotation language (𝒜,𝒯), an annotation interpretation of it describes some specific in-

variant about the terms of the instantiated calculus (λm[𝒜;𝒯]). This description usually reflects a

property about λm[𝒜;𝒯] that one wants to prove. Section 3.4 foreshadows an approach for con-

structing transition systems using annotation interpretations and the satisfaction relation such

that there exists homomorphisms from a subsystem of the induced transition system (Tind[𝒜;𝒯])

of λm[𝒜;𝒯] to the just constructed transition systems, thereby establishing the desired property

about λm[𝒜;𝒯].

Both the satisfaction relation and annotation interpretations have been discussed in Sec-

tion 5.2. In this section, I explain how to utilize the satisfaction relation to construct a transition

system that carries the properties characterized by a given annotation interpretation by con-

struction. I shall refer to this transition system as the interpretation-satisfying transition system

and denote it using the notation Tsat[𝒜;𝒯;I]. Finally, Theorem 5.19 exhibits a homomorphism

from a subsystem of Tind[𝒜;𝒯] to Tsat[𝒜;𝒯;I].

To start with, I shall explain how to construct the interpretation-satisfying transition system

from the satisfaction relation. Concretely, its definition follows that of Tind[𝒜;𝒯] except that it

only uses global states that satisfy S(−) from I, and refers to alternative equivalence classes of

expressions that satisfy I.



Chapter 5. The Transition-System Representation of Contract Systems 75

Definition 5.13. For any closed expression 𝑒 such that I ⊨ 𝑒 , [𝑒]I is the equivalence class of 𝑒

containing only expressions that satisfy I, i.e. 𝑒′ ∈ [𝑒]I ⇐⇒ 𝑒′ ∼P 𝑒 and I ⊨ 𝑒′.

Definition 5.14. For any interpretation I, the interpretation-satisfying transition system which I

denote as Tsat[𝒜;𝒯;I] is

({ (𝑠, [𝑒]I) | 𝑠 ∈ State ∧ 𝑒 ∈ Expr ∧ S(𝑠) ∧ I ⊨ 𝑒 },−→M′)

where −→M′ is a binary relation over the set of states such that 𝑠1, [𝑒1]I −→M′ 𝑠2, [𝑒1]I if there

exists 𝐸, 𝑒′1 and 𝑒′2 such that 𝐸
[︁
𝑒′1

]︁
∈ [𝑒1]I , 𝐸

[︁
𝑒′2

]︁
∈ [𝑒1]I and 𝒯 ⊢ 𝑠1, 𝑒′1 −→m 𝑠2, 𝑒

′
2, i.e. 𝑒′1 and 𝑒′2

can take a monitor-related reduction step.

Given (𝒜,𝒯) and an interpretation I, the states of Tsat[𝒜;𝒯;I] only contain expressions

that satisfy I. Any state that fails I is removed, and transitions to these states are pruned. Thus,

reduction sequences captured by Tsat[𝒜;𝒯;I] preserve I by construction, and establishing a

homomorphism from a subsystem of Tind[𝒜;𝒯] to Tsat[𝒜;𝒯;I] transfers I back to Tind[𝒜;𝒯].

To facilitate the construction of homomorphisms from subsystems of the induced transition

systems to the interpretation-satisfying transition systems, I characterize well-behaved interpre-

tations by the monotonicity and the soundness properties. Informally speaking, an interpretation

I is monotonic if the monitor-related reductions of 𝒯 respect the preorder of I. In a similar

manner, I is sound if the monitor-related reductions of 𝒯 preserve the satisfaction relation.

Theorems 5.17 and 5.18 subsequently lift the monotonicity and the soundness of an interpreta-

tion to the full reduction relation, and Theorem 5.19 exhibits the desired homomorphisms for all

monotonic and sound interpretations.

Definition 5.15 (Monotonic Interpretation). An annotation interpretation I :≡ (S, ≼,B, P) is

monotonic if for any 𝑠1, 𝑠2, 𝑒1, 𝑒2, if S(𝑠1) holds, 𝒯 ⊢ 𝑠1, 𝑒1 −→m 𝑠2, 𝑒2 and I ⊨ 𝑒1 then S(𝑠2) holds

and 𝑠1 ≼ 𝑠2.

Definition 5.16 (Sound Interpretation). An annotation interpretation I :≡ (S, ≼,B, P) is

sound if for any 𝑠1, 𝑠2, 𝑒1, 𝑒2 such that S(𝑠1) and S(𝑠2) hold, if 𝑠1 ≼ 𝑠2, 𝒯 ⊢ 𝑠1, 𝑒1 −→m 𝑠2, 𝑒2



Chapter 5. The Transition-System Representation of Contract Systems 76

and I ⊨ 𝑒1 then I ⊨ 𝑒2.

Next, I prove the Monotonicity and the Soundness theorems that lift the monotonicity and

the soundness of annotation interpretations to sequences of −→ reduction steps, i.e., the reduc-

tion relation of λm[𝒜;𝒯] from Definition 4.8. Using these two results, Theorem 5.19 establishes

the existence of a homomorphism from a subsystem of the induced transition system to the

interpretation-satisfying transition system.

Theorem 5.17 (Monotonicity). LetI :≡ (S, ≼,B, P) be a monotonic and sound interpretation. For

any sequence of reduction steps𝒯 ⊢ 𝑠, 𝑒 −→∗ 𝑠′, 𝑒′, if S(𝑠) and I ⊨ 𝑒 then S(𝑠′) and 𝑠 ≼ 𝑠′.

Theorem 5.18 (Soundness). LetI :≡ (S, ≼,B, P) be a monotonic and sound interpretation. For any

sequence of reduction steps𝒯 ⊢ 𝑠, 𝑒 −→∗ 𝑠′, 𝑒′, if S(𝑠) and I ⊨ 𝑒 then I ⊨ 𝑒′.

Theorem 5.19. Let I :≡ (S, ≼,B, P) be a monotonic and sound interpretation. Assume that for some

𝑠0 and 𝑒0, both S(𝑠0) and I ⊨ 𝑒0 hold. Let T be the minimum subsystem of Tind[𝒜;𝒯] that contains

(𝑠0, [𝑒0]P), the map ℎ : (𝑠, [𝑒]P) ↦−→ (𝑠, [𝑒]I) for any 𝑒 such that I ⊨ 𝑒 holds is a well-defined

function from T to Tsat[𝒜;𝒯;I]. Moreover, ℎ is a homomorphism.

Proof. I begin the proof with the verification of the well-definedness ofℎ. This includes two steps:

(i) ℎ is defined for all states of T , and (ii) for any state (𝑠, [𝑒]P) of T and any 𝑒′ such that 𝑒′ ∼P 𝑒

and I ⊨ 𝑒′, ℎ(𝑠, [𝑒]P) = ℎ(𝑠, [𝑒′]P).

Since both S(𝑠0) and I ⊨ 𝑒0 hold, the domain of ℎ is non-empty. To see (i), let (𝑠1, [𝑒1]P)

be any state of T such that I ⊨ 𝑒1 holds and (𝑠1, [𝑒1]P) ∈ dom(ℎ). Because ℎ(𝑠1, [𝑒1]P) is a

state of Tsat[𝒜;𝒯;I], S(𝑠1) also holds. If 𝑠1, [𝑒1]P −→M 𝑠2, [𝑒2]P, there exists 𝐸, 𝑒′1, 𝑒′2 such that

𝑒1 ∼P 𝐸
[︁
𝑒′1

]︁
, 𝑒2 ∼P 𝐸

[︁
𝑒′2

]︁
, and 𝒯 ⊢ 𝑠1, 𝑒′1 −→m 𝑠2, 𝑒

′
2. Since −→p and −→m are disjoint, it must

be the case that 𝑒1 −→∗P 𝐸
[︁
𝑒′1

]︁
. Hence, 𝒯 ⊢ 𝑒1 −→∗ 𝐸

[︁
𝑒′2

]︁
. By the Monotonicity theorem,

S(𝑠2) holds. By the Soundness theorem, I ⊨ 𝐸
[︁
𝑒′2

]︁
holds. To see (ii), it suffices to note that by

definition, ℎ(𝑠, [𝑒]P) = ℎ(𝑠, [𝑒′]P) if and only if [𝑒]I = [𝑒′]I . Therefore, (ii) trivially holds because

it is equivalent to 𝑒′ ∈ [𝑒]I .

Next, I verify that ℎ is a homomorphism from T to Tsat[𝒜;𝒯;I]. That ℎ preserves the tran-



Chapter 5. The Transition-System Representation of Contract Systems 77

sitions of T has been proven as part of (i) of its well-definedness. Conversely, suppose that

𝑠1, [𝑒1]I −→′M 𝑠2, [𝑒2]I . By the definition of −→′M, there exists 𝐸, 𝑒′1, 𝑒′2 such that 𝐸
[︁
𝑒′1

]︁
∈ [𝑒1]I ,

𝐸
[︁
𝑒′2

]︁
∈ [𝑒2]I , and 𝒯 ⊢ 𝑠1, 𝑒′1 −→m 𝑠2, 𝑒

′
2. Consequently, 𝑠1, [𝑒1]P −→M 𝑠2, [𝑒2]P. □

Proposition 5.20. In Example 5.6, the annotation interpretation Ival is monotonic and sound.

Let me illustrate the theorems by showing that for any annotation language (𝒜,𝒯), the

monitor calculus will only store values in proxies. Note that a separate proof is required to show

that proxies only carry values because the grammar does not restrict what proxies can contain. By

using the Ival interpretation from Example 5.6, expressions whose proxies only contain values

are those characterized by Ival ⊨ 𝑒 . Consequently, applying Theorem 5.19 to Proposition 5.20

guarantees that as along as one starts with an expression that has the desired property (e.g. one

where there are no proxies), the monitor calculus will never wrap proxies around an unevaluated

reference cell.

A Note on the Agda Implementation. In Definitions 5.15 and 5.16, I directly define the mono-

tonicity and soundness of an interpretation in terms of the satisfaction of expressions with respect

to the monitor-related reduction steps. However, the satisfaction relation is defined recursively

over expressions, so only the boundary and proxy forms in a given expression need to be ad-

dressed. The Agda mechanization actually takes advantage of this and eliminates boilerplate in

the proof obligations it presents to the user. For example, the proof goals that the Agda imple-

mentation generated for the soundness with respect to the [R-Cross-Cons] rule from Figure 4.4

only includes the interpretation of boundaries:

Reduction Rule 𝒯 ⊢ 𝑠,B#𝐴 { ⟨𝑣1, 𝑣2⟩ } −→m 𝑠′, ⟨ B#𝐴1 { 𝑣1 }, B#𝐴2 { 𝑣2 } ⟩

Assumption S(𝑠), S(𝑠′), 𝑠 ≼ 𝑠′, and B⟦𝐴, ⟨𝑣1, 𝑣2⟩ ⟧

Obligation B⟦𝐴1, 𝑣1 ⟧ and B⟦𝐴2, 𝑣2 ⟧

To understand the derivation of the simplified proof goals, recall that an interpretationI :≡ (S,

≼,B, P) is sound with respect to 𝒯 means that if 𝑠 ≼ 𝑠′𝑎𝑛𝑑 I ⊨ B#𝐴 {⟨𝑣1, 𝑣2⟩} both hold then

I ⊨ ⟨B#𝐴1 {𝑣1} ,B#𝐴2 {𝑣2}⟩ holds as well. By definition, the latter boils down to checking both



Chapter 5. The Transition-System Representation of Contract Systems 78

I ⊨ B#𝐴1 {𝑣1} and I ⊨ B#𝐴2 {𝑣2}. In other words, it is sufficient to look at the boundary and

proxy forms for monitor-related reduction steps.

This is not the whole story yet. In the boundary case, for I ⊨ B#𝐴 {𝑒} to hold it means that

both B⟦𝐴, 𝑒 ⟧ and I ⊨ 𝑒 have to hold. When it comes to the [R-Cross-Cons] rule, the soundness

property expands to the statement that if both B⟦𝐴, ⟨𝑣1, 𝑣2⟩ ⟧ and I ⊨ ⟨𝑣1, 𝑣2⟩ hold, then all of

B⟦𝐴1, 𝑣1 ⟧, B⟦𝐴2, 𝑣2 ⟧, I ⊨ 𝑣1 and I ⊨ 𝑣2 have to hold. But the assumption I ⊨ ⟨𝑣1, 𝑣2⟩ actually

cancels out the obligations I ⊨ 𝑣1 and I ⊨ 𝑣2, hence only the predicates resulting from B⟦−,−⟧

are needed in the soundness statement.

In the end, for the interpretationI to be soundwith respect to the [R-Cross-Cons] rule in Fig-

ure 4.4, one needs to prove that if B⟦𝐴, ⟨𝑣1, 𝑣2⟩ ⟧ then B⟦𝐴1, 𝑣1 ⟧ and B⟦𝐴2, 𝑣2 ⟧. Put differently,

one only needs to look at boundary (and proxy) terms and interpret them using the annotation

interpretation. The same process generalizes not only to other the rule templates in Figure 4.4,

but also to the monotonicity property.

5.4 Reusing Metatheories by Composing Homomorphisms

One last missing piece in my discussion about the monitor calculus is the method for building

reusable metatheories of annotation languages. In this section, I show that when a language of

annotations is built from other basic languages of annotations, the corresponding annotation-

language projections give rise to weak homomorphisms from the induced transition system of

the composed language to the induced transition systems of the basic languages.

Let me briefly review the framework for proving properties of annotation languages. Previ-

ously, Sections 5.1 to 5.3 demonstrate that for an annotation language (𝒜,𝒯), a desired prop-

erty of the instantiation calculus (λm[𝒜;𝒯]) is first reframed as some specific behavior of the

induced transition system (Tind[𝒜;𝒯]). Then, for an appropriately defined annotation interpre-

tation I, the interpretation-satisfying transition system (Tsat[𝒜;𝒯;I]) will exhibit the particu-

lar transition behavior specified by I by construction. Thus, establishing a homomorphism from



Chapter 5. The Transition-System Representation of Contract Systems 79

Tind[𝒜;𝒯] to Tsat[𝒜;𝒯;I] in turn proves the desired property about λm[𝒜;𝒯].

Since it is sufficient to study the behavior of the induced transition system, the problem of

building modular and reusable metatheories is reduced to understanding the behavior of the

induced transition system in a reusable manner. To solve this problem, Section 2.3 observes that

the composition of annotation languages gives rise to transition systemhomomorphisms between

the transition systems induced by the respective annotation languages.

As it turns out, for a composite annotation language, when properties about its constituent

annotation languages are proven through homomorphisms from the induced transition systems

of the constituent languages to other transition systems (e.g. the interpretation-satisfying sys-

tem), composing these homomorphisms with the one between the induced transition system of

the composite annotation language and that of the constituent languages transitively establishes

properties about the composite annotation language.

Sections 2.3, 3.2 and 3.3 altogether is a concrete instantiation of this idea. Because Section 3.2

proves properties about 𝒜ctc and 𝒜owner, Section 3.3 reuses these homomorphisms to bring the

properties about the individual language to the language that combines contracts and blames,

demonstrating the reusability of their metatheories.

To close the loop, I prove that there are weak homomorphisms from the induced transition

system of a composite annotation language to the induced transition system of the constituent

annotation languages in Theorem 5.21, where the composite language and its constituents are for-

mally related using the concept of projections of annotation languages introduced in Section 4.3.

Theorem 5.21. Let (𝒜,𝒯) and (𝒜′,𝒯′) where𝒜 :≡ (Ann, State) and𝒜′ :≡ (Ann′, State′) be two

annotation languages such that there is a projection, (πA, πS), from (𝒜,𝒯) to (𝒜,𝒯′), the function

ℎproj : (𝑠, [𝑒]P) ↦−→ (πS(𝑠), [πexpr(𝑒)]P)

from Tind[𝒜;𝒯] to Tind[𝒜′;𝒯′] is a weak homomorphism. Here, the function πexpr(−) recursively

applies πA(−) to all annotations in a given expression.

Proof. It is easy to verify that ℎproj is well-defined by induction over the −→p relation.



Chapter 5. The Transition-System Representation of Contract Systems 80

Let −→M be the transition relation of Tind[𝒜;𝒯] and −→M′ be the transition relation of

Tind[𝒜′;𝒯′]. For any two states of λm[𝒜;𝒯] such that (𝑠1, [𝑒1]P) −→M (𝑠2, [𝑒2]P), I shall prove

that ℎproj(𝑠1, [𝑒1]P) −→M′ ℎ(𝑠2, [𝑒2]P) as follows.

When (𝑠1, [𝑒1]P) −→M (𝑠2, [𝑒2]P), there exists 𝐸, 𝑒′1, 𝑒′2 such that 𝐸
[︁
𝑒′1

]︁
∈ [𝑒1]P, 𝐸

[︁
𝑒′2

]︁
∈ [𝑒2]P,

and 𝒯 ⊢ 𝑠1, 𝑒′1 −→m 𝑠2, 𝑒
′
2. By Definition 4.11 (3), 𝒯′ ⊢ πS(𝑠1), πexpr(𝑒′1) −→m πS(𝑠2), πexpr(𝑒′2).

Moreover, it is easy to prove that πexpr(𝐸)
[︁
πexpr(𝑒′1)

]︁
= πexpr(𝐸

[︁
𝑒′1

]︁
) ∈ [πexpr(𝑒1)]P by induction.

Similarly, πexpr(𝐸)
[︁
πexpr(𝑒′2)

]︁
= πexpr(𝐸

[︁
𝑒′2

]︁
) ∈ [πexpr(𝑒2)]P. Therefore, by the definition of −→M′ ,

ℎproj(𝑠1, [𝑒1]P) −→M′ ℎproj(𝑠2, [𝑒2]P). □

In Section 2.3, Figure 2.5 demonstrates how to form composite annotation languages with the

example (𝒜octc,𝒯oc) that combines both blame tracking from𝒜owner and contract checking from

𝒜ctc. Section 3.3 further discusses how to reuse the metatheories developed in Section 3.2 for the

composite language,𝒜octc.

In Figure 3.4, because𝒜octc,𝒯oc is formed by composing (𝒜owner,𝒯o) and (𝒜ctc,𝒯c), the map

ℎproj1 that erases contracts and their checking status is aweak homomorphism fromTind[𝒜octc;𝒯oc]

to Tind[𝒜owner;𝒯o]. Similarly, the map ℎproj2 that erases owenrship labels is a weak homomor-

phism mapping Tind[𝒜octc;𝒯oc] to Tind[𝒜ctc;𝒯c].

Theorem 5.21 justifies the existence and the correctness of ℎproj2 and ℎproj1 . As of the ℎchk and

ℎown homomorphisms from Figure 3.2 that separately proves non-masking property of λm[𝒜ctc;𝒯c]

and the single-owner policy of λm[𝒜owner;𝒯o], both homomorphisms are instances of Theo-

rem 5.19.



81

Part III

Applications to Contract Metatheories





83

Chapter 6

Findler-Felleisen Contract System and

the Non-masking Property

In this chapter, I illustrate the development of transition-system-based reusable metatheory by

modeling Findler and Felleisen [2002] higher-order contracts in the monitor calculus and proving

its non-masking property. The model is an annotation language (𝒜ctc,𝒯c) that characterizes the

contract checking and the monitoring capabilities where 𝒯c is the transition steps of 𝒜ctc. Con-

tracts in 𝒜ctc are represented as annotations on boundaries and proxies. The contract checking

results are tracked by the state of the instantiated calculus, which can be either Ok or Err(ℓ) for

some label ℓ .

𝒜ctc partly handles a distinctive feature of Findler and Felleisen [2002] contract system: any

custom predicate can serve as contracts. In other words, their contract system is open and the con-

tracts can even be dynamically computed in host languages. This capability greatly improved the

practicality of contracts since library developers can leverage host language features to organize

and abstract contracts.

To allow custom predicates, contracts in 𝒜ctc can refer to arbitrary terms in the instantiated

calculus λm[𝒜ctc;𝒯c]. While this arrangement does not capture the full first-class contracts like

what Findler and Felleisen [2002] do, allowing custom predicates showcases the expressiveness of



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 84

annotation languages: the transition steps of an annotation language can integrate other calculi

and even the monitor calculus itself.

Technically, the variant of contract systems presented in this chapter is closer to Dimoulas

et al. [2011, 2012]’s design in that contracts are both simply typed and separated from the eval-

uation of ordinary expressions. Although adding a type system to higher-order contracts in the

formalism deviates from the implementation of the Findler and Felleisen [2002] contract system

in Racket, the typed variant greatly simplifies the analysis the contract systemwhile still shedding

light on its design.

I prove the non-masking property for the full 𝒜ctc language in this chapter. Specifically, I

show that 𝒜ctc may change the state from Ok to Err(ℓ) for some ℓ . Once the state is set to

Err(ℓ), 𝒜ctc never reverts it back to Ok or changes it to Err(ℓ′) for a different ℓ′. This is the

monotonicity property introduced in Section 3.2 which matches the state changes of λm[𝒜ctc;𝒯c]

with the blame-raising behavior of typical contract systems.

𝒜ctc is the also basis for the study of blames and the space-efficient contracts, and I will built

on it in Chapters 7 and 8. Chapter 7 constructs an annotation language for blame and composes

it with 𝒜ctc to analyze the interaction between blame and contract violations. Chapter 8 defines

an annotation language for Greenberg [2016]’s variant of space-efficient contracts and combines

it with 𝒜ctc to show that the behaviors of the two contract systems are equivalent. In these

two applications,𝒜ctc’s monotonicity property transfers to the composite annotation languages,

demonstrating how my framework supports proof reuse across different contract systems.

6.1 The Syntax of Contracts

Figure 6.1 presents the definition of𝒜ctc and the syntax of contracts. In this chapter, I shall let the

metavariables𝐴c and 𝑠c separately range over the annotations and the states of𝒜ctc, respectively.

The annotations 𝐴c are lists of contracts which I will explain shortly. The states 𝑠c can be either

Ok or Err(ℓ) for some label ℓ . Last, the metavariable 𝜅 ranges over contracts.



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 85

𝒜ctc :≡ (𝐴c, 𝑠c)
𝐴c ::= [𝜅1, . . . , 𝜅𝑚]
𝑠c ::= Status

⊢c 𝜅1 : Ctc𝜏 · · · ⊢c 𝜅𝑚 : Ctc𝜏
⊢ [𝜅1, . . . , 𝜅𝑚] : Ann𝜏

Status ∋ st ::= Ok | Err(ℓ)
𝜅 ::= unit/c | flatℓ(𝑥 . 𝑒) | 𝜅1 ×/c𝜅2 | 𝜅1 +/c𝜅2 | box/c𝜅 | 𝜅𝑎→/c𝜅𝑟 | 𝑡 | 𝜇/c 𝑡 .𝜅

Figure 6.1: The syntax contract annotation language,𝒜ctc

Δ :≡ {𝑡1, . . . , 𝑡𝑛} Δ ⊢c 𝜅 : Ctc𝜏

Δ ⊢c unit/c : Ctc unit
𝑥 : nat ⊢ 𝑒 : nat

Δ ⊢c flatℓ(𝑥 . 𝑒) : Ctc nat
Δ ⊢c 𝜅1 : Ctc𝜏1 Δ ⊢c 𝜅2 : Ctc𝜏2

Δ ⊢c 𝜅1 ×/c𝜅2 : Ctc (𝜏1 × 𝜏2)

Δ ⊢c 𝜅1 : Ctc𝜏1 Δ ⊢c 𝜅2 : Ctc𝜏2
Δ ⊢c 𝜅1 +/c𝜅2 : Ctc (𝜏1 + 𝜏2)

Δ ⊢c 𝜅 : Ctc𝜏
Δ ⊢c box/c𝜅 : Ctc (Box𝜏)

Δ ⊢c 𝜅𝑎 : Ctc𝜏𝑎 Δ ⊢c 𝜅𝑟 : Ctc𝜏𝑟
Δ ⊢c 𝜅𝑎→/c𝜅𝑟 : Ctc (𝜏𝑎 → 𝜏𝑟 )

𝑡 ∈ Δ
Δ ⊢c 𝑡 : Ctc 𝑡

Δ, 𝑡 ⊢c 𝜅 : Ctc𝜏
Δ ⊢c 𝜇/c 𝑡 .𝜅 : Ctc (𝜇𝑡 .𝜏)

Figure 6.2: The typing rules of contracts

To understand why the annotations are lists of contracts, let us work through a few examples

of the instantiated calculus λm[𝒜ctc;𝒯c]. The first one is rewritten from the contracted function

in Figure 2.1 in page 26. This function expects an odd number and promises to produce an even

number, so a corresponding contract is attached to it via a proxy. Here, I assume that isOdd and

isEven denote the appropriate expressions of the monitor calculus that check whether the given

number is odd (or even), and + denotes the expression that sums two numbers.

proxy
(︁
[flatℓ1(𝑥 . isOdd𝑥) →/c flatℓ2(𝑥 . isEven𝑥)], λ𝑥 .𝑥 + 2

)︁
𝒜ctc has two differences comparing to the informal presentation in Figure 2.1 in page 26. Since

the monitor calculus disallows nested proxies by design, one difference is that annotations in𝒜ctc

are lists of contracts, so the contract attached to λ𝑥 .𝑥 + 2 from Figure 2.1 appears in a singleton

list in 𝒜ctc. The other difference is that the predicates isOdd and isEven are wrapped inside the

constructor flatwhere the additional labels ℓ1 and ℓ2 identify the source locations of the predicates

and the variable 𝑥 binds the number to be checked.



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 86

Boundaries and proxies can be attached with more than one contract, as the syntax of 𝒜ctc

suggests. As a second example, consider the following function, which is enclosed in two bound-

aries, and hence guarded by two different contracts.

B#[𝜅2→/c𝜅′2]
{︁

B#[𝜅1→/c𝜅′1] { λ𝑥 .𝑒 }
}︁

In this program, when λ𝑥 .𝑒 flows out of the boundaries, the monitor calculus creates a proxy. As

a proxy collects all attached contracts in its annotation as a list, the above expression reduces to

a proxy whose annotation is the two-element list containing 𝜅1→/c𝜅′1 and 𝜅2→/c𝜅′2.

proxy
(︁
[𝜅1→/c𝜅′1, 𝜅2→/c𝜅′2], λ𝑥 .𝑒

)︁
In the annotation, the contract 𝜅1→/c𝜅′1 comes first because λ𝑥 .𝑒 reaches it prior to meeting the

other contract. In this sense, when a proxy is annotated with a list of contracts, the ones closer

to the front of the list can be thought of as the inner contracts that resides closer to the proxied

value whereas the ones closer to the rear of the list are the outer contracts.

This order of contracts in the annotations is more apparent when it comes to the order in

which𝒜ctc checks flat contracts. When there are multiple predicates,𝒜ctc checks them from the

left to the right. For example, the following boundary guards the number 𝑛 with the predicates

flatℓ1(𝑥 . 𝑒1) and flatℓ2(𝑥 . 𝑒2).

B#[flatℓ1(𝑥 . 𝑒1), flatℓ2(𝑥 . 𝑒2)] { 𝑛 }

When 𝑛 passes the boundary, 𝒜ctc will first check 𝑒1 against 𝑛 and then check 𝑒2 against 𝑛. If

𝑒1 [𝑛 /𝑥] reduces to 0, the contract checking process is aborted without running 𝑒2 [𝑛 /𝑥].

Having seen examples of𝒜ctc, we turn to the details of𝒜ctc. Figure 6.2 shows the typing rules

of contracts. The evaluation of contracts are covered by the transition steps of𝒜ctc in Section 6.2.

In 𝒜ctc, contracts are typed using the judgment Δ ⊢c 𝜅 : Ctc𝜏 where Ctc𝜏 types contracts that

guard values of type 𝜏 . The set Δ in the typing judgement contains the type variables that the

contract 𝜅 and the type 𝜏 can refer to.

The contracts annotated on boundaries and proxies are all typed using the empty context. To

see this, recall that the typing rule of boundaries from Figure 4.2 in page 53 is



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 87

⊢ 𝐴 : Ann𝜏 ⊢ 𝑒 : 𝜏
Γ ⊢ B#𝐴 {𝑒} : 𝜏 .

The premise ⊢ 𝐴 : Ann𝜏 types the annotation of boundaries, or list of contracts in𝒜ctc. Its typing

rule is shown at the top of Figure 6.1. For 𝐴 a list of contracts [𝜅1, . . . , 𝜅𝑚], the rule types each

contract using only the empty environment, ignoring Γ. Similarly, the typing rule of proxies

types the annotations on proxies as Ann𝜏 . Therefore, all annotated contracts must be closed.

Let us go over the syntax of contracts together with their typing rules. Since contracts in𝒜ctc

are typed, there is one kind of contract for each type in the monitor calculus. The contract for the

unit type is unit/c : Ctc unit. The contracts for natural numbers are called flat contracts and are

represented as flatℓ(𝑥 . 𝑒) : Ctc nat. For a flat contract flatℓ(𝑥 . 𝑒), the label ℓ identifies the origin

of the contract when reporting contract violations. The expression 𝑒 is a predicate that takes a

natural number input 𝑥 : nat and produces a natural number. The predicate 𝑒 is not allowed to

use other identifiers in the context, thus it is typed using the judgment 𝑥 : nat ⊢ 𝑒 : nat. For a

number 𝑛, the contract flatℓ(𝑥 . 𝑒) fails if 𝑒 [𝑛 /𝑥] evaluates to zero and passes otherwise.

Next, the contract for pairs and disjoint sums arewritten as𝜅1 ×/c𝜅2 : Ctc (𝜏1×𝜏2) and𝜅1 +/c𝜅2 :

Ctc (𝜏1 + 𝜏2) and have their expected meaning. The contract for immutable reference cells is

box/c𝜅 : Ctc (Box𝜏) where 𝜅 : Ctc𝜏 is the contract of the value stored in the reference cell. The

arrow contract for functions is 𝜅𝑎→/c𝜅𝑟 : Ctc (𝜏𝑎 → 𝜏𝑎) where 𝜅𝑎 : Ctc𝜏𝑎 is the domain contract

and 𝜅𝑟 : Ctc𝜏𝑟 is the range contract. Finally, the contract for recursive types is 𝜇/c 𝑡 .𝜅 : Ctc (𝜇𝑡 .𝜏).

When typing the body 𝜅 of the recursive contract, the typing rule extends the context with the

additional type variable 𝑡 just like how the recursive type 𝜇𝑡 .𝜏 binds the type variable 𝑡 in 𝜏 .

Similar to the Substitution lemma of expressions in page 55 and the Substitution lemma of the

satisfaction relation in page 74, I prove the substitution lemma of contracts in three steps via the

Renaming lemma, the extension operation (Proposition 6.2) and finally the Substitution lemma.

Lemma 6.1 (Renaming). Let Δ :≡ {𝑡1, . . . , 𝑡𝑛} and Δ′ :≡ {𝑡 ′1, . . . , 𝑡 ′𝑚} be given. Assume that there is

a sequence 1 ≤ 𝑎𝑖 ≤ 𝑚 for 𝑖 = 1 . . . 𝑛. If Δ ⊢c 𝜅 : Ctc𝜏 then Δ′ ⊢c 𝜅
[︁
𝑡 ′𝑎1, . . . , 𝑡

′
𝑎𝑛
/ 𝑡1, . . . , 𝑡𝑛

]︁
:

Ctc
(︁
𝜏
[︁
𝑡 ′𝑎1, . . . , 𝑡

′
𝑎𝑛
/ 𝑡1, . . . , 𝑡𝑛

]︁ )︁
.



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 88

Proposition 6.2. Assume that Δ′ ⊢c 𝜅𝑖 : Ctc𝜏𝑖 for 𝑖 = 1 . . . 𝑛 and let any 𝑡0 ∉ Δ′ be given. There is

a sequence Δ′′ ⊢c 𝜅𝑖 : Ctc𝜏𝑖 for 𝑖 = 0 . . . 𝑛 where Δ′′ :≡Δ′, 𝑡0 and 𝜅0 :≡ 𝑡0.

Lemma 6.3 (Substitution). Let Δ :≡ {𝑡1, . . . , 𝑡𝑛} and some Δ′ be given. Assume that Δ′ ⊢c 𝜅𝑖 :

Ctc𝜏𝑖 for 𝑖 = 1 . . . 𝑛. IfΔ ⊢c 𝜅 : Ctc𝜏 thenΔ′ ⊢c 𝜅 [𝜅1, . . . , 𝜅𝑛 / 𝑡1, . . . , 𝑡𝑛] : Ctc (𝜏 [𝜏1, . . . , 𝜏𝑛 / 𝑡1, . . . , 𝑡𝑛]).

6.2 The Contract Checking Transition Steps

In this section, I turn to the dynamics of𝒜ctc, or its transition steps,𝒯c. Figure 6.4 first defines the

dynamics of contracts in the form of computation rules, then Figure 6.5 defines the metafunctions

that implement flat contract checks.

Since contracts in 𝒜ctc are arbitrary predicates from λm[𝒜ctc;𝒯c], 𝒯c incorporates the reduc-

tion relation of the monitor calculus, i.e. the −→ relation, to evaluate the predicates. This makes

−→ a recursive definition because the −→m relation in it refers to 𝒯c, which in turn is defined

using −→. Since the theory developed in Chapter 5 does not account for this, I stratify 𝒯c into

layers to avoid the cyclic dependency.

The transition steps of 𝒜ctc are indexed by the maximum depth of nested contract occur-

rences. The base case𝒯c0 is an empty relation that disallows any−→m step from taking place. The

inductive case, 𝒯c𝑖+1 (which is coming shortly in Figure 6.4), uses the instantiation λm[𝒜ctc;𝒯c𝑖]

to evaluate the predicates in flat contracts. Thus, contracts are technically modeled by a family

of annotation languages {(𝒜ctc,𝒯c𝑖)}𝑖≥0 although all of them are morally identical.
𝑓 :≡ proxy

(︁
[flatℓ1(𝑧. div360′ 𝑧) →/c any/cℓ2], λ𝑥 .𝑒

)︁
where div360′ :≡ proxy

(︁
[flatℓ3(𝑧. isPos 𝑧) →/c any/cℓ4], λ𝑥 .div360 𝑥

)︁
isPos :≡ λ𝑤. foldnat(𝑤, 0, 𝑥 𝑦. 1)

any/cℓ :≡ flatℓ(𝑧. 1)
Figure 6.3: An example of nested contracts

Figure 6.3 better explains the role of stratification and what nested contracts look like. Assuming

that the function 𝑓 in the example only accepts factors of 360 as inputs, the contract guarding 𝑓

checks its argument with flatℓ1(𝑧. div360′ 𝑧). This flat contract tests the argument of 𝑓 with the



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 89

predicate div360′ to ensure that the input is a factor of 360. In the predicate div360′, the function

div360 implements the actual divisibility test which only works for positive integers. Hence,

div360′ guards div360 with the contract flatℓ3(𝑧. isPos 𝑧) →/c any/cℓ4 where isPos ensures that the

inputs are positive.

The contract of 𝑓—one that uses div360′—is an instance of nested contracts in 𝒜ctc. The

function 𝑓 is protected by a contract, flatℓ1(𝑧. div360′ 𝑧) →/c any/cℓ2 , and this contract in turn

contains yet another contract, flatℓ3(𝑧. isPos 𝑧) →/c any/cℓ4 . Therefore, the contract nesting depth

of 𝑓 is 2, and similarly the contract nesting depth of div360′ is 1.

The contract nesting depth of an expression affects the minimum index of the subscript in𝒯c𝑖

that is needed to evaluate the expression. For example, when checking the contract flatℓ1(𝑧. div360′ 𝑧),

𝒜ctc needs to evaluate div360′ and, since is it contracted, another contract checking process is ini-

tiated to evaluate flatℓ3(𝑧. isPos 𝑧) which finally contains only base expressions.

Going back from isPos, the evaluation of flatℓ3(𝑧. isPos 𝑧) requires only the base reduction steps

(i.e. the −→p relation), so 𝒯c0 is sufficient. Calls to div360′, however, need to be evaluated using

the transition steps 𝒯c1 at minimum since checking it requires the evaluation of flatℓ3(𝑧. isPos 𝑧).

Transitively, calls to 𝑓 need at least the transition steps 𝒯c2 as evaluating 𝑓 requires two nested

contract checking process.

The Transition Steps 𝒯c𝑖 . I shall now walk through the definition of 𝒯c. The base case of the

transition steps𝒯c0 is the empty relation, so the reduction relation𝒯c0 ⊢_, _−→_, _ includes all of

the −→p relation, but it cannot take any −→m step. For the inductive case, i.e. 𝒯c𝑖+1, the details

are presented in Figure 6.4. Amongst the rules, the [R-Cross-Nat] rule is the core of 𝒜ctc that

formalizes the enforcement of flat contract. When a number 𝑛 passes a boundary annotated with

the contracts [𝜅1, . . . , 𝜅𝑚], the [R-Cross-Nat] rule invokes the checkCtcs𝒯c𝑖 function to update

the state from Ok to the contract checking result, 𝑠′. The checkCtcs𝒯c𝑖 function takes a list of

flat contracts, a number, and runs the flat contracts from left to right using the transition steps

𝒯c𝑖 . The checkCtcs𝒯c𝑖 returns the relation between the original state and the updated state, so

[R-Cross-Nat] pulls out the updated state with (Ok, 𝑠′) ∈ checkCtcs𝒯c𝑖 , get, put ( [𝜅1, . . . , 𝜅𝑚], 𝑛). I



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 90

[R-Cross-Unit] Ok,B#[unit/c, . . . , unit/c] { () } −→m Ok, ()

[R-Cross-Nat] Ok,B#[𝜅1, . . . , 𝜅𝑚] { 𝑛 } −→m 𝑠′, 𝑛

where (Ok, 𝑠′) ∈ checkCtcs𝒯c𝑖 , get, put ( [𝜅1, . . . , 𝜅𝑚], 𝑛)

[R-Cross-Cons] Ok,B#[
(︁
𝜅1 ×/c𝜅′1

)︁
, . . . ,

(︁
𝜅𝑚 ×/c𝜅′𝑚

)︁
] { ⟨𝑣1, 𝑣2⟩ } −→m

Ok, ⟨B#[𝜅1, . . . , 𝜅𝑚] {𝑣1} , B#[𝜅′1, . . . , 𝜅′𝑚] {𝑣2} ⟩

[R-Cross-Inl] Ok,B#[
(︁
𝜅1 +/c𝜅′1

)︁
, . . . ,

(︁
𝜅𝑚 +/c𝜅′𝑚

)︁
] { inl(𝑣) } −→m

Ok, inl(B#[𝜅1, . . . , 𝜅𝑚] {𝑣})

[R-Cross-Inr] Ok,B#[
(︁
𝜅1 +/c𝜅′1

)︁
, . . . ,

(︁
𝜅𝑚 +/c𝜅′𝑚

)︁
] { inr(𝑣) } −→m

Ok, inr(B#[𝜅′1, . . . , 𝜅′𝑚] {𝑣})

[R-Cross-Roll] Ok,B#[(𝜇/c 𝑡 .𝜅1), . . . , (𝜇/c 𝑡 .𝜅𝑚)] { roll𝜏 (𝑣) } −→m

Ok, roll𝜏 (B#[𝜅1 [(𝜇/c 𝑡 .𝜅1) / 𝑡] , . . . , 𝜅𝑚 [(𝜇/c 𝑡 .𝜅𝑚) / 𝑡]] { 𝑣 })

[R-Cross-Box] Ok,B#[𝜅1, . . . , 𝜅𝑚] { box(𝑣) } −→m Ok, proxy( [𝜅1, . . . , 𝜅𝑚], box(𝑣))

[R-Cross-Lam] Ok,B#[𝜅1, . . . , 𝜅𝑚] { λ𝑥 .𝑒 } −→m Ok, proxy( [𝜅1, . . . , 𝜅𝑚], λ𝑥 .𝑒)

[R-Proxy-Unbox] Ok, unbox(proxy( [box/c𝜅1, . . . , box/c𝜅𝑚], box(𝑒))) −→m

Ok,B#[𝜅1, . . . , 𝜅𝑚] { unbox(box(𝑒)) }

[R-Proxy-β] Ok, proxy
(︁
[
(︁
𝜅1→/c𝜅′1

)︁
, . . . ,

(︁
𝜅𝑚→/c𝜅′𝑚

)︁
], λ𝑥 .𝑒

)︁
𝑣 −→m

Ok,B#[𝜅′1, . . . , 𝜅′𝑚] { (λ𝑥 .𝑒) (B#[𝜅𝑚, . . . , 𝜅1] {𝑣}) }

[R-Merge-Box] Ok,B#[𝜅1, . . . , 𝜅𝑙 ]
{︁
proxy

(︁
[𝜅′1, . . . , 𝜅′𝑚], box(𝑒)

)︁ }︁
−→m

Ok, proxy
(︁
[𝜅′1, . . . , 𝜅′𝑚, 𝜅1, . . . , 𝜅𝑙 ], box(𝑒)

)︁
[R-Merge-Lam] Ok,B#[𝜅1, . . . , 𝜅𝑙 ]

{︁
proxy

(︁
[𝜅′1, . . . , 𝜅′𝑚], λ𝑥 .𝑒

)︁ }︁
−→m

Ok, proxy
(︁
[𝜅′1, . . . , 𝜅′𝑚, 𝜅1, . . . , 𝜅𝑙 ], λ𝑥 .𝑒

)︁
This figure defines the inductive case of the transition steps𝒯c𝑖+1 of𝒜ctc for 𝑖 ≥ 0. The base case
𝒯c0 is the empty relation.

Figure 6.4: The transition steps,𝒯c𝑖+1, of the contract annotation language

will return the formal definition of checkCtcs𝒯c𝑖 in Figure 6.5 later.

There are two more rules that are worth paying attention to. The first one is the [R-Proxy-β]

rule. When applying a proxy function annotatedwith the contracts [
(︁
𝜅1→/c𝜅′1

)︁
, . . . ,

(︁
𝜅𝑚→/c𝜅′𝑚

)︁
]

to an argument 𝑣 , the [R-Proxy-β] rule creates two new boundaries, one around the function



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 91

application and the other around the argument 𝑣 . The [R-Proxy-β] rule further annotates the

boundary around the function application with the range contracts, [𝜅′1, . . . , 𝜅′𝑚]. The other

boundary around 𝑣 is annotated with the domain contracts, [𝜅𝑚, . . . , 𝜅1].

It should be noted that the order of the domain contracts are reversed: since the contracts

closer to the end of the list of contracts on a proxy are the outer ones (cf. the discussion of the

examples in page 86), they are closer to the argument in a function application. Therefore, the

respective domain contracts should be checked first.

Next, the [R-Merge-Lam] rule merges the annotations when a proxy crosses a boundary. In

𝒜ctc, the transition steps 𝒯c𝑖 simply concatenates the two list of contracts. Again, it should be

noted that the order of concatenation is reversed. The contracts on the boundary, [𝜅1, . . . , 𝜅𝑙 ], are

the outer ones with respect to the contracts on the proxy, [𝜅′1, . . . , 𝜅′𝑚]. Therefore, the new list of

contracts on the proxy should be [𝜅′1, . . . , 𝜅′𝑚, 𝜅1, . . . , 𝜅𝑙 ].

The rest of the rules decompose and propagate contracts on boundaries and proxies in accor-

dance with the types. For example, the [R-Cross-Cons] rule takes as inputs the annotations on

the boundary, [
(︁
𝜅1 ×/c𝜅′1

)︁
, . . . ,

(︁
𝜅𝑚 ×/c𝜅′𝑚

)︁
], and the pair that crosses the boundary, ⟨𝑣1, 𝑣2⟩, and

then creates two new boundaries around 𝑣1, 𝑣2 and distributes the corresponding sub-contracts

[𝜅1, . . . , 𝜅𝑚] and [𝜅′1, . . . , 𝜅′𝑚] on the new boundaries. The other R-Cross rules are defined simi-

larly, so I shall omit their explanation.

A Note on Extensibility. Figure 6.4 can be easily turned into an extensible form in the spirit of

Section 2.3 by using πA and πS to extract annotations and global states from a larger annotation

language akin to how Figure 2.6 achieves extensibility for 𝒯c′. In particular, in rule [R-Cross-

Nat], the checkCtcs metafunction is already defined in terms of πS (written as get in the figure)

and put as checkCtcs needs to update the global states. Apart from this rule, all other rules only

inspects the contents of annotations and global states without updating them.

TheMetafunction for Checking Predicates. Now, let me explain the checkCtcs𝒯 function that

captures the contract checking process. Figure 6.5 formalizes checkCtcs𝒯 and its auxiliary defini-

tions as functions that produce binary relations over Status, essentially describing how the state



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 92

checkPred𝒯, get, put (flatℓ(𝑥 . 𝑒), 𝑛) :≡
{(𝑠, 𝑠′) | (𝒯 ⊢ 𝑠, 𝑒 [𝑛 /𝑥] −→∗ 𝑠′, suc(𝑛′)) ∧ get (𝑠′) = Ok }

∪ {(𝑠, 𝑠′′) | (𝒯 ⊢ 𝑠, 𝑒 [𝑛 /𝑥] −→∗ 𝑠′, zero) ∧ get (𝑠′) = Ok
∧ 𝑠′′ = put (𝑠′, Err(ℓ)) }

∪ {(𝑠, 𝑠′) | (𝒯 ⊢ 𝑠, 𝑒 [𝑛 /𝑥] −→∗ 𝑠′, 𝑒′) ∧ get (𝑠′) = Err(ℓ′) }

checkCtcs𝒯, get, put ( [], 𝑛) :≡ id
checkCtcs𝒯, get, put ( [flatℓ(𝑥 . 𝑒), 𝜅2, . . . , 𝜅𝑚], 𝑛) :≡(︄ (︁

guard (Ok) ◦ checkPred𝒯, get, put (flatℓ(𝑥 . 𝑒), 𝑛)
)︁
∪

⋃︂
ℓ ′∈Label

guard (Err(ℓ′))
)︄
◦

checkCtcs𝒯, get, put ( [𝜅2, . . . , 𝜅𝑚], 𝑛)
where id :≡ {(𝑠, 𝑠) | 𝑠 ∈ State}

guard (st) :≡ {(𝑠, 𝑠) | 𝑠 ∈ State ∧ get (𝑠) = st}

Figure 6.5: The contract checking relation

evolves during the contract checking process. When the [R-Cross-Nat] rule uses checkCtcs𝒯 in

the transition steps 𝒯c𝑖 , for example, wires up the transition of states by pulling out the pair of

Status from the result of checkCtcs𝒯 :

[R-Cross-Nat] Ok,B#[𝜅1, . . . , 𝜅𝑚] { 𝑛 } −→m 𝑠′, 𝑛

where (Ok, 𝑠′) ∈ checkCtcs𝒯c𝑖 , get, put ( [𝜅1, . . . , 𝜅𝑚], 𝑛).

The two auxiliary definitions and the composition of relations forms a small imperative-flavored

language for transition relations. To be concrete, the id relation can be thought of as the do-

nothing command that leaves the state unchanged. The other auxiliary relation, guard (𝑠), im-

peratively restricts the state to be 𝑠 . Finally, the composition of relations1 captures the sequencing

of transitions: for binary relations 𝑅1 and 𝑅2, their composition 𝑅1 ◦ 𝑅2 is the relation for which

the state changes first in accordance with 𝑅1 and then according to 𝑅2.

Figure 6.5 gives the definition of the checkCtcs𝒯 metafunction using the notation discussed

in the previous paragraph. It takes a transition steps𝒯 (in the subscript), a list of flat contracts, a

natural number𝑛, and sequentially enforces the contracts from left to right against the given num-

1Formally, 𝑅1 ◦ 𝑅2 is the relation { (𝑠, 𝑠′) | ∃𝑠′′ . 𝑠𝑅1𝑠′′ ∧ 𝑠′′𝑅2𝑠′ }.



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 93

ber. When the list of contracts is empty, checkCtcs𝒯, get, put ( [], 𝑛) returns the identity relation, i.e.

leaves the state unchanged. Otherwise, checkCtcs𝒯, get, put ( [flatℓ(𝑥 . 𝑒), 𝜅2, . . . , 𝜅𝑚], 𝑛) is the rela-

tion that checks flatℓ(𝑥 . 𝑒) against𝑛 followed by the recursive call checkCtcs𝒯, get, put ( [𝜅2, . . . , 𝜅𝑚], 𝑛).

In this chapter, for the instance λm[𝒜ctc;𝒯c𝑖+1], by setting get = id and put = const id,

checkCtcs𝒯c𝑖+1, id, const id ( [𝜅1, . . . , 𝜅𝑚], 𝑛) is the binary relation over Status such that

1. (Ok,Ok) ∈ checkCtcs𝒯c𝑖+1, id, const id ( [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], 𝑛) if for all 1 ≤ 𝑗 ≤ 𝑚,

there exists 𝑛′𝑗 such that𝒯 ⊢ Ok, 𝑒 𝑗 [𝑛 /𝑥] −→∗ Ok, suc(𝑛′𝑗 ).

2. (Ok, Err(ℓ𝑘)) ∈ checkCtcs𝒯c𝑖+1, id, const id ( [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], 𝑛) if𝒯 ⊢ Ok, 𝑒𝑘 [𝑛 /𝑥] −→∗

Ok, zero and for all 1 ≤ 𝑗 ≤ 𝑘 − 1, there exists 𝑛′𝑗 such that 𝒯 ⊢ Ok, 𝑒 𝑗 [𝑛 /𝑥] −→∗

Ok, suc(𝑛′𝑗 ).

3. (Ok, Err(ℓ′)) ∈ checkCtcs𝒯c𝑖+1, id, const id ( [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], 𝑛) if𝒯 ⊢ Ok, 𝑒𝑘 [𝑛 /𝑥] −→∗

Err(ℓ′), 𝑒′
𝑘
and for all 1 ≤ 𝑗 ≤ 𝑘 − 1, there exists 𝑛′𝑗 such that 𝒯 ⊢ Ok, 𝑒 𝑗 [𝑛 /𝑥] −→∗

Ok, suc(𝑛′𝑗 ).

and checkPred simplifies to the following:

checkPred𝒯 (flatℓ(𝑥 . 𝑒), 𝑛) :≡ {(𝑠,Ok) | 𝒯 ⊢ 𝑠, 𝑒 [𝑛 /𝑥] −→∗ Ok, suc(𝑛′)}

∪ {(𝑠, Err(ℓ)) | 𝒯 ⊢ 𝑠, 𝑒 [𝑛 /𝑥] −→∗ Ok, zero}

∪ {(𝑠, Err(ℓ′)) | 𝒯 ⊢ 𝑠, 𝑒 [𝑛 /𝑥] −→∗ Err(ℓ′), 𝑒′}

There are two cases when checkCtcs𝒯, get, put ( [flatℓ(𝑥 . 𝑒), 𝜅2, . . . , 𝜅𝑚], 𝑛) handles flatℓ(𝑥 . 𝑒). If

the current state is Ok as identified by guard (Ok), the checkCtcs𝒯 metafunction invokes the

checkPred𝒯 metafunction to enforce flatℓ(𝑥 . 𝑒) on 𝑛. Otherwise, if the state is Err(ℓ′) for some

ℓ′ as identified by
⋃︁

ℓ ′∈Label guard (Err(ℓ′)), the checkCtcs𝒯 function does nothing. Note that the

checkCtcs𝒯 function always traverses over the entire list of contracts. Whenever a contract fails

while checkPred𝒯 enforces it, the remaining contracts are skipped since they are the checkPred𝒯

check is guarded by guard (Ok). The checkCtcs𝒯 function simply passes the failure state (Err(ℓ′))

over through
⋃︁

ℓ ′∈Label guard (Err(ℓ′)).



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 94

I ⊨ flatℓ(𝑥 . 𝑒) iff I ⊨ 𝑒
I ⊨ 𝑡 (where 𝑡 is bound)
I ⊨ unit/c
I ⊨ 𝜅1 ×/c𝜅2 iff I ⊨ 𝜅1 and I ⊨ 𝜅2
I ⊨ 𝜅1 +/c𝜅2 iff I ⊨ 𝜅1 and I ⊨ 𝜅2
I ⊨ box/c𝜅 iff I ⊨ 𝜅
I ⊨ 𝜅𝑎→/c𝜅𝑟 iff I ⊨ 𝜅𝑎 and I ⊨ 𝜅𝑟
I ⊨ 𝜇/c 𝑡 .𝜅 iff I ⊨ 𝜅

Figure 6.6: The satisfaction relation of contracts

The checkPred𝒯, get, put (flatℓ(𝑥 . 𝑒), 𝑛) function does the actual work of enforcing flatℓ(𝑥 . 𝑒)

against 𝑛. In its definition, checkPred𝒯, get, put (flatℓ(𝑥 . 𝑒), 𝑛) evaluates 𝑒 [𝑛 /𝑥] using the −→ re-

lation under the transition steps 𝒯 and there are three potential outcomes: if, starting with 𝑠 ,

the evaluation terminates with the state Ok and a non-zero number suc(𝑛′) for some 𝑛′, the

overall result of checkPred𝒯, get, put (flatℓ(𝑥 . 𝑒), 𝑛) is {(𝑠,Ok)}. Otherwise, if the evaluation ter-

minates with the state Ok and the number zero, the result of checkPred𝒯, get, put (flatℓ(𝑥 . 𝑒), 𝑛) is

{(𝑠, Err(ℓ))}. Last, if the evaluation terminates in the state Err(ℓ′) for some ℓ′, the overall result

is {(𝑠, Err(ℓ′))}.

6.3 The Satisfaction Relation of Contracts

Since the annotations in𝒜ctc—or list of contracts—can include arbitrary terms, I define the satis-

faction relation of contracts analogous to that of the expressions from Figure 5.1 in page 72. The

satisfaction relation over contracts is an essential tool formodularly establishing themetatheories

of blames and space-efficient contracts in Chapters 7 and 8.

Figure 6.6 presents the definition of the satisfaction relation of contracts. For an annotation

interpretation I and a contract 𝜅, the relation I ⊨ 𝜅 asserts that the contract 𝜅 satisfies the

interpretation I. The satisfaction of a contract 𝜅 is defined compositionally over 𝜅. For example,

a function contract 𝜅𝑎→/c𝜅𝑟 is satisfied if and only if the subcontracts 𝜅𝑎 and 𝜅𝑟 are both satisfied.



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 95

The base case for flat contracts, flatℓ(𝑥 . 𝑒), is where an arbitrary term 𝑒 may appear. In this case,

the flat contract satisfies the interpretation I—or I ⊨ flatℓ(𝑥 . 𝑒)—if and only if the term 𝑒 itself

satisfies I, i.e. I ⊨ 𝑒 holds.

Now, I shall prove the substitution lemmas for the satisfaction relation of contracts.

Lemma 6.4 (Renaming). Let Δ :≡ {𝑡1, . . . , 𝑡𝑛} and Δ′ :≡ {𝑡 ′1, . . . , 𝑡 ′𝑚} be given. Assume that there is

a sequence 1 ≤ 𝑎𝑖 ≤ 𝑚 for 𝑖 = 1 . . . 𝑛. If Δ ⊢c 𝜅 : Ctc𝜏 and I ⊨ 𝜅 then I ⊨ 𝜅
[︁
𝑡 ′𝑎1, . . . , 𝑡

′
𝑎𝑛
/ 𝑡1, . . . , 𝑡𝑛

]︁
.

Proposition 6.5. Assume that Δ′ ⊢c 𝜅𝑖 : Ctc𝜏𝑖 for 𝑖 = 1, . . . , 𝑛 and let any 𝑡0 ∉ Δ′ be given. Let

Δ′′ ⊢c 𝜅′𝑖 : Ctc𝜏𝑖 for 𝑖 = 0, . . . , 𝑛 be the sequence given by Proposition 6.2 where Δ′′ :≡Δ′, 𝑡0, and

𝜅′𝑖 :≡𝜅𝑖 for 𝑖 = 1, . . . , 𝑛.

Then, if I ⊨ 𝜅𝑖 for 𝑖 = 1, . . . , 𝑛, there is a sequence I ⊨ 𝜅′𝑖 for 𝑖 = 0, . . . , 𝑛 as well.

Lemma 6.6 (Substitution). Let Δ :≡ {𝑡1, . . . , 𝑡𝑛} and some Δ′ be given. Assume that Δ ⊢c 𝜅 : Ctc𝜏

and that Δ′ ⊢c 𝜅𝑖 : Ctc𝜏𝑖 for 𝑖 = 1, . . . , 𝑛.

Then, if I ⊨ 𝜅 and I ⊨ 𝜅𝑖 for 𝑖 = 1, . . . , 𝑛 then I ⊨ 𝜅 [𝜅1, . . . , 𝜅𝑛 / 𝑡1, . . . , 𝑡𝑛].

6.4 Monotonicity

In this section, I prove that the transition steps {𝒯c𝑖}𝑖≥0 changes the global state of 𝒜ctc mono-

tonically using the framework developed in Sections 5.2 and 5.3. In particular, the state of 𝒜ctc

can only change from Ok to Err(ℓ) for some ℓ and, once the global state is set to Err(ℓ) by the

transition steps {𝒯c𝑖}𝑖≥0, it is never changed back to Ok or Err(ℓ′) for a different ℓ′.

The monotonicity of the annotation language {(𝒜ctc,𝒯c𝑖)}𝑖≥0 is the full-fledged version of the

monotonic property discussed in Figure 3.2 (a) of Section 3.2 in page 39. Earlier, the enforcement

of contracts in Section 3.2 leaves out potential nested checks that could be triggered due to the

evaluation of predicates from flat contracts. Therefore, the monotonicity of 𝒜ctc in Figure 3.2

(a) involves only top-level reductions. In this chapter, contracts in {(𝒜ctc,𝒯c𝑖)}𝑖≥0 can contain

arbitrary expressions. Consequently, additional treatment is needed during the evaluation of

predicates in flat contracts to guarantee that the global state is monotonic at any point.



Chapter 6. Findler-Felleisen Contract System and the Non-masking Property 96

To prove the monotonicity theorem in my framework, I first define an annotation interpre-

tation Imono𝑖 that captures how the global state evolves using a partial order following the steps

in Section 5.2. Formally, Definition 6.7 presents the definition of Imono𝑖 . The preorder 𝑠 ≼mono 𝑠
′

specifies that the global state can remain unchanged, or it can (only) change from Ok to Err(ℓ).

The interpretation of boundary terms, B𝑖+1, recursively applies Imono𝑖 to each contract in the

annotation using the satisfaction relation on contracts from Figure 6.6 in page 94 in Section 6.3.

Definition 6.7. The annotation interpretation Imono𝑖 :≡ (Smono, ≼mono, B𝑖, P𝑖) is defined as

Smono(𝑠) :≡ ⊤
𝑠 ≼mono 𝑠

′ :≡ (𝑠 = 𝑠′) ∨ (∃ℓ . 𝑠 = Ok ∧ 𝑠′ = Err(ℓ))
B0⟦𝐴, 𝑒 ⟧ :≡ ⊥
B𝑖+1⟦ [𝜅1, . . . , 𝜅𝑚], 𝑒 ⟧ :≡ (Imono𝑖 ⊨ 𝜅1) ∧ . . . ∧ (Imono𝑖 ⊨ 𝜅𝑚)
P𝑖⟦𝐴, 𝑒𝑚 ⟧ :≡ B𝑖⟦𝐴, 𝑒𝑚 ⟧

Next, to complete the proof using my framework, I prove that the annotation interpretation

Imono𝑖 is both monotonic and sound in Theorem 6.8 following the discussion in Section 5.3.

Theorem 6.8. The annotation interpretation Imono𝑖 is monotonic and sound for all 𝑖 ≥ 0.

Finally, by Theorem 6.8 above and Theorem 5.19 in page 76, there is a homomorphism from

Tind[𝒜ctc;𝒯c𝑖], the induced transition system of the annotation language 𝒯c𝑖 , to the transition

system Tsat[𝒜ctc;𝒯c𝑖 ;Imono𝑖], the one which is characterized by the annotation interpretation

Imono𝑖 . Since Imono𝑖 ensures that the global state is monotonic, it follows that the annotation

language𝒯c𝑖 changes the global state only monotonically as well.



97

Chapter 7

The Correct Blame of Contracts

In Findler and Felleisen [2002]’s calculus, contract violations come with blame to help program-

mers locate the source code containing the bug.1 In their work, each contract is assigned two

labels that separately identify the two parties of the contract. The intention is that each party

corresponds to a specific source file and, when a particular party is blamed, the bug to be fixed is

in the corresponding source file.
proxy( [𝜅], λ𝑥 .𝑥) (λ𝑦.𝑦) 5

where 𝜅 :≡
(︁
isEvenℓ1→/c isOddℓ2

)︁
→/c

(︁
isEvenℓ3→/c any/cℓ4

)︁
isEvenℓ :≡ flatℓ(𝑧.——elided——)
isOddℓ :≡ flatℓ(𝑧.——elided——)
any/cℓ :≡ flatℓ(𝑧. 1)
Figure 7.1: Blame of higher-order functions

For example, consider the program in Figure 7.1. Because there are no source files in the monitor

calculus, I use proxies to syntactically delimit the program into multiple regions where each

region contains the code that originates from a distinct source file. When there is a contract

violation, the error will contain one of the four labels. Findler and Felleisen [2002] assert that the

labels ℓ1 and ℓ4 indicate that the bug comes from the region inside the proxy. In a similar spirit,

contract violations with the labels ℓ2 or ℓ3 indicate that the bug is in the region outside the proxy.

From their assertion, Findler and Felleisen [2002] design an algorithm that assigns appropriate
1Lazarek et al. [2019] empirically evaluate the effectiveness of blame for debugging programs using the Rational

Programmer methodology. Unfortunately, they discover that blame does not significantly outperform stack traces.



Chapter 7. The Correct Blame of Contracts 98

Ok, proxy( [𝜅′], λ𝑥 .𝑥) (λ𝑦.𝑦) 5 −→
Ok,

(︁
B#[isEvenℓC→/c any/cℓS]

{︁
(λ𝑥 .𝑥)

(︁
B#[isEvenℓS→/c isOddℓC] { λ𝑦.𝑦 }

)︁ }︁)︁
5 −→∗

Ok,
(︁
B#[isEvenℓC→/c any/cℓS]

{︁
proxy

(︁
[isEvenℓS→/c isOddℓC], λ𝑦.𝑦

)︁ }︁)︁
5 −→

Ok, proxy
(︁
[isEvenℓS→/c isOddℓC, isEvenℓC→/c any/cℓS], λ𝑦.𝑦

)︁
5 −→

Ok, B#[isOddℓC, any/cℓS]
{︁
(λ𝑦.𝑦)

(︁
B#[isEvenℓC, isEvenℓS] { 5 }

)︁}︁
−→

Err(ℓC), B#[isOddℓC, any/cℓS] {(λ𝑦.𝑦) 5}
Figure 7.3: The reduction sequence of the program in Figure 7.2.

blame labels on contracts to point out the erroneous source file. More specifically, their algorithm

would assign the same label to the predicates that are currently labeled ℓ1 and ℓ4 in Figure 7.1.

Similarly, their algorithm also gives the same label to the predicates currently labeled ℓ2 and ℓ3,

ensuring that each region delimited by proxies or boundaries matches a unique label. Then, these

labels matching the regions can be thought as the names of the source files.
proxy( [𝜅′], λ𝑥 .𝑥) (λ𝑦.𝑦) 5

where 𝜅′ :≡
(︁
isEvenℓS→/c isOddℓC

)︁
→/c

(︁
isEvenℓC→/c any/cℓS

)︁
Figure 7.2: Refined labels on contracts

Figure 7.2 shows the same program that contains the contract with the refined assignment of the

labels. In the figure, the contract 𝜅′ is the same as the contract 𝜅 from Figure 7.1 except that the

labels ℓ1, . . . , ℓ4 are replaced by ℓS and ℓC. The label ℓS refers to the region inside the proxy whereas

the label ℓC refers to the other region in the figure. When there is a contract violation, the error

would be either Err(ℓS) or Err(ℓC), telling the user which part of the code needs to be fixed.

Let me take a close look at the program from Figure 7.2 to see why Findler and Felleisen [2002]

call the labels “blame”. When reducing the program in Figure 7.2, the number 5 fails the contract

isEvenℓC . Therefore, the monitor calculus reports the error Err(ℓC). To see why this is the case,

see Figure 7.3 that expands more on the details of the reduction. The program effectively checks

the number 5 against the two isEvenℓS predicates and then applies λ𝑦.𝑦 to 5. Afterwards, the

function application result is checked by isOddℓC and any/cℓS , respectively.

From the reduction sequence in Figure 7.3, changing the code in the region inside the proxy

cannot truly fix the bug since ℓC refers to the region outside the proxy. Instead, changing the code



Chapter 7. The Correct Blame of Contracts 99

in the proxy can only introduce another error or non-termination. Therefore, the labels assigned

by Findler and Felleisen [2002]’s algorithm correctly identify the problematic part of the code.
proxy( [𝜅′], λ𝑥 .𝑥) (λ𝑦.suc(𝑦)) 4

where 𝜅′ :≡
(︁
isEvenℓS→/c isOddℓC

)︁
→/c

(︁
isEvenℓC→/c any/cℓS

)︁
Figure 7.4: The fixed program

In Figure 7.1, changing 5 to an even number like 4 makes it passes the two contracts, isEvenℓC

and isEvenℓS . However, the entire program still fails the contract isOddℓC , indicating that there

is another bug in the region identified by ℓC. Now, consider the program in Figure 7.4 where, in

addition to changing the number to 4, the function λ𝑦.𝑦 is also replaced by λ𝑦.suc(𝑦). This time,

the error is finally fixed and the region represented by ℓC is no longer blamed.

To justify the intuition in Findler and Felleisen [2002]’s blame assignment algorithm, Di-

moulas et al. [2011, 2012] introduce the idea of ownership of run-time values. In their work,

each subexpression is assigned an owner that represents which region has “control” over how

the value can be used. When a region owns a run-time value, it can affect how the value is pro-

duced through the code in the corresponding region much like how changes of the program in

Figure 7.4 fixes the bug in Figure 7.2. Then, Dimoulas et al. [2011, 2012] show that when a region

is blamed in the contract violation, that region must be the owner of the value which fails the

contract. Therefore, since the owner of a value determines how the value is produced, contract

blame effectively points to the region that contains the buggy code.

In this chapter, I illustrate how to instantiate my framework to capture blame and ownership,

and how to develop a modular proof of their correctness. In my approach, blame and ownership

are formalized using two separate annotation languages: one is the language (𝒜bctc,𝒯b) that

characterizes the results of Findler and Felleisen [2002]’s blame assignment algorithm; the other

is the language (𝒜owner,𝒯owner) that formulates a notion of ownership inspired by Dimoulas

et al. [2011, 2012]’s theory. Then, I combine these two annotation languages to prove a version

of the blame correctness theorem [Dimoulas et al. 2011, 2012].



Chapter 7. The Correct Blame of Contracts 100

7.1 The Blame Annotation Language

In this section, I introduce the blame annotation language, (𝒜bctc,𝒯b), to encode Findler and

Felleisen [2002]’s blame assignment algorithm in my framework. When a contract is attached to

a value in Findler and Felleisen [2002]’s contract calculus, their algorithm couples the contract

with two labels that individually identify the party that produces the value and the party that

consumes it. The program from Figure 7.4 in page 99 is a concrete example of this assignment:

the label ℓS referring to the region inside the proxy is the provider party of the contracted function

(λ𝑥 .𝑥) whereas the label ℓC referring to the region outside the proxy is the consumer (i.e. the

region that contains the code · · · (λ𝑦.suc(𝑦)) 4).

To encode blame assignment, I extend the annotation language {(𝒜ctc,𝒯c𝑖)}𝑖≥0 for contracts

from Chapter 6 with blame objects. Each object is a record consisting of two labels that name

a positive party and a negative party. When a blame object is paired with a contract, these two

parties correspond to the producer and the consumer, respectively. As a natural constraint, the

labels of the blame objects shall match the output of Findler and Felleisen [2002]’s blame tracking

algorithm, assuming that the predicates in the contracts have a consistent assignment of labels.
proxy( [⟨𝑏, 𝜅′⟩], λ𝑥 .𝑥) (λ𝑦.𝑦) 5

where 𝑏 :≡ {pos = ℓS; neg = ℓC}
𝜅′ :≡

(︁
isEvenℓS→/c isOddℓC

)︁
→/c

(︁
isEvenℓC→/c any/cℓS

)︁
Figure 7.5: Contracts with blame objects

Figure 7.5 illustrates the blame object extension using the program from Figure 7.2 where the

contract on the proxy 𝜅′ is paired with the blame object 𝑏. In this example, the pos field of 𝑏

contains ℓS, the label of the positive party. Similarly, the neg field of 𝑏 contains ℓC, the label of the

negative party. From Figure 7.2, the contracts isEvenℓS and any/cℓS are labeled ℓS since failing these

contracts indicates that the bug is the positive party—the region named ℓS—andmutatis mutandis

for the contracts isOddℓC and isEvenℓC .

For the blame annotation language, when the labels on the predicates in a contract like 𝜅′ are

assigned by Findler and Felleisen [2002]’s algorithm, the corresponding blame object 𝑏 can be



Chapter 7. The Correct Blame of Contracts 101

𝒜bctc :≡ (𝐴bctc, 𝑠bctc)
𝐴bctc ::= [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩]

𝑠bctc ∈ Status ::= Ok | Err(ℓ)
𝑏 ::=

{︁
pos = ℓ𝑝 ; neg = ℓ𝑛

}︁
blameSwap(𝑏) :≡ {pos = 𝑏.neg; neg = 𝑏.pos}

Figure 7.6: The syntax of the blame annotation language,𝒜bctc.

seen as the witness of this fact. Later, I introduce the consistency judgement, 𝑏 ⊢ 𝜅′ consistent,

to formalize this idea in Figure 7.7. This intuition is further utilized to guide the design of the

transition steps of the blame annotation language, ensuring that the consistency is maintained

throughout the reduction.

Alternatively, blame objects can be used as the primary device for tracking the source of errors

when reporting contract violations, unlike the reliance on labeled predicates in Chapter 6. Then,

the transition steps of the blame annotation language would be defined in a way that propagates

the blame objects in accordance with how run-time values flow across each region delimited by

proxies and boundaries. This approach is conceptually closer to what Findler and Felleisen [2002]

and Dimoulas et al. [2011, 2012] have done in their work.

Now, let me present the formal definition of the blame annotation language,𝒜bctc. The syntax

of 𝒜bctc is given in Figure 7.6. An annotation of 𝒜bctc is a list of blame-contract pairs where a

blame is a record with a pos field and a neg field storing labels. The records are created using

the syntax,
{︁
pos = ℓ𝑝 ; neg = ℓ𝑛

}︁
, for any ℓ𝑝, ℓ𝑛 and accessed using the usual dot syntax. Both

the syntaxes of contracts and global states are the same as the 𝒜ctc annotation language; see

Figure 6.1 in page 85 for their full grammar.

To ensure that a blame object matches a contract and that a contract has a consistent assign-

ment of labels from Findler and Felleisen [2002]’s algorithm, I introduce the consistency judge-

ment, 𝑏 ⊢ 𝜅 consistent, in Figure 7.7. Most inference rules of this judgement directly follow the

syntax of contracts, but there are two important ones. For one, when proving that a blame object

𝑏 matches the label of a flat contract or, more formally, 𝑏 ⊢ flatℓ(𝑥 . 𝑒) consistent, the consistency



Chapter 7. The Correct Blame of Contracts 102

𝑏 ⊢ 𝜅 consistent
𝑏.pos = ℓ

𝑏 ⊢ flatℓ(𝑥 . 𝑒) consistent
blameSwap(𝑏) ⊢ 𝜅𝑎 consistent 𝑏 ⊢ 𝜅𝑟 consistent

𝑏 ⊢ (𝜅𝑎→/c𝜅𝑟 ) consistent

𝑏 ⊢ 𝑡 consistent 𝑏 ⊢ unit/c consistent
𝑏 ⊢ 𝜅1 consistent 𝑏 ⊢ 𝜅2 consistent

𝑏 ⊢ (𝜅1 ×/c𝜅2) consistent

𝑏 ⊢ 𝜅1 consistent 𝑏 ⊢ 𝜅2 consistent
𝑏 ⊢ (𝜅1 +/c𝜅2) consistent

𝑏 ⊢ 𝜅 consistent
𝑏 ⊢ (box/c𝜅) consistent

𝑏 ⊢ 𝜅 consistent
𝑏 ⊢ (𝜇/c 𝑡 .𝜅) consistent

Figure 7.7: Consistency of blame objects and the labels on contracts

judgement requires that the positive party of 𝑏 matches the label of the contract, i.e. 𝑏.pos = ℓ .

The reader may question why there are no rules that inspect the neg field. The answer is

in the other important rule, the function contract rule. To prove that a blame object 𝑏 matches

a function contract, i.e. 𝑏 ⊢ (𝜅𝑎→/c𝜅𝑟 ) consistent, the judgement checks the consistency of the

two sub-contracts, 𝜅𝑎 and 𝜅𝑟 . But, when checking the consistency of 𝜅𝑎 , the judgement swaps the

positive party and the negative party of 𝑏 through blameSwap(𝑏) from Figure 7.6. Put differently,

the role of provider and the role of consumer are reversed for function arguments.

Incidentally, the formulation of blame objects and the consistency judgement in this sec-

tion is closer to the implementation of higher-order contracts in the Racket programming lan-

guage [Felleisen et al. 2015, 2018] when compared to Findler and Felleisen [2002]’s contract cal-

culus or Dimoulas et al. [2011, 2012]’s CPCF. Of course, Racket’s blame object implementation is

muchmore sophisticated and includes other details such as the context information in blame error

messages for indicating the violated part of the failed contract. Nevertheless, the party-swapping

operation is identical to Racket’s implementation.

𝑏.pos = ℓS

𝑏 ⊢ isEvenℓS consistent
𝑏1.pos = ℓC

𝑏1 ⊢ isOddℓC consistent
𝑏1 ⊢

(︁
isEvenℓS→/c isOddℓC

)︁
consistent

𝑏1 .pos = ℓC

𝑏1 ⊢ isEvenℓC consistent
𝑏.pos = ℓS

𝑏 ⊢ any/cℓS consistent
𝑏 ⊢

(︁
isEvenℓC→/c any/cℓS

)︁
consistent

𝑏 ⊢
(︁ (︁
isEvenℓS→/c isOddℓC

)︁
→/c

(︁
isEvenℓC→/c any/cℓS

)︁ )︁
consistent

where 𝑏 :≡ {pos = ℓS; neg = ℓC}
𝑏1 :≡ blameSwap(𝑏) ≡ {pos = ℓC; neg = ℓS}

Figure 7.8: The consistency of 𝜅′ from Figure 7.2.



Chapter 7. The Correct Blame of Contracts 103

As a running example of the consistency judgement, Figure 7.8 displays a proof of the consistency

of the contract 𝜅′ from Figures 7.2 and 7.5. The blame object 𝑏 that proves the consistency of 𝜅′ is

the same one from Figure 7.5. In the proof, I let 𝑏′ be the blame object obtained by swapping the

two parties of 𝑏. As one would expect, the consistency of isOddℓC and isEvenℓC are proved by 𝑏′.

Having explained blame objects and the consistency of contracts, I shall return to the dynam-

ics of𝒜bctc. The transition steps of𝒜bctc, or𝒯b𝑖 for 𝑖 ≥ 0, are augmented from𝒯c𝑖 in Figure 6.4,

page 90 to account for the addition of blame objects to the annotations. Figure 7.9 lists the rules

of𝒯b𝑖+1 for 𝑖 ≥ 0 and𝒯b0 is the empty relation. The transition steps𝒯b𝑖 are stratified in the same

manner as how𝒯c𝑖 does to allow arbitrary predicates to be used as contracts.

The blame objects do not take part in the enforcement of the contracts. In the [R-Cross-Nat]

rule, the same checkCtcs
𝒯b𝑖 function from Figure 6.5 in page 92 is used to check the contracts

𝜅1, . . . , 𝜅𝑚 . This time, the transition steps 𝒯b𝑖 instead of 𝒯c𝑖 are used to evaluate possibly nested

contracts as highlighted in the subscript of checkCtcs. It is necessary to evaluate nested contracts

with𝒯b𝑖 since their annotations also would contain blame objects. Otherwise, the [R-Cross-Nat]

rule works in the same way as𝒯c𝑖 from Figure 6.4 in page 90.

As shown in Figure 7.9, the rules of 𝒯b𝑖+1 for 𝑖 ≥ 0 propagate the blame objects together

with the corresponding contracts. For example, in the [R-Cross-Cons] rule, the blame object 𝑏𝑖

is paired with the contract 𝜅𝑖 ×/c𝜅′𝑖 for 1 ≤ 𝑖 ≤ 𝑚 on the left-hand side. Thus, 𝑏𝑖 is paired with

𝜅𝑖 and 𝜅′𝑖 , respectively, on the right-hand side. Similarly, other rules except the [R-Proxy-β] rule

propagate the blame objects following the same pattern.

In the [R-Proxy-β] rule, additional care is neededwhen propagating the blame objects. Specif-

ically, the role of provider and the role of consumer are reversed for function arguments. Hence,

when propagating the contracts and the blame objects to the boundary around the argument (i.e.

B#𝐴bctc2 {𝑣}), not only the order of the contracts has to be reversed, but the blame objects also

have to be flipped using blameSwap(𝑏𝑖) to match the reversal of the roles.



Chapter 7. The Correct Blame of Contracts 104

[R-Cross-Unit] Ok,B#[⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩] { () } −→m Ok, ()

[R-Cross-Nat] Ok,B#[⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩] { 𝑛 } −→m 𝑠′, 𝑛

where (Ok, 𝑠′) ∈ checkCtcs
𝒯b𝑖 , get, put ( [𝜅1, . . . , 𝜅𝑚], 𝑛)

[R-Cross-Cons] Ok,B#[⟨𝑏1, (𝜅1 ×/c𝜅′1)⟩, . . . , ⟨𝑏𝑚, (𝜅𝑚 ×/c𝜅′𝑚)⟩] { ⟨𝑣1, 𝑣2⟩ } −→m

Ok, ⟨B#[⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩] {𝑣1} , B#[⟨𝑏1, 𝜅′1⟩, . . . , ⟨𝑏𝑚, 𝜅′𝑚⟩] {𝑣2} ⟩

[R-Cross-Inl] Ok,B#[⟨𝑏1, (𝜅1 +/c𝜅′1)⟩, . . . , ⟨𝑏𝑚, (𝜅𝑚 +/c𝜅′𝑚)⟩] { inl(𝑣) } −→m

Ok, inl(B#[⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩] {𝑣})

[R-Cross-Inr] Ok,B#[⟨𝑏1, (𝜅1 +/c𝜅′1)⟩, . . . , ⟨𝑏𝑚, (𝜅𝑚 +/c𝜅′𝑚)⟩] { inr(𝑣) } −→m

Ok, inr(B#[⟨𝑏1, 𝜅′1⟩, . . . , ⟨𝑏𝑚, 𝜅′𝑚⟩] {𝑣})

[R-Cross-Roll] Ok,B#[⟨𝑏1, (𝜇/c 𝑡1.𝜅1)⟩, . . . , ⟨𝑏𝑚, (𝜇/c 𝑡𝑚 .𝜅𝑚)⟩] { roll𝜏 (𝑣) } −→m

Ok, roll𝜏 (B#𝐴bctc {𝑣})
where 𝐴bctc :≡ [⟨𝑏1, 𝜅1 [(𝜇/c 𝑡1.𝜅1) / 𝑡1]⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚 [(𝜇/c 𝑡𝑚 .𝜅𝑚) / 𝑡𝑚]⟩]

[R-Cross-Box] Ok,B#[⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩] { box(𝑣) } −→m

Ok, proxy( [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩], box(𝑣))

[R-Cross-Lam] Ok,B#[⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩] { λ𝑥 .𝑒 } −→m

Ok, proxy( [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩], λ𝑥 .𝑒)

[R-Proxy-Unbox] Ok, unbox(proxy( [⟨𝑏1, box/c𝜅1⟩, . . . , ⟨𝑏𝑚, box/c𝜅𝑚⟩], box(𝑒))) −→m

Ok,B#[⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩] { unbox(box(𝑒)) }

[R-Proxy-β] Ok, proxy
(︁
[⟨𝑏1, (𝜅1→/c𝜅′1)⟩, . . . , ⟨𝑏𝑚, (𝜅𝑚→/c𝜅′𝑚)⟩], λ𝑥 .𝑒

)︁
𝑣 −→m

Ok,B#𝐴bctc1 { (λ𝑥 .𝑒) (B#𝐴bctc2 {𝑣}) }
where 𝐴bctc1 :≡ [⟨𝑏1, 𝜅′1⟩, . . . , ⟨𝑏𝑚, 𝜅′𝑚⟩]

𝐴bctc2 :≡ [⟨blameSwap(𝑏𝑚), 𝜅𝑚⟩, . . . , ⟨blameSwap(𝑏1), 𝜅1⟩]

[R-Merge-Box] Ok,B#[⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑙 , 𝜅𝑙⟩]
{︁
proxy

(︁
[⟨𝑏′1, 𝜅′1⟩, . . . , ⟨𝑏′𝑚, 𝜅′𝑚⟩], box(𝑒)

)︁ }︁
−→m

Ok, proxy
(︁
[⟨𝑏′1, 𝜅′1⟩, . . . , ⟨𝑏′𝑚, 𝜅′𝑚⟩, ⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑙 , 𝜅𝑙⟩], box(𝑒)

)︁
[R-Merge-Lam] Ok,B#[⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑙 , 𝜅𝑙⟩]

{︁
proxy

(︁
[⟨𝑏′1, 𝜅′1⟩, . . . , ⟨𝑏′𝑚, 𝜅′𝑚⟩], λ𝑥 .𝑒

)︁ }︁
−→m

Ok, proxy
(︁
[⟨𝑏′1, 𝜅′1⟩, . . . , ⟨𝑏′𝑚, 𝜅′𝑚⟩, ⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑙 , 𝜅𝑙⟩], λ𝑥 .𝑒

)︁
This figure defines the inductive case of the transition steps 𝒯b𝑖+1 of 𝒜bctc for 𝑖 ≥ 0. The base
case𝒯b0 is the empty relation.

Figure 7.9: The transition relation of𝒜bctc.



Chapter 7. The Correct Blame of Contracts 105

7.2 Blame Consistency

In this section, I prove that the transition steps 𝒯b𝑖+1 from Figure 7.9, page 104 preserve the

consistency judgement for all 𝑖 ≥ 0. The implications of this property are two folds. First, it

justifies how𝒯b𝑖+1 distributes the blame objects on top of the original, unchanged rules for prop-

agating contracts. This includes the exchange of the positive party and the negative party in

the [R-Proxy-β] rule. Second, the preservation property conversely justify the definition of the

consistency judgement itself. That is, contract violations reported using the static assignment of

labels via the consistency judgement coincide with the outputs of Findler and Felleisen [2002]’s

blame tracking algorithm. This is especially important since the judgement is inspired by, but

not identical to, Findler and Felleisen [2002]’s algorithm.

Both implications are reenforced when I prove the single-owner property in Section 7.4 and

connect it to blame objects in Section 7.6. The separate justification follows from the fact that the

ownership annotation language is designed to directly track the name of each region delimited

by proxies and boundaries, independent of blame and contracts. Hence, that blame and contracts

are compatible with ownership better certifies their correctness.

The preservation of the consistency of recursive contracts, however, is rather subtle. Recur-

sive contracts that describe first-order types indeed preserve the consistency judgement, but this

is not always the case when higher-order functions are involved. This subtlety can be more easily

recognized by considering how contracted values flow between boundaries.

To be more concrete, when a value 𝑣 of a first-order recursive type crosses a boundary, all

values that 𝑣 contains also cross the boundary along the same direction. To the contrary, when a

higher-order function 𝑓 crosses a boundary, values (e.g. arguments of function applications) can

flow backwards into the boundary. As a consequence, recursive contracts that involve higher-

order functions do not necessarily blame a fixed owner.

To warm up the discussion, consider the contract EvenList that describes even-number lists.

EvenList :≡ 𝜇/c 𝑡 .unit/c+/c
(︁
isEvenℓ ×/c 𝑡

)︁



Chapter 7. The Correct Blame of Contracts 106

When a list protected by EvenList crosses a boundary, all numbers in it also cross the same bound-

ary in the same direction. Consequently, a single label ℓ on the predicate isEven can correctly

designate the owner of the numbers to be blamed. This observation can be made precise by

checking that unrolling EvenList gives unit/c+/c
(︁
isEvenℓ ×/c EvenList

)︁
in which the occurrence of

EvenList has the same owner as isEvenℓ .

In this example, if isEvenℓ and 𝑡 in EvenList were not owned by the same region, consistency

would break after unrolling EvenList. Unfortunately, 𝑡 could actually occur in a contravariant

position in the presence of function contracts. This suggests a direction for constructing contracts

and programs that fail to preserve the consistency judgement. To see a concrete witness of the

contravariance issue, consider the program in Figure 7.10.
unroll(B#[⟨𝑏, RecFn⟩]

{︁
roll𝜏𝑡 (𝑓 )

}︁
) one

where RecFn :≡ 𝜇/c 𝑡 .(𝑡→/c isEvenℓS)
𝑏 :≡ {pos = ℓS; neg = ℓC}
𝜏𝑡 :≡ 𝑡 → nat
𝑓 :≡ λℎ. unroll(ℎ)

(︁
roll𝜏𝑡 (λ_.0)

)︁
one :≡ roll𝜏𝑡 (λ𝑔.1)

Figure 7.10: An example recursive contract that blames the wrong party.

In Figure 7.10, the program is morally the same as (B#[⟨𝑏, RecFn⟩] { λℎ. ℎ (λ_.0) }) (λ𝑔.1) ex-

cept that the contracted function λℎ. ℎ (λ_.0) is encapsulated in the recursive type 𝜇𝑡 .(𝑡 → nat)

and hence there are extra roll/unroll wrappers. The recursive contract RecFn on λℎ. ℎ (λ_.0) un-

rolls to RecFn→/c isEvenℓS , thus it asserts that both λℎ. ℎ (λ_.0) and its argument λ𝑔.1 should

produce even numbers. However, the actual argument λ𝑔.1 violates this contract.

Intuitively, when λ𝑔.1 breaks the contract, the blame should point to the region containing

it to highlight the problematic code. The blame object 𝑏 suggests that contract violations from

λ𝑔.1 should blame ℓC. However, the contract on λ𝑔.1 is obtained by unrolling RecFn and taking

the domain contract which is again RecFn itself. The blame is thus wrong and, as a corollary, we

have found an example where the supposedly consistent contract RecFn unrolls to an inconsistent

contract RecFn→/c isEvenℓS .

The actual problem of RecFn is that all of its unfolding use the label ℓS. However, when un-



Chapter 7. The Correct Blame of Contracts 107

folding an odd number of times, the label ℓC should have been used instead. This is inevitable,

nonetheless, since there is only one available label on the predicate isEvenℓS in RecFn. It is there-

fore not possible to statically assign labels for RecFn while respecting blame correctness.

Ok, unroll(B#[⟨𝑏, RecFn⟩]
{︁
roll𝜏𝑡 (𝑓 )

}︁
) one −→∗

Ok, proxy
(︁
[⟨𝑏, RecFn→/c isEvenℓS⟩], 𝑓

)︁
one −→

Ok, B#[⟨𝑏, isEvenℓS⟩] { 𝑓 (B#[⟨𝑏1, RecFn⟩] { one }) } −→∗

Ok, B#[⟨𝑏, isEvenℓS⟩]
{︁
𝑓

(︁
proxy

(︁
[⟨𝑏1, RecFn→/c isEvenℓS⟩], λ𝑔.1

)︁ )︁ }︁
−→

Ok, B#[⟨𝑏, isEvenℓS⟩]
{︁
proxy

(︁
[⟨𝑏1, RecFn→/c isEvenℓS⟩], λ𝑔.1

)︁ (︁
roll𝜏𝑡 (λ_.0)

)︁ }︁
−→

Ok, B#[⟨𝑏, isEvenℓS⟩]
{︁
B#[⟨𝑏1, isEvenℓS⟩]

{︁
(λ𝑔.1)

(︁
B#[⟨𝑏, RecFn⟩]

{︁
roll𝜏𝑡 (λ_.0)

}︁)︁ }︁ }︁
−→∗

Err(ℓS), B#[⟨𝑏, isEvenℓS⟩] { 1 }
where 𝑏 :≡ {pos = ℓS; neg = ℓC} and 𝑏1 :≡ blameSwap(𝑏).

Figure 7.11: The reduction sequence of the program from Figure 7.10.

Figure 7.11 displays the detailed reduction sequence. In the figure, the reduction steps unroll

RecFn on 𝑓 , giving the contract RecFn→/c isEvenℓS . Unfortunately, invoking this function requires

the argument, one, to satisfy the contract RecFn. This means that when one violates the contract

as the subsequent reduction steps show, the party ℓS be blamed. However, ℓS is the callee of this

function application and yet one comes from the caller, ℓC. In other words, the reduction sequence

in Figure 7.11 blames the wrong party.

To restore blame correctness, I impose an additional restriction on recursive contracts to avoid

this situation. Figure 7.12 defines the covariant judgement, 𝛿 ⊢𝑝 𝜅 signed, that formally restricts

the shape of recursive contracts. When 𝛿 ⊢𝑝 𝜅 signed holds, all variables bound by recursive

contracts only occur in covariant position with respect to their binders. Contracts like RecFn are

thus excluded from my formalization of contracts.

Contracts that satisfy the covariance judgement preserve the consistency judgement during

reductions. Therefore, in the proof of the preservation, the covariance judgement is added as

another invariant on top of the consistency judgement. I shall formally state and prove this

property in Proposition 7.8.

The metavariable 𝑝 , or the sign (of a contract), can be either + or −. If the sign of a con-

tract is positive (+), it means that 𝜅 resides in a covariant position. Otherwise, it means that 𝜅



Chapter 7. The Correct Blame of Contracts 108

𝑝 ::= + | −

(−𝑝) :≡
{︃
−, if 𝑝 = +
+, if 𝑝 = −

signedBlame(+, 𝑏) :≡𝑏
signedBlame(−, 𝑏) :≡ blameSwap(𝑏)

𝛿 :≡ {𝑡1 : 𝑝1, . . . , 𝑡𝑚 : 𝑝𝑚} 𝛿 ⊢𝑝 𝜅 signed

𝛿 (𝑡) = 𝑝

𝛿 ⊢𝑝 𝑡 signed
𝛿, 𝑡 : 𝑝 ⊢𝑝 𝜅 signed
𝛿 ⊢𝑝 (𝜇/c 𝑡 .𝜅) signed

𝛿 ⊢−𝑝 𝜅𝑎 signed 𝛿 ⊢𝑝 𝜅𝑟 signed
𝛿 ⊢𝑝 (𝜅𝑎→/c𝜅𝑟 ) signed

𝛿 ⊢𝑝 unit/c signed 𝛿 ⊢𝑝 flatℓ(𝑥 . 𝑒) signed
𝛿 ⊢𝑝 𝜅1 signed 𝛿 ⊢𝑝 𝜅2 signed

𝛿 ⊢𝑝 (𝜅1 ×/c𝜅2) signed

𝛿 ⊢𝑝 𝜅1 signed 𝛿 ⊢𝑝 𝜅2 signed
𝛿 ⊢𝑝 (𝜅1 +/c𝜅2) signed

𝛿 ⊢𝑝 𝜅 signed
𝛿 ⊢𝑝 (box/c𝜅) signed

Figure 7.12: Covariance of recursive contracts

resides in a contravariant position. The context 𝛿 tracks the sign of each bound variable. The

signedBlame(𝑝, 𝑏) metafunction flips the given blame object 𝑏 iff 𝑝 is negative, just like how a

blame object should be flipped when it is used in the domain of a function contract.

In the covariance judgement, 𝛿 ⊢𝑝 (𝜇/c 𝑡 .𝜅) signed holds when the judgement holds for the

contract 𝜅 under the extended context 𝛿, 𝑡 : 𝑝 . This context records that 𝑡 is introduced under the

sign 𝑝 . To prove 𝛿 ⊢𝑝 𝑡 signed, the covariance judgement looks up the context 𝛿 to make sure that

𝑡 is used in a position that has the same sign as its binder. Finally, to prove 𝛿 ⊢𝑝 (𝜅𝑎→/c𝜅𝑟 ) signed,

the covariant judgement checks the two sub-contracts in the premises. Most importantly, the first

premise, 𝛿 ⊢−𝑝 𝜅𝑎 signed, negates 𝑝 to indicate that 𝜅𝑎 is covariant with respect to the contract

𝜅𝑎→/c𝜅𝑟 .

The covariance judgement possesses the conventional Substitution property as proved in

Lemmas 7.2 and 7.4 and Proposition 7.3. Most theorem statements are standard except that the

renaming of the variables in Lemma 7.2 must preserve the signs as required by the condition

𝑝𝑖 = 𝑝′𝑎𝑖 . Similarly, in Lemma 7.4 the substituted contracts 𝜅𝑖 must satisfy the covariant judge-

ment under the respective sign (𝑡𝑖 : 𝑝𝑖) ∈ 𝛿 .



Chapter 7. The Correct Blame of Contracts 109

Proposition 7.1. If 𝛿 ⊢𝑝 𝜅 signed then −𝛿 ⊢−𝑝 𝜅 signed where (−𝛿) (𝑥) :≡ −𝛿 (𝑥).

Lemma 7.2 (Renaming). Let 𝛿 :≡ {𝑡1 : 𝑝1, . . . , 𝑡𝑛 : 𝑝𝑛} and 𝛿′ :≡ {𝑡 ′1 : 𝑝′1, . . . , 𝑡 ′𝑚 : 𝑝′𝑚} be given.

Assume that there is a sequence 1 ≤ 𝑎𝑖 ≤ 𝑚 such that 𝑝𝑖 = 𝑝′𝑎𝑖 for 𝑖 = 1 . . . 𝑛. I 𝛿 ⊢𝑝 𝜅 signed then

𝛿′ ⊢𝑝 𝜅
[︁
𝑡 ′𝑎1, . . . , 𝑡

′
𝑎𝑛
/ 𝑡1, . . . , 𝑡𝑛

]︁
signed.

Proposition 7.3. Let 𝛿′ ⊢𝑝𝑖 𝜅𝑖 signed for 𝑖 = 1 . . . 𝑛 be given. Then, for any fresh variable 𝑡0 : 𝑝0,

there is a sequence 𝛿′′ ⊢𝑝𝑖 𝜅𝑖 signed for 𝑖 = 0 . . . 𝑛 where 𝛿′′ :≡𝛿, 𝑡0 : 𝑝0 and 𝜅0 :≡ 𝑡0.

Lemma 7.4 (Substitution). Let 𝛿 :≡ {𝑡1 : 𝑝1, . . . , 𝑡𝑛 : 𝑝𝑛} be given. If 𝛿′ ⊢𝑝𝑖 𝜅𝑖 signed for 1 ≤ 𝑖 ≤ 𝑛

and 𝛿 ⊢𝑝 𝜅 signed then 𝛿′ ⊢𝑝 𝜅 [𝜅1, . . . , 𝜅𝑛 / 𝑡1, . . . , 𝑡𝑛] signed.

The covariance judgement 𝛿 ⊢𝑝 𝜅 signed enables me to prove the Substitution lemma through

a series of auxiliary results, Lemmas 7.5 and 7.7 and Proposition 7.6. In Lemma 7.7, all contracts

𝜅 and 𝜅1, . . . , 𝜅𝑛 shall be covariant. Moreover, the consistency of the contracts 𝜅1, . . . , 𝜅𝑛 shall be

proven using the appropriately swapped blame, signedBlame(𝑝𝑖, 𝑏) for 𝑖 = 1 . . . 𝑛, in accordance

with the sign of the substituted variables. With these additional conditions, one can prove that

the result of the substitution stays consistent.

Lemma 7.5 (Renaming). Let Δ :≡ {𝑡1, . . . , 𝑡𝑛} and Δ′ :≡ {𝑡 ′1, . . . , 𝑡 ′𝑚} be given. Assume that there

is a sequence 1 ≤ 𝑎𝑖 ≤ 𝑚 for 𝑖 = 1 . . . 𝑛. If 𝑏 ⊢ 𝜅 consistent where Δ ⊢c 𝜅 : Ctc𝜏 then 𝑏 ⊢

𝜅
[︁
𝑡 ′𝑎1, . . . , 𝑡

′
𝑎𝑛
/ 𝑡1, . . . , 𝑡𝑛

]︁
consistent.

Proposition 7.6. Let signedBlame(𝑝𝑖, 𝑏) ⊢ 𝜅𝑖 consistent for 𝑖 = 1 . . . 𝑛 be given. For any fresh

variable 𝑡0 : 𝑝0, there is a sequence signedBlame(𝑝𝑖, 𝑏) ⊢ 𝜅𝑖 consistent for 𝑖 = 0 . . . 𝑛 where 𝜅0 :≡ 𝑡0.

Lemma 7.7 (Substitution). Let 𝛿 :≡ {𝑡1 : 𝑝1, . . . , 𝑡𝑛 : 𝑝𝑛} be given. Assume that 𝛿 ⊢𝑝 𝜅 signed and

signedBlame(𝑝, 𝑏) ⊢ 𝜅 consistent. If 𝛿′ ⊢𝑝𝑖 𝜅𝑖 signed and signedBlame(𝑝𝑖, 𝑏) ⊢ 𝜅𝑖 consistent for

𝑖 = 1 . . . 𝑛 then signedBlame(𝑝, 𝑏) ⊢ 𝜅 [𝜅1, . . . , 𝜅𝑛 / 𝑡1, . . . , 𝑡𝑛] consistent.

Having proved the Substitution lemma, I can now show that consistent recursive contracts

stay consistent during evaluation. Since the core is the substitution of recursive contracts as

the [R-Cross-Roll] rule from Figure 7.9 in page 104 defines, Proposition 7.8 states that when



Chapter 7. The Correct Blame of Contracts 110

unrolling a consistent recursive contract 𝜇/c 𝑡 .𝜅, the result 𝜅 [(𝜇/c 𝑡 .𝜅) / 𝑡] is still consistent as long

as the variable 𝑡 occurs only in covariant positions in 𝜅, i.e. 𝛿 ⊢𝑝 𝜅 signed holds.

Proposition 7.8. If 𝛿 ⊢𝑝 𝜅 signed and signedBlame(𝑝, 𝑏) ⊢ (𝜇/c 𝑡 .𝜅) consistent both hold then we

have signedBlame(𝑝, 𝑏) ⊢ (𝜅 [(𝜇/c 𝑡 .𝜅) / 𝑡]) consistent.

The proof of the preservation starts with Definition 7.9 which defines an annotation interpre-

tationmapping boundary terms and proxy terms to the covariant judgements and the consistency

judgements. Theorem 7.10 further shows that the annotation interpretation Icon𝑖 is sound. In the

framework of the monitor calculus, it then follows from Theorem 5.19 that the annotation lan-

guage 𝒜bctc preserves consistency.

Definition 7.9. The annotation interpretation Icon𝑖 :≡ (Scon, ≼con, B𝑖, P𝑖) is defined as

Scon(𝑠) :≡ ⊤
𝑠 ≼con 𝑠

′ :≡ ⊤
B0⟦𝐴bctc , 𝑒 ⟧ :≡ ⊥
B𝑖+1⟦ [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩], 𝑒 ⟧ :≡

(⊢+ 𝜅1 signed) ∧ . . . ∧ (⊢+ 𝜅𝑚 signed) ∧
(𝑏1 ⊢ 𝜅1 consistent) ∧ · · · ∧ (𝑏𝑚 ⊢ 𝜅𝑚 consistent) ∧
(Icon𝑖 ⊨ 𝜅1) ∧ . . . ∧ (Icon𝑖 ⊨ 𝜅𝑚)

P𝑖⟦𝐴bctc , 𝑒
𝑚 ⟧ :≡ B𝑖⟦𝐴bctc , 𝑒

𝑚 ⟧

For 𝑖 ≥ 0, the B𝑖+1⟦𝐴bctc , 𝑒 ⟧ function maps boundaries to the assertion that the annotated con-

tracts all satisfy the covariant judgement and that their labels are all consistent with respect to the

blame objects, giving the preservation of the consistency judgement and its prerequisites a pre-

cise formulation. Formally, for any annotation 𝐴bctc :≡ [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩], the B𝑖+1⟦𝐴bctc , 𝑒 ⟧

function asserts that ⊢+ 𝜅 𝑗 signed holds for all 1 ≤ 𝑗 ≤ 𝑛, i.e. all 𝜅 𝑗 only uses recursive contracts

(if any) covariantly, and that each blame object 𝑏𝑖 proves 𝑏𝑖 ⊢ 𝜅 𝑗 consistent for each 1 ≤ 𝑗 ≤ 𝑛.

Here, the + sign in ⊢+ 𝜅 𝑗 signed does not matter since Proposition 7.1 guarantees that ⊢+ 𝜅 𝑗 signed

holds if and only if ⊢− 𝜅 𝑗 signed holds.

In addition to the covariant judgement and the consistency judgement, the B𝑖+1⟦𝐴bctc , 𝑒 ⟧

function requires that for all 1 ≤ 𝑗 ≤ 𝑛, the contract 𝜅 𝑗 recursively satisfies the interpretation



Chapter 7. The Correct Blame of Contracts 111

Icon𝑖 :≡ (Scon, ≼con, B𝑖, P𝑖) through the satisfaction relation for contracts, Icon𝑖 ⊨ 𝜅 𝑗 , from Sec-

tion 6.3. This ensures that other contracts nested in the flat predicates inside 𝜅 𝑗 also satisfy the

covariant and the consistency judgements.

Theorem 7.10. The annotation interpretation Icon𝑖 is monotonic and sound for all 𝑖 ≥ 0.

Proof Idea. Recall from the definition of Sound Interpretation in page 75 that the soundness proof

of Icon𝑖+1 essentially means proving that Icon𝑖+1 ⊨ 𝑒1 implies Icon𝑖+1 ⊨ 𝑒2 whenever 𝒯bctc𝑖+1 ⊢

𝑠1, 𝑒1 −→m 𝑠2, 𝑒2. In the case of the [R-Cross-Roll] rule, one needs to show that

B𝑖+1⟦ [⟨𝑏1, (𝜇/c 𝑡1.𝜅1)⟩, . . . , ⟨𝑏𝑚, (𝜇/c 𝑡𝑚 .𝜅𝑚)⟩], roll𝜏 (𝑣) ⟧

implies

B𝑖+1⟦ [⟨𝑏1, 𝜅1 [(𝜇/c 𝑡1.𝜅1) / 𝑡1]⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚 [(𝜇/c 𝑡𝑚 .𝜅𝑚) / 𝑡𝑚]⟩], 𝑣 ⟧,

but this can be easily established using Proposition 7.8. □

7.3 The Ownership Annotation Language

The correctness criteria of blame can be further refined through Dimoulas et al. [2011, 2012]’s

theory of ownership. Their theory annotates expressions with owners to help track the parties

that actually have control over the run-time value. Then, Dimoulas et al. [2011, 2012] study

whether a contract calculus always blame a party that owns the value failing the contract.

In this section, I take inspiration from their theory and design the ownership annotation

language, (𝒜owner,𝒯owner) The 𝒜owner language stands by itself and is orthogonal to contracts

and blame from Section 7.1; it formalizes a notion of ownership in the monitor calculus using

annotations. Specifically, 𝒜owner assigns labels to regions delimited by proxies and boundaries

where the term in each distinct region serves as the source code that originates from a separate

file. In effect, 𝒜owner utilizes the design of proxies and boundaries to encode a representation of

“source files” in the syntax.

In Section 7.4, I investigate the correctness of the 𝒜owner language by showing that correct



Chapter 7. The Correct Blame of Contracts 112

𝒜owner :≡ (𝐴own, 𝑠own)
𝐴own ::= ⟨ℓ𝑛, ℓ𝑝⟩
𝑠own ::= ()

ℓ𝑛, ℓ𝑝 ∈ Label

Figure 7.13: The syntax of the ownership annotation language.

annotations can be interpreted as owners of delimited regions and that the transition steps of

𝒜owner preserve correct annotations. Later, in Section 7.6, I combine the𝒜owner language in this

section with blame objects from the𝒜bctc language in Section 7.1 to prove a version of the Blame

Correctness theorem [Dimoulas et al. 2011, 2012] using my framework.

Figure 7.13 shows the syntax of the ownership annotation language. In this language, the

global state is just unit (()) and the annotations are pairs of labels. When a pair ⟨ℓ𝑛, ℓ𝑝⟩ is annotated

on a proxy, it means that the owner of the region outside the proxy is ℓ𝑛 and the owner of the

region inside the proxy is ℓ𝑝 . In other words, the labels in the pair designate the owners of the

two regions delimited by the proxy. Similarly, when a pair of labels is annotated on a boundary,

it names the two regions delimited by the boundary. Taking the program from Figure 7.2 in page

98 as an example, its ownership annotation is ⟨ℓC, ℓS⟩ since the region outside the proxy is named

ℓC whereas the region inside the proxy is named ℓS:

proxy(⟨ℓC, ℓS⟩, λ𝑥 .𝑥) (λ𝑦.𝑦) 5

From this example, it can be seen that the formulation of ownership in 𝒜owner is a little dif-

ferent from Dimoulas et al. [2011, 2012]’s presentation. In 𝒜owner, the labels of the owners are

represented using annotations, and an owner must include an entire piece of regions delimited

by proxies and boundaries. To the contrary, Dimoulas et al. [2011, 2012]’s CPCF has a separate

construct, |𝑒 |ℓ , to specify the owner of an arbitrary expression. Their construct is more flexible

and can give any sub-expression an owner whereas𝒜owner only tracks the owner of each region.
(), proxy(⟨ℓC, ℓS⟩, λ𝑥 .𝑥) (λ𝑦.𝑦) 5 −→
(), (B#⟨ℓC, ℓS⟩ { (λ𝑥 .𝑥) (B#⟨ℓS, ℓC⟩ { λ𝑦.𝑦 }) }) 5 −→∗

(), (B#⟨ℓC, ℓS⟩ { proxy(⟨ℓS, ℓC⟩, λ𝑦.𝑦) }) 5 −→
(), proxy(⟨ℓC, ℓC⟩, λ𝑦.𝑦) 5 −→∗ (), 5

Figure 7.14: The reduction sequence of the program adapted from Figure 7.2.



Chapter 7. The Correct Blame of Contracts 113

To give a taste of how ownership annotations work in 𝒜owner, Figure 7.14 depicts the reduction

sequence of the program from Figure 7.2 where its annotation is appropriately adapted to owner-

ship labels. After one step, λ𝑦.𝑦 flows through the ⟨ℓC, ℓS⟩ boundary and gets protected by another

boundary to separate it from the enclosing function application. Thus, the new ownership labels

on the inner boundary is ⟨ℓS, ℓC⟩ since λ𝑦.𝑦 inside the inner boundary originates from the region

owned by ℓC and λ𝑥 .𝑥 next to the inner boundary belongs to the region owned by ℓS.

The second line in Figure 7.14 suggests how to read off the annotations in𝒜owner to recognize

the owner of each region. Specifically, the labels ⟨ℓC, ℓS⟩ on the outer boundary indicates that the

outermost region is named ℓC and the region between the two boundaries is named ℓS. Similarly,

the labels ⟨ℓS, ℓC⟩ on the inner boundary indicates that the innermost region, one which contains

λ𝑦.𝑦, is owned by ℓC. After coloring the region named ℓC in brown and the region named ℓS in

blue, the program looks like:

(B#⟨ℓC, ℓS⟩ { (λ𝑥 .𝑥) (B#⟨ℓS, ℓC⟩ { λ𝑦.𝑦 }) }) 5

For a program to have a sensible designation of owners, the labels on nested proxies and nested

boundaries must match the labels annotated on their enclosing context. In the preceding example,

the outer boundary has the annotation ⟨ℓC, ℓS⟩ which designates ℓS as the owner of the middle

region that contains λ𝑥 .𝑥 . The inner boundary also designates ℓS as the owner of the same region

with the annotation ⟨ℓS, ℓC⟩. Thus, these annotations give a consistent designation of owners.

The colorings only exist when nested proxies and boundaries have matching labels. If, to the

contrary, the labels on the enclosing context of λ𝑥 .𝑥 are not the same as the labels on the nested

proxies or boundaries, there is no way to read off the owner that controls λ𝑥 .𝑥 from the labels.

For example, if the labels on the innermost boundary in the preceding program is ⟨ℓP, ℓQ⟩

instead, both ℓS from the enclosing context and ℓP from the inner boundary would be the owner

of λ𝑥 .𝑥 , conflicting with the requirement that one region has exactly one owner. The following

program more concretely colors the problematic labels and the region they identified in red:

(︁
B#⟨ℓC, ℓS⟩

{︁
(λ𝑥 .𝑥)

(︁
B#⟨ℓP, ℓQ⟩ { λ𝑦.𝑦 }

)︁ }︁)︁
5



Chapter 7. The Correct Blame of Contracts 114

The consistent designation of owners is the manifestation of Dimoulas et al. [2011, 2012]’s

single-owner property in my framework. The reduction rules of 𝒜owner are designed using this

connection between the ownership labels and the owners of the delimited regions to ensure that

sub-expressions owned by a region continue to be owned by the same region during reductions.

To complete the introduction to the ownership annotation language, I shall go over 𝒯owner

from Figure 7.15, the transition steps of 𝒜owner, to explain how ownership labels propagate in

the example from Figure 7.14. The formal rules of 𝒯owner govern how the ownership labels are

maintained when naming the new regions that might appear when the reduction step creates

new boundaries or proxies.

[R-Cross-Unit] (),B#⟨ℓ𝑛, ℓ𝑝⟩ { () } −→m (), ()

[R-Cross-Nat] (),B#⟨ℓ𝑛, ℓ𝑝⟩ { 𝑛 } −→m (), 𝑛

[R-Cross-Cons] (),B#⟨ℓ𝑛, ℓ𝑝⟩ { ⟨𝑣1, 𝑣2⟩ } −→m (), ⟨B#⟨ℓ𝑛, ℓ𝑝⟩ {𝑣1} , B#⟨ℓ𝑛, ℓ𝑝⟩ {𝑣2} ⟩

[R-Cross-Inl] (),B#⟨ℓ𝑛, ℓ𝑝⟩ { inl(𝑣) } −→m (), inl(B#⟨ℓ𝑛, ℓ𝑝⟩ {𝑣})

[R-Cross-Inr] (),B#⟨ℓ𝑛, ℓ𝑝⟩ { inr(𝑣) } −→m (), inr(B#⟨ℓ𝑛, ℓ𝑝⟩ {𝑣})

[R-Cross-Roll] (),B#⟨ℓ𝑛, ℓ𝑝⟩ { roll𝜏 (𝑣) } −→m (), roll𝜏 (B#⟨ℓ𝑛, ℓ𝑝⟩ {𝑣})

[R-Cross-Box] (),B#⟨ℓ𝑛, ℓ𝑝⟩ { box(𝑣) } −→m (), proxy
(︁
⟨ℓ𝑛, ℓ𝑝⟩, box(𝑣)

)︁
[R-Cross-Lam] (),B#⟨ℓ𝑛, ℓ𝑝⟩ { λ𝑥 .𝑒 } −→m (), proxy

(︁
⟨ℓ𝑛, ℓ𝑝⟩, λ𝑥 .𝑒

)︁
[R-Proxy-Unbox] (), unbox(proxy

(︁
⟨ℓ𝑛, ℓ𝑝⟩, box(𝑒)

)︁
) −→m

(),B#⟨ℓ𝑛, ℓ𝑝⟩ { unbox(box(𝑒)) }

[R-Proxy-β] (), proxy
(︁
⟨ℓ𝑛, ℓ𝑝⟩, λ𝑥 .𝑒

)︁
𝑣 −→m

(),B#⟨ℓ𝑛, ℓ𝑝⟩
{︁
(λ𝑥 .𝑒)

(︁
B#⟨ℓ𝑝, ℓ𝑛⟩ {𝑣}

)︁ }︁
[R-Merge-Box] (),B#⟨ℓ𝑛, ℓ𝑝⟩

{︂
proxy

(︂
⟨ℓ′𝑛, ℓ′𝑝⟩, box(𝑒)

)︂ }︂
−→m

(), proxy
(︂
⟨ℓ𝑛, ℓ′𝑝⟩, box(𝑒)

)︂
if ℓ𝑝 = ℓ′𝑛

[R-Merge-Lam] (),B#⟨ℓ𝑛, ℓ𝑝⟩
{︂
proxy

(︂
⟨ℓ′𝑛, ℓ′𝑝⟩, λ𝑥 .𝑒

)︂ }︂
−→m (), proxy

(︂
⟨ℓ𝑛, ℓ′𝑝⟩, λ𝑥 .𝑒

)︂
if ℓ𝑝 = ℓ′𝑛
Figure 7.15: The transition relation of𝒜owner, 𝒯owner.

Taking the [R-Cross-Cons] rule as an example, it pushes the boundary around ⟨𝑣1, 𝑣2⟩ inside



Chapter 7. The Correct Blame of Contracts 115

and creates two separate boundaries around 𝑣1 and 𝑣2. Note that ⟨𝑣1, 𝑣2⟩ and its two components

are all owned by ℓ𝑝 since the annotation on the boundary is ⟨ℓ𝑛, ℓ𝑝⟩. Consequently, the labels on

the new boundaries around 𝑣1 and 𝑣2 should also be ⟨ℓ𝑛, ℓ𝑝⟩ to designate ℓ𝑝 as their owner.

The same logic applies to all other rules in Figure 7.15. The [R-Proxy-β] rule is another

notable example where there are three regions on the right-hand side of the term. In this rule,

the proxy annotated with ⟨ℓ𝑛, ℓ𝑝⟩ is applied to 𝑣 . After one step, the argument 𝑣 flows from the

region ℓ𝑛 into the region ℓ𝑝 . The two new boundaries divide the entire term in three regions: the

region outside the whole term, the region between the two boundaries, and the region inside the

innermost boundary. Using Felleisen and Friedman [1987]’s notation of program contexts, the

middle region refers to the part that contains the code (λ𝑥 .𝑒) []. Since 𝑣 shall be owned by ℓ𝑛 and

(λ𝑥 .𝑒) [] shall be owned by ℓ𝑝 , the rule swaps ℓ𝑛 and ℓ𝑝 on the inner boundary.

The [R-Merge-Box] and [R-Merge-Lam] rules are a little subtle since they merge a boundary

onto a proxy. The two rules reduce only when there is a sensible designation of owner for the re-

gion between the boundary and the proxy. Thus, an additional (pre-)condition ℓ𝑝 = ℓ′𝑛 is included

in the rules. With this condition, the left-hand side of the [R-Merge-Box] and [R-Merge-Lam]

rules has three owners: the entire expression is owned by ℓ𝑛; the region in-between is owned by

ℓ𝑝 , which equals ℓ′𝑛 , and the region inside the proxy is owned by ℓ′𝑝 .

The R-Merge rules are where the single-owner property intervenes in the reductions of the

𝒜owner annotation language, much like how the property identifies what reductions are legiti-

mate in Dimoulas et al. [2012]’s CPCF. For example, the earlier incorrectly-annotated program

reduces to a proxy whose ownership labels do not match that of the enclosing boundary:

(),
(︁
B#⟨ℓC, ℓS⟩

{︁
(λ𝑥 .𝑥)

(︁
B#⟨ℓP, ℓQ⟩ { λ𝑦.𝑦 }

)︁ }︁)︁
5 −→∗

(),
(︁
B#⟨ℓC, ℓS⟩

{︁
proxy

(︁
⟨ℓP, ℓQ⟩, λ𝑦.𝑦

)︁ }︁)︁
5 −̸→

When the proxy reaches the boundary, since the label ℓS does not match ℓP, the program can no

longer reduce through the [R-Merge-Lam] rule as the side condition of the rule is not satisfied.

Therefore, only programs with correct labels are guaranteed to make progress. As a remark,



Chapter 7. The Correct Blame of Contracts 116

the Agda mechanization includes a proof of the progress theorem in Blame.Progress, showing

that programs adhering to the single-owner policy indeed can make progress. Unfortunately, the

progress theorem cannot be modeled using an annotation interpretation.

Unfortunately, proving the preservation of the single-owner property is beyond the capability

of the framework that I introduced in Chapter 4. In the [R-Proxy-β] rule, the argument 𝑣 should

belong to the owner ℓ𝑛 , but the framework does not allow for the expression of this:

Reduction Rule (), proxy
(︁
⟨ℓ𝑛, ℓ𝑝⟩, λ𝑥 .𝑒

)︁
𝑣 −→m (),B#⟨ℓ𝑛, ℓ𝑝⟩

{︁
(λ𝑥 .𝑒)

(︁
B#⟨ℓ𝑝, ℓ𝑛⟩ {𝑣}

)︁ }︁
Assumption

(︁
I ⊨ proxy

(︁
⟨ℓ𝑛, ℓ𝑝⟩, λ𝑥 .𝑒

)︁ )︁
and (I ⊨ 𝑣)

Obligation (part) I ⊨ B#⟨ℓ𝑝, ℓ𝑛⟩ {𝑣}
When attempting to construct an annotation interpretation I to prove that the [R-Proxy-β] rule

preserves the single-owner property, the boundary around 𝑣 on the right-hand side requires 𝑣 be

owned by ℓ𝑛 as the proof obligation states. However, the highlighted premise I ⊨ 𝑣 by no means

relates 𝑣 to the owner ℓ𝑛 and fails the attempt.

The problem is inherent in the design of the satisfaction relation (I ⊨ 𝑒) given in Section 5.2.

In its presented form, the satisfaction relation only allows one to express that the function λ𝑥 .𝑒

inside the proxy belongs to the owner ℓ𝑝 . Since 𝑣 is outside the proxy, nothing is told by the

relation and the annotation interpretation.

An immediate solution would be equipping the satisfaction relation with indices. In the next

section, I extend my framework with indexed annotation interpretations to prove that 𝒯owner

preserves the single-owner property. In other words, as long as one starts with a program whose

annotations consistently assign a single owner to each region, 𝒯owner is designed to guarantee

that each region continues to have a single owner after reductions.

7.4 Indexed Interpretations and Single-Owner Policy

In this section, I state and prove that the ownership annotation language (𝒜owner,𝒯owner) pre-

serves the single-owner property by augmenting the proof framework from Sections 5.2 and 5.3



Chapter 7. The Correct Blame of Contracts 117

with indices. This extension adds indices to annotations in annotation interpretations and to the

satisfaction relation itself. The corresponding Monotonicity and Soundness theorems are also

amended to work with indexed annotation interpretations.

Definition 7.11 defines indexed annotation interpretations, the generalized version of anno-

tation interpretation from page 70. It equips each interpretation with a set of indices 𝒥 and a

family of binary relations over the indices, {◁𝐴}𝐴:Ann𝜏 . In indexed annotation interpretations, an

annotation 𝐴 no longer appears by itself but always shows up with an additional pair of indices

( 𝑗, 𝑗 ′) such that 𝑗 ◁𝐴 𝑗 ′. I shall write 𝐴 𝑗, 𝑗 ′ to denote the triple (𝐴, 𝑗, 𝑗 ′) where 𝑗 ◁𝐴 𝑗 ′.

Definition 7.11 (Indexed Interpretation). Given an annotation language (𝒜,𝒯), an indexed

annotation interpretation I is a six-tuple (𝒥, {◁𝐴}𝐴:Ann𝜏 , S, ≼,B, P) satisfying the interpretation

law in Definition 7.12. Below are the types of each component:

𝒥 : U
◁𝐴 : 𝒥 → 𝒥 →U
S : State→U
≼ :

∑︁
𝑠:State S(𝑠) →

∑︁
𝑠:State S(𝑠) → U

B⟦𝐴 𝑗, 𝑗 ′, 𝑒 ⟧ : U
P⟦𝐴 𝑗, 𝑗 ′, 𝑒𝑚 ⟧ : U

Since annotations are augmented with indices in annotation interpretations, the relevant in-

terpretation law need adjusting to account for this change as well. Specifically, references to

annotations in the B and P functions now take indexed annotations (𝐴 𝑗, 𝑗 ′) in the laws.

Definition 7.12 (Interpretation Law). Let I :≡ (𝒥, {◁𝐴}𝐴:Ann𝜏 , S, ≼,B, P) be any indexed an-

notation interpretation. The interpretation law, suitably extended from Definition 5.7 in page 72,

are:

• ≼ is a preorder.

• B is sound with respect to the transition steps𝒯.

If S(𝑠), S(𝑠′), 𝑠 ≼ 𝑠′ and 𝒯 ⊢ 𝑠, 𝑒 −→ 𝑠′, 𝑒′, then B⟦𝐴 𝑗, 𝑗 ′, 𝑒 ⟧ implies B⟦𝐴 𝑗, 𝑗 ′, 𝑒′ ⟧.

Next, Figure 7.16 displays the indexed satisfaction relation, the generalized version of the sat-



Chapter 7. The Correct Blame of Contracts 118

I ⊨ 𝑗 B#𝐴 {𝑒} iff 𝑗 ◁𝐴 𝑗 ′ , B⟦𝐴 𝑗, 𝑗 ′, 𝑒 ⟧ and I ⊨ 𝑗 ′
𝑒

I ⊨ 𝑗 proxy(𝐴, 𝑒𝑚) iff 𝑗 ◁𝐴 𝑗 ′ , P⟦𝐴 𝑗, 𝑗 ′, 𝑒𝑚 ⟧ and I ⊨ 𝑗 ′
𝑒𝑚

I ⊨ 𝑗
()

I ⊨ 𝑗
𝑒

I ⊨ 𝑗
𝑒

I ⊨ 𝑗
𝑒 and I ⊨ 𝑗

𝑒𝑎

I ⊨ 𝑗
𝑒 and I ⊨ 𝑗

𝑒1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

modified mutatis mutandis

I ⊨ 𝑗 zero

I ⊨ 𝑗 suc(𝑒) iff
...

I ⊨ 𝑗 λ𝑥 .𝑒 iff
I ⊨ 𝑗

𝑒 𝑒𝑎 iff
...

I ⊨ 𝑗
𝑒; 𝑒1 iff

The indexed satisfaction relation is generalized from Figure 5.1 in page 72 by equipping the rela-
tion itself with an index. All except the case for B#𝐴 {𝑒} and proxy(𝐴, 𝑒𝑚) are modified by adding
the same index 𝑗 to both sides.

Figure 7.16: The indexed satisfaction relation.

isfaction relation from page 72. Other than taking indexed annotation interpretations as inputs,

the generalization equips the relation itself with an index 𝑗 . For the indexed satisfaction relation,

a term 𝑒 satisfies an interpretation I at the index 𝑗 . I shall formally denote this as I ⊨ 𝑗 𝑒 .

Figure 7.16 highlights the amended pieces with shading to signify the differences with the

original relation. In non-boundary cases, the same index is added both sides of the definition.

These cases are all as modified in the same manner as 7.16 shows. For example, I ⊨ 𝑗 𝑒 𝑒𝑎 holds

if and only if both I ⊨ 𝑗 𝑒 and I ⊨ 𝑗 𝑒𝑎 hold. In case of boundaries and proxies, an additional

condition 𝑗 ◁𝐴 𝑗 ′ is included to express that the index of the context, 𝑗 , is related to the index of

the sub-expression, 𝑗 ′, via the relation {◁𝐴}𝐴:Ann𝜏 from I.

Lemma 7.13 (Renaming). Let Γ :≡ (𝑥1 : 𝜏1), . . . , (𝑥𝑛 : 𝜏𝑛) and Γ′ :≡ (𝑦1 : 𝜏′1), . . . , (𝑦𝑚 : 𝜏′𝑚) be

given. Assume that Γ ⊢ 𝑒 : 𝜏 and Γ′ ⊢ 𝑦𝑎𝑖 : 𝜏𝑖 for some 1 ≤ 𝑎𝑖 ≤ 𝑚 for 𝑖 = 1 . . . 𝑛. If I ⊨ 𝑗 𝑒 then

I ⊨ 𝑗 𝑒
[︁
𝑦𝑎1 . . . 𝑦𝑎𝑛 /𝑥1 . . . 𝑥𝑛

]︁
.

Proposition 7.14. Assume that Γ′ ⊢ 𝑒𝑖 : 𝜏𝑖 for 𝑖 = 1, . . . , 𝑛 and let any 𝑥0 : 𝜏0 be given.

Let Γ′′ ⊢ 𝑒′0 : 𝜏0, . . . , Γ′′ ⊢ 𝑒′𝑛 : 𝜏𝑛 be the sequence given by Proposition 4.2 where Γ′′ :≡ Γ′, 𝑥0 : 𝜏0,



Chapter 7. The Correct Blame of Contracts 119

𝑒′0 :≡𝑥0 and 𝑒′𝑖 :≡ 𝑒𝑖 for 𝑖 = 1, . . . , 𝑛. Then, if I ⊨ 𝑗 𝑒𝑖 for 𝑖 = 1, . . . , 𝑛, there is a sequence I ⊨ 𝑗 𝑒′𝑖 for

𝑖 = 0, . . . , 𝑛 as well.

Lemma 7.15 (Substitution). Let Γ :≡𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 and some Γ′ be given. Assume that Γ ⊢ 𝑒 :

𝜏 and Γ′ ⊢ 𝑒𝑖 : 𝜏𝑖 for 𝑖 = 1 . . . 𝑛. If I ⊨ 𝑗 𝑒 and I ⊨ 𝑗 𝑒𝑖 for 𝑖 = 1 . . . 𝑛 then I ⊨ 𝑗 𝑒 [𝑒1 . . . 𝑒𝑛 /𝑥1 . . . 𝑥𝑛].

Proposition 7.16. For any 𝑗, 𝑗 ′ ∈ 𝒥 and any value 𝑛 : nat, if I ⊨ 𝑗 𝑛 then I ⊨ 𝑗 ′ 𝑛.

Proposition 7.17 (Decomposition). If I ⊨ 𝑗 𝑒 and 𝑒 = 𝐸 [𝑒𝑟 ], there exists 𝑗𝑟 such that I ⊨ 𝑗𝑟 𝑒𝑟 .

With the generalization of the satisfaction relation, the indices can be instantiated with labels

to identify the owner of an expression. The soundness proof of an annotation interpretation for

the [R-Proxy-β] rule now has an additional index ℓ𝑛 on the relation itself to connect the proxy

and the argument of the function application to their enclosing context. More concretely, let the

indices be the ownership labels and let {◁𝐴own}𝐴own relate the labels in ownership annotations, i.e.

ℓ𝑛 ◁⟨ℓ𝑛,ℓ𝑝 ⟩ ℓ𝑝 for arbitrary ⟨ℓ𝑛, ℓ𝑝⟩, then the proof obligation of the soundness property is:

Reduction Rule (), proxy
(︁
⟨ℓ𝑛, ℓ𝑝⟩, λ𝑥 .𝑒

)︁
𝑣 −→m (),B#⟨ℓ𝑛, ℓ𝑝⟩

{︁
(λ𝑥 .𝑒)

(︁
B#⟨ℓ𝑝, ℓ𝑛⟩ {𝑣}

)︁ }︁
Assumption

(︁
I ⊨ℓ𝑛 proxy

(︁
⟨ℓ𝑛, ℓ𝑝⟩, λ𝑥 .𝑒

)︁ )︁
and

(︁
I ⊨ℓ𝑛 𝑣

)︁
Obligation I ⊨ℓ𝑛 B#⟨ℓ𝑛, ℓ𝑝⟩

{︁
(λ𝑥 .𝑒)

(︁
B#⟨ℓ𝑝, ℓ𝑛⟩ {𝑣}

)︁ }︁
The proof obligation is a little lengthy, but a more familiar goal shows up after expanding the

satisfaction relation and plugging in the definition of {◁𝐴own}𝐴own :

B⟦ ⟨ℓ𝑛, ℓ𝑝⟩ℓ𝑛,ℓ𝑝 , (λ𝑥 .𝑒)
(︁
B#⟨ℓ𝑝, ℓ𝑛⟩ {𝑣}

)︁
⟧ ∧

(︁
I ⊨ℓ𝑝 λ𝑥 .𝑒

)︁
∧

(︁
I ⊨ℓ𝑝 B#⟨ℓ𝑝, ℓ𝑛⟩ {𝑣}

)︁
Compared to the situation of the indexless satisfaction relation at the end of the previous section

(Section 7.3), the highlighted premise (I ⊨ℓ𝑛 𝑣) explicitly states that the argument (𝑣) is satisfied

at index ℓ𝑛 . Thus, the highlighted part of the expanded proof obligation above becomes provable.

Before instantiating the augmented framework to prove the preservation of the single-owner

property, I shall document the reformulated monotonicity and soundness properties, and also

rephrase the corresponding theorems (Theorems 7.20 and 7.21). These properties and theorems



Chapter 7. The Correct Blame of Contracts 120

are mostly identical to their counterpart in Section 5.3 except that the ones presented here have

incorporated the indexed satisfaction relation into their statements.

Definition 7.18 (Monotonic Interpretation). An indexed interpretation I :≡ (𝒥, {◁𝐴}𝐴:Ann𝜏 ,

S, ≼, B, P) is monotonic if for any 𝑠1, 𝑠2, 𝑒1, 𝑒2, if S(𝑠1) holds, 𝒯 ⊢ 𝑠1, 𝑒1 −→m 𝑠2, 𝑒2 and I ⊨ 𝑗 𝑒1

then S(𝑠2) holds and 𝑠1 ≼ 𝑠2.

Definition 7.19 (Sound Interpretation). An indexed interpretationI :≡ (𝒥, {◁𝐴}𝐴:Ann𝜏 , S, ≼,

B, P) is sound if for any 𝑠1, 𝑠2, 𝑒1, 𝑒2 such that S(𝑠1) and S(𝑠2) hold, if 𝑠1 ≼ 𝑠2,𝒯 ⊢ 𝑠1, 𝑒1 −→m 𝑠2, 𝑒2

and I ⊨ 𝑗 𝑒1 then I ⊨ 𝑗 𝑒2.

Theorem 7.20 (Monotonicity). Let I be a monotonic and sound indexed interpretation. For any

reduction sequence𝒯 ⊢ 𝑠, 𝑒 −→∗ 𝑠′, 𝑒′, if S(𝑠) and I ⊨ 𝑗 𝑒 then S(𝑠′) and 𝑠 ≼ 𝑠′.

Theorem 7.21 (Soundness). Let I be a monotonic and sound indexed interpretation. For any

reduction sequence𝒯 ⊢ 𝑠, 𝑒 −→∗ 𝑠′, 𝑒′, if S(𝑠) and I ⊨ 𝑗 𝑒 then I ⊨ 𝑗 𝑒′.

Definition 7.22. For any closed expression 𝑒 such that I ⊨ 𝑗 𝑒 , [𝑒]I, 𝑗 is the equivalence class of 𝑒

containing only expressions that satisfy I at 𝑗 , i.e. 𝑒′ ∈ [𝑒]I, 𝑗 ⇐⇒ 𝑒′ ∼P 𝑒 and I ⊨ 𝑗 𝑒′.

Theorem 7.23. Let I :≡ (S, ≼,B, P) be a monotonic and sound interpretation. Assume that for some

𝑠0, 𝑗0 and 𝑒0, both S(𝑠0) and I ⊨ 𝑗0 𝑒0 hold. Let T be the minimum subsystem of Tind[𝒜;𝒯] that

contains (𝑠0, [𝑒0]P), the map ℎ : (𝑠, [𝑒]P) ↦−→ (𝑠, [𝑒]I, 𝑗 ) for any 𝑒 such that I ⊨ 𝑗 𝑒 holds is a

well-defined function from T to Tsat[𝒜;𝒯;I, 𝑗]. Moreover, ℎ is a homomorphism.

With all the machinery, we are finally in a position to state and prove the preservation of the

single-owner property of the 𝒜owner language. To be precise, Definition 7.24 gives the indexed

annotation interpretation, Isngl, that instantiates the augmented framework to capture single

ownership. In Isngl, the indices are just labels and 𝑗 ◁𝐴own 𝑗
′ precisely when ( 𝑗, 𝑗 ′) are the labels

in 𝐴own. The B function of Isngl similarly states that the indices at boundaries are the annotated

labels. Then, Theorem 7.25 shows that Isngl is monotonic and sound to conclude the preservation

proof.



Chapter 7. The Correct Blame of Contracts 121

Definition 7.24. The annotation interpretation Isngl :≡ (𝒥sngl, {◁𝐴own}𝐴own, Ssngl, ≼sngl, B,
P) is defined as

𝒥sngl :≡ Label

𝑗 ◁𝐴own 𝑗
′ :≡ 𝑗 = ℓ𝑛 ∧ 𝑗 ′ = ℓ𝑝

where 𝐴own = ⟨ℓ𝑛, ℓ𝑝⟩
Ssngl(𝑠) :≡ ⊤
𝑠 ≼sngl 𝑠

′ :≡ ⊤
B⟦ ⟨ℓ𝑛, ℓ𝑝⟩ 𝑗, 𝑗

′
, 𝑒 ⟧ :≡ 𝑗 = ℓ𝑛 ∧ 𝑗 ′ = ℓ𝑝

P⟦𝐴 𝑗, 𝑗 ′
own, 𝑒 ⟧ :≡ B⟦𝐴 𝑗, 𝑗 ′

own, 𝑒
𝑚 ⟧

Theorem 7.25. The annotation interpretation Isngl is monotonic and sound.

The definition Isngl may seem trivial as it straightforwardly identifies the indices with the

ownership labels. In Section 7.6, I shall present a more interesting example that instantiates the

augmented framework to relate labels in blame objects with the ownership labels on top of the

single-owner property and prove the Blame Correctness theorem.

7.5 Capturing Monitoring Strategies in the Framework

Equipping the satisfaction relation with indices yields an interesting connection between the

monitoring strategies of higher-order values and the proof framework that is organized around

the indexed satisfaction relation. Recall that in the monitor calculus proof framework, proving

a specific property about an instantiation of the calculus amounts to constructing an annotation

interpretation and proving that it is both monotonic and sound. In the generalized framework

discussed in Section 7.4, the introduction of indices adds new proof obligations to the soundness

proof of indexed annotation interpretations, reflecting the monitoring strategies of higher-order

values in the monitor calculus. In this section, I shall illustrate this connection by working with

an alternative [R-Cross-Cons] rule and examining how it affects the proof obligations.

To begin with, suppose that the monitor calculus employs the following alternative [R-Cross-

Cons′] rule that directly discards boundaries around the pairs instead of creating two new bound-



Chapter 7. The Correct Blame of Contracts 122

aries around the sub-components,2

𝒯 ⊢ 𝑠,B#𝐴 { ⟨𝑣1, 𝑣2⟩ } −→m 𝑠′, ⟨𝑣1, 𝑣2⟩

To show that an indexed interpretation I is sound for this [R-Cross-Cons′] rule, one needs

to prove that I ⊨ 𝑗 B#𝐴 { ⟨𝑣1, 𝑣2⟩ } implies I ⊨ 𝑗 ⟨𝑣1, 𝑣2⟩. After expanding the definition of the

satisfaction relation, this becomes

B⟦𝐴 𝑗, 𝑗 ′, ⟨𝑣1, 𝑣2⟩ ⟧ ∧ ( 𝑗 ◁𝐴 𝑗 ′) ∧
(︂
I ⊨ 𝑗 ′ 𝑣1

)︂
∧

(︂
I ⊨ 𝑗 ′ 𝑣2

)︂
implies

(︁
I ⊨ 𝑗 𝑣1

)︁
∧

(︁
I ⊨ 𝑗 𝑣2

)︁
Here, note that 𝑣1 and 𝑣2 satisfy I at the index 𝑗 ′ in the assumptions on the left-hand side and

yet they are required to satisfy I at the index 𝑗 by the proof obligation on the right-hand side. In

other words, when the boundary annotated with𝐴 around 𝑣1 and 𝑣2 is removed by the [R-Cross-

Cons′] rule, the corresponding satisfaction results, i.e. I ⊨ 𝑗 ′ 𝑣𝑘 and I ⊨ 𝑗 𝑣𝑘 , change their indices

from 𝑗 ′ to 𝑗 where 𝑗 ◁𝐴 𝑗 ′.

The relationship between the indices in the proof obligation of the [R-Cross-Cons] rule is in

sharp contrast to the one for the (alternative) [R-Cross-Cons′] rule. Specifically, the [R-Cross-

Cons] rule creates two new boundaries with the annotations 𝐴1 and 𝐴2 around 𝑣1 and 𝑣2:

𝒯 ⊢ 𝑠,B#𝐴 { ⟨𝑣1, 𝑣2⟩ } −→m 𝑠′, ⟨B#𝐴1 {𝑣1} ,B#𝐴2 {𝑣2} ⟩

The soundness for the [R-Cross-Cons] rule asks for the proof of I ⊨ 𝑗 ⟨B#𝐴1 {𝑣1} ,B#𝐴2 {𝑣2}⟩

assuming I ⊨ 𝑗 B#𝐴 {⟨𝑣1, 𝑣2⟩}. By inverting the assumption, there exists 𝑗 ′ such that 𝑗 ◁𝐴 𝑗 ′.

Then, by a similar argument, the proof obligation simplifies to ∃ 𝑗𝑘 . ( 𝑗 ◁𝐴𝑘
𝑗𝑘) ∧ (I ⊨ 𝑗𝑘 𝑣𝑘)

assuming I ⊨ 𝑗 ′ 𝑣𝑘 for 1 ≤ 𝑘 ≤ 2. Hence, that the indices change from 𝑗 ′ to 𝑗𝑘 where 𝑗 ◁𝐴 𝑗 ′

and 𝑗 ◁𝐴𝑘
𝑗𝑘 indicates that 𝑣𝑘 stays inside a boundary both before and after the reduction step.

Furthermore, the annotation on the boundary changes from 𝐴 to 𝐴𝑘 .

The same index-changing phenomenon happens for the [R-Cross-Nat] rule, but it does not

affect the soundness proof. To prove that an interpretation I is sound for the [R-Cross-Nat]

2This rule is an approximation of an untyped–typed–untyped interaction scenario that Greenman et al. [2019]
discovered for Vitousek et al. [2017]’s Transient checking strategy.



Chapter 7. The Correct Blame of Contracts 123

rule, the same argument yields the goal

B⟦𝐴 𝑗, 𝑗 ′, 𝑛 ⟧ ∧ ( 𝑗 ◁𝐴 𝑗 ′) ∧
(︂
I ⊨ 𝑗 ′ 𝑛

)︂
implies

(︁
I ⊨ 𝑗 𝑛

)︁
provided 𝒯 ⊢ 𝑠,B#𝐴 {𝑛 } −→m 𝑠′, 𝑛. Nonetheless, for base values like natural numbers, one

can always prove I ⊨ 𝑗 𝑛 regardless of the index. Comparing to other cases such as the [R-

Cross-Cons′] rule, it is not possible to generally prove the satisfaction of higher-order values

at a different index. For example, the obligations I ⊨ 𝑗 𝑣𝑘 from the [R-Cross-Cons′] rule could

contain nested boundaries in 𝑣𝑘 and hence they have to be dealt with on a case-by-case basis.

In all but the [R-Cross-Nat] rule, the indices on the satisfaction relation encode the informa-

tion of the boundaries around the sub-expressions and how they evolve during reduction steps.

In summary, the indexed-interpretation extension reifies the monitoring strategy of higher-order

values—how boundaries evolve—concretely as the relatioship between the indices on the corre-

sponding satisfaction relation proof obligations.

7.6 Correct Blame and Single-Owner Policy

In this section, I put the blame annotation language (𝒜bctc,𝒯b𝑖) from Section 7.1 and the own-

ership annotation language (𝒜owner,𝒯owner) from Section 7.3 together to prove a result that is

similar to Dimoulas et al. [2011, 2012]’s Blame Correctness theorem. Specifically, I shall show

that the transition steps𝒯b𝑖 in page 104 distribute blame objects in a way that is consistent with

how the transition steps𝒯owner in page 114 propagates the ownership labels.
proxy(⟨⟨ℓC, ℓS⟩, [⟨𝑏, 𝜅′⟩]⟩, λ𝑥 .𝑥) (λ𝑧.suc(𝑧)) 4

where 𝑏 :≡ {pos = ℓS; neg = ℓC}
𝜅′ :≡

(︁
isEvenℓS→/c isOddℓC

)︁
→/c

(︁
isEvenℓC→/c any/cℓS

)︁
Figure 7.17: An example program of the combined annotation language

Figure 7.17 illustrates what it means for blame objects and ownership labels to be consistent. The

example program combines (𝒜bctc,𝒯b𝑖)and (𝒜owner,𝒯owner), hence its annotation is a pair com-

prising the ownership labels ⟨ℓC, ℓS⟩ and a list of blame-contract pairs, [⟨𝑏, 𝜅′⟩]. In this program,

the pos field of 𝑏 points to the region inside the proxy, i.e. the part that contains λ𝑥 .𝑥 . The neg



Chapter 7. The Correct Blame of Contracts 124

𝒜 :≡ (𝐴, 𝑠)
𝐴 ::= ⟨𝐴own , 𝐴bctc⟩ 𝐴bctc ::= [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩]

𝑠 ∈ Status ::= Ok | Err(ℓ) 𝐴own ::= ⟨ℓ𝑛, ℓ𝑝⟩
Figure 7.18: The syntax of the combined annotation language, (𝒜,𝒯𝑖).

field similarly points to the enclosing context of the proxy, or the function application that calls

the proxy with λ𝑧.suc(𝑧) and 4. Most importantly, these two labels in 𝑏 match the ownership

labels ⟨ℓC, ℓS⟩ which indicate that the owner of the context is ℓC and that the owner of λ𝑥 .𝑥 is ℓS.

The theorem that I am proving in this section states that this correspondence between the

ownership annotation ⟨ℓC, ℓS⟩ and the labels in the blame object 𝑏 will be preserved during eval-

uation. Additionally, when there is a sequence of the blame objects in the annotations, the neg

label of any blame object in the sequence always matches the pos label of the object that follows

it. This preservation property together with the preservation of the consistency judgement from

Section 7.2 and the preservation of the single-owner property from Section 7.4 capture Dimoulas

et al. [2011, 2012]’s Blame Correctness theorem.

It is worth mentioning that my alternative formulation decomposes Dimoulas et al. [2011,

2012]’s Blame Correctness theorem into three reusable parts. On one hand, the correct tracking

of blame labels on the monitors of CPCF in their Blame Correctness theorem is captured by the

preservation of the consistency judgement for the blame annotation language (𝒜bctc,𝒯b𝑖)from

Sections 7.1 and 7.2. On the other hand, the single-owner property in their work is modeled

and proved using the ownership annotation language (𝒜owner,𝒯owner)from Sections 7.3 and 7.4.

These two annotation languages and their properties are developed independently, and they are

reusable through the framework developed in Section 5.4 when combined with other annotation

languages. In particular, the third part of my formulation of the Blame Correctness theorem in

this section is proved for the annotation language that pairs up (𝒜bctc,𝒯b𝑖)and (𝒜owner,𝒯owner),

and only when joining all three properties we regain the full Blame Correctness theorem.

Figure 7.18 briefly lists the syntax of the combined annotation language. The syntax of annota-

tions, 𝐴, simply pairs up the ownership annotation 𝐴own from 𝒜owner and the blame annotation

𝐴bctc from 𝒜bctc. The global state of the combined language is just Status, the same one from



Chapter 7. The Correct Blame of Contracts 125

𝒜bctc. Similar to the annotations, the transition steps 𝒯𝑖 of 𝒜 is the combination of 𝒯owner in

page 114 and𝒯b𝑖 in page 104. The two transition steps are simply put together to simultaneously

propagate the 𝐴own part and the 𝐴bctc part of the annotation. For convenience, Figure 7.18 recaps

the definition of 𝐴own and 𝐴bctc.

For the combined annotation language in Figure 7.18, the list of blame-contract pairs in the

𝐴bctc part of the annotations accumulates when a proxy crosses a boundary. In this situation,

when the blame labels match the ownership labels in the 𝐴own part of the annotations, the labels

of the blame objects on the proxy will align with the labels on the boundary. Thus, that the blame

objects in the annotations have aligned labels is an essential part of my formulation of the Blame

Correctness theorem. To be more concretely, consider the following reduction sequence:
Ok, B#⟨⟨ℓC, ℓS⟩, [⟨𝑏, isEvenℓC→/c any/cℓS⟩]⟩ {

proxy
(︁
⟨⟨ℓS, ℓC⟩, [⟨𝑏1, isEvenℓS→/c isOddℓC⟩]⟩, λ𝑦.𝑦

)︁
} −→

Ok, proxy
(︁
⟨ℓC, ℓC, [⟨𝑏1, isEvenℓS→/c isOddℓC⟩, ⟨𝑏, isEvenℓC→/c any/cℓS⟩]⟩, λ𝑦.𝑦

)︁
where 𝑏 :≡ {pos = ℓS; neg = ℓC} and 𝑏1 :≡ blameSwap(𝑏).

Figure 7.19: Aligned blame object sequences

In the program in Figure 7.19, the labels of the blame objects 𝑏 and 𝑏1 match the ownership

labels (colored brown). The ownership labels on the boundary and the proxy, in turn, uniquely

identify the owner of each region delimited by the proxy and the boundary. After one reduction

step, the sequence of blame objects annotated on the proxy is [𝑏1, 𝑏]. In this sequence, the neg

field of 𝑏1 equals the pos field of 𝑏. In other words, this sequence of blame objects is aligned.

To capture aligned sequences of blame objects, I introduce the judgement BlameSeq in Fig-

ure 7.20. For blame objects 𝑏1, . . . , 𝑏𝑛 to be aligned, the neg field of any object in the sequence

must match the pos field of the object that follows it. That is, 𝑏1, . . . , 𝑏𝑛 are aligned if 𝑏1.neg =

𝑏2.pos, . . . , and 𝑏𝑛−1.neg = 𝑏𝑛 .pos. To define this inductively, the BlameSeq judgement takes two

additional indices, ℓ𝑝 and ℓ𝑞 , to track the pos field of the first object in the sequence and the neg

BlameSeq(ℓ, ℓ, [])
𝑏1 =

{︁
pos = ℓ𝑝 ; neg = ℓ𝑞

}︁
BlameSeq(ℓ𝑞, ℓ𝑟 , [𝑏2, . . . , 𝑏𝑚])

BlameSeq(ℓ𝑝, ℓ𝑟 , [𝑏1, 𝑏2, . . . , 𝑏𝑚])

Figure 7.20: Aligned blame object sequences.



Chapter 7. The Correct Blame of Contracts 126

field of the last object in the sequence. Specifically, BlameSeq(ℓ𝑝, ℓ𝑞, [𝑏1, . . . , 𝑏𝑛]) holds if and

only if ℓ𝑝 = 𝑏1.pos, ℓ𝑞 = 𝑏𝑛 .neg and 𝑏𝑖 .neg = 𝑏𝑖+1.pos for all 1 ≤ 𝑖 < 𝑛.

Proposition 7.26. If BlameSeq(ℓ𝑝, ℓ𝑞, [𝑏1, . . . , 𝑏𝑚]) and BlameSeq(ℓ𝑞, ℓ𝑟 , [𝑏′1, . . . , 𝑏′𝑛]) then

BlameSeq(ℓ𝑝, ℓ𝑟 , [𝑏1, . . . , 𝑏𝑚, 𝑏′1, . . . , 𝑏′𝑛]).

Proposition 7.27. If BlameSeq(ℓ𝑝, ℓ𝑞, [𝑏1, . . . , 𝑏𝑚]) then BlameSeq(ℓ𝑞, ℓ𝑝, [blameSwap(𝑏𝑚),

. . . , blameSwap(𝑏1)]).

Definition 7.28 defines the indexed annotation interpretation Iown𝑖 that captures aligned se-

quences of blame objects. Specifically, the relation ◁𝐴 in Iown𝑖 relates the indices 𝑗, 𝑗 ′ ∈ Label if

the sequence of blame objects in𝐴 are alignedwith indices 𝑗 and 𝑗 ′, i.e. ifBlameSeq( 𝑗 ′, 𝑗, [𝑏1, . . . ,

𝑏𝑚]). Other than the indices of the annotations, the B𝑖+1⟦𝐴 𝑗, 𝑗 ′, 𝑒 ⟧ function asserts that the in-

dices 𝑗, 𝑗 ′ on the annotation 𝐴 matches the ownership part of 𝐴, i.e. 𝑗 = ℓ𝑛 and 𝑗 ′ = ℓ𝑝 for

𝐴 = ⟨𝐴own , 𝐴bctc⟩ = ⟨⟨ℓ𝑛, ℓ𝑝⟩, 𝐴bctc⟩. This ensures that when the ◁𝐴 relation aligns the blame ob-

jects in the 𝐴bctc part of 𝐴, the ownership labels ℓ𝑛, ℓ𝑝 match the labels of the first and the last

blame objects.

Definition 7.28. The annotation interpretation Iown𝑖 :≡ (𝒥own, {◁𝐴}𝐴:Ann𝜏 , Sown, ≼own, B𝑖, P𝑖) is
defined as

𝒥own :≡ Label

𝑗 ◁𝐴 𝑗 ′ :≡ BlameSeq( 𝑗 ′, 𝑗, [𝑏1, . . . , 𝑏𝑚])
where 𝐴 = ⟨𝐴own , 𝐴bctc⟩ = ⟨𝐴own , [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩]⟩

Sown(𝑠) :≡ ⊤
𝑠 ≼own 𝑠

′ :≡ ⊤
B0⟦𝐴, 𝑒 ⟧ :≡ ⊥
B𝑖+1⟦𝐴 𝑗, 𝑗 ′, 𝑒 ⟧ :≡ (∃ 𝑗1. Iown𝑖 ⊨ 𝑗1 𝜅1) ∧ . . . ∧ (∃ 𝑗𝑚 . Iown𝑖 ⊨ 𝑗𝑚 𝜅𝑚) ∧

( 𝑗 = ℓ𝑛 ∧ 𝑗 ′ = ℓ𝑝)
where 𝐴 = ⟨𝐴own , 𝐴bctc⟩ = ⟨⟨ℓ𝑛, ℓ𝑝⟩, 𝐴bctc⟩

P𝑖⟦𝐴 𝑗, 𝑗 ′, 𝑒𝑚 ⟧ :≡ B𝑖⟦𝐴 𝑗, 𝑗 ′, 𝑒𝑚 ⟧
Finally, Theorem 7.29 proves that the interpretationIown𝑖 is monotonic and sound for all 𝑖 ≥ 0,

thus completing the proof of the Blame Correctness theorem.

Theorem 7.29. The annotation interpretation Iown𝑖 is monotonic and sound for all 𝑖 ≥ 0.



127

Chapter 8

Space-Efficient Contracts

Over the past two decades, researches have identified the accumulation of redundant proxies

around values as a significant source of overhead of contracts and gradual types, incurring unnec-

essary space and time cost [Herman et al. 2010; Siek andWadler 2010; Siek et al. 2015a; Greenberg

2015, 2016; Feltey et al. 2018]. Indeed, the issue is bad both in theory [Siek et al. 2009; Siek and

Wadler 2010; Siek et al. 2015a, 2021] and in practice [Findler et al. 2008; Takikawa et al. 2016,

2015, Figure 10].

Since contracts allow arbitrary user-defined predicates, the correct determination of redun-

dancy is more complex for contracts than gradual typing in order to preserve the correct blame

behavior. Luckily, Greenberg [2015, 2016]’s space-efficient latent contracts hold the essential

ideas for avoiding redundancy by merging adjacent proxies and removing duplicate checks in

the contracts on the proxies. Feltey et al. [2018] take Greenberg [2016]’s idea further and develop

collapsible contracts in Racket [Felleisen et al. 2015, 2018]’s contract system, resolving certain

cases that suffer exponential slowdown.

Space-efficient contracts occupy a rather unique position in the world of contracts. They rep-

resent a class of contract systems that employ non-trivial operations on contracts themselves at

run time; their metatheory concerns non-functional properties of the contract systems; they are

indispensable for practical programs that use contracts. Accordingly, they make an excellent ex-



Chapter 8. Space-Efficient Contracts 128

ercise for the monitor calculus. In this chapter, I instantiate the monitor calculus to capture space-

efficient contracts and apply the transition-system framework to build its metatheory based on

Greenberg [2016]’s work. Similar to the proofs in Chapter 7, the metatheory in this chapter is

built primarily on various instantiations of the monitor calculus that extends a common annota-

tion language without resorting to external definitions.

Section 8.1 starts with discussion with a gentle introduction to space-efficient contracts. Sec-

tion 8.2 formally introduces (𝒜se,𝒯s), an annotation language that captures space-efficient con-

tracts. Section 8.3 further discusses several auxiliary definitions about the contracts together with

their properties in preparation for the proofs of space efficiency and correct time complexity.

Section 8.4 proves the space efficiency of the instantiation λm[𝒜se;𝒯s]. The proof is depen-

dent on two parameters for bounding the contracts: K , the set of all distinct predicates in all

contracts, and 𝐻 , the height of the tallest contract in the initial program. As long as there are

no recursive contracts, the height of the contracts are non-increasing, and the proof of space ef-

ficiency proceeds by constructing an interpretation that bounds the size of each contract within

𝑂 ( |K | · 2𝐻 ).

Section 8.5 tackles time complexity. It introduces (𝒜ccs,𝒯ccs), an extension of (𝒜se,𝒯s) that

counts in its global states the (flat) contract checks and the number of primitive operations used by

λm[𝒜ccs;𝒯ccs] for merging space-efficient contracts. Let 𝑘 denote the number of monitor-related

steps in any reduction sequence. Section 8.5 proves, again via interpretations of annotations,

that λm[𝒜ccs;𝒯ccs] checks at most 𝑂 (𝑘 · |K |) predicates and uses no more than 𝑂 (𝑘 · |K |2 · 2𝐻 )

operations for maintaining space efficiency. In other words, adding contracts to a program will

not introduce exponential slowdown.

Finally, Section 8.6 shows that space-efficient contracts signal the same errors as extended

CPCF through the instantiation λm[𝒜scctc;𝒯sc] that combines both λm[𝒜se;𝒯s] and λm[𝒜ctc;𝒯c1]

and compares their contract checking status.



Chapter 8. Space-Efficient Contracts 129

8.1 Space-Efficient Contracts in Action

To understand why contracts can accumulate on proxies, consider the following example written

in the syntax of λm[𝒜ctc;𝒯c1], the instantiation for ordinary contracts from Chapter 6:

proxy( [𝜅oe→/c𝜅oe], λℎ.ℎ)

In this function, 𝜅oe is a shorthand for the contract isOdd→/c isEven. The flat contracts isOdd and

isEven blame ℓO or ℓE unless their inputs are odd numbers or even numbers, respectively. The

contracted function λℎ.ℎ takes another function and immediately returns it. Whenever λℎ.ℎ is

called, its argument is attached with the contract 𝜅oe, and the same contract is again attached to

the result of the application. Thus, the output of λℎ.ℎ will end up receiving two identical copies

of 𝜅oe. The following reduction sequence shows this situation in more detail:

Ok, proxy( [𝜅oe→/c𝜅oe], λℎ.ℎ) (λ𝑦.suc(suc(𝑦)))

−→ Ok,B#[𝜅oe] { (λℎ.ℎ) (B#[𝜅oe] { λ𝑦.suc(suc(𝑦)) }) }

−→ Ok,B#[𝜅oe] { (λℎ.ℎ) proxy( [𝜅oe], λ𝑦.suc(suc(𝑦))) }

−→ Ok,B#[𝜅oe] { proxy( [𝜅oe], λ𝑦.suc(suc(𝑦))) }

−→ Ok, proxy( [𝜅oe, 𝜅oe], λ𝑦.suc(suc(𝑦)))

During reduction, the domain of 𝜅oe→/c𝜅oe is attached to the argument, resulting in a new proxy

that is wrapped around λ𝑦.suc(suc(𝑦)). The function λℎ.ℎ immediately returns the proxy in the

next step, and the outer boundary stacks another copy of 𝜅 on the proxy. Intuitively, only one

copy of 𝜅oe is needed around λ𝑦.suc(suc(𝑦)), and keeping the duplication may result in useless

memory growth in a program that adds such a contract in a loop.

Note that redundant contracts not only consume more memory but also degrade the perfor-

mance. For example, whenever the contracted λ𝑦.suc(suc(𝑦))—the output of λℎ.ℎ—is applied,

the predicates isOdd and isEvenwill be checked twice, and the second check always produces the



Chapter 8. Space-Efficient Contracts 130

Ok, proxy
(︁
(𝜅′oe→/se𝜅′oe), λℎ.ℎ

)︁
(λ𝑦.suc(suc(𝑦)))

−→ Ok,B#𝜅′oe
{︁
(λℎ.ℎ)

(︁
B#𝜅′oe { λ𝑦.suc(suc(𝑦)) }

)︁ }︁
−→ Ok,B#𝜅′oe

{︁
(λℎ.ℎ) proxy

(︁
𝜅′oe, λ𝑦.suc(suc(𝑦))

)︁ }︁
−→ Ok,B#𝜅′oe

{︁
proxy

(︁
𝜅′oe, λ𝑦.suc(suc(𝑦))

)︁ }︁
(★) —– join(𝜅′oe, 𝜅′oe) = join( [isOdd] →/se[isEven], [isOdd] →/se[isEven])

= join( [isOdd], [isOdd]) →/se join( [isEven], [isEven])

= joinFlats( [isOdd], [isOdd]) →/se joinFlats( [isEven], [isEven])

= [isOdd] →/se [isEven]

−→ Ok, proxy( [isOdd] →/se[isEven], λ𝑦.suc(suc(𝑦)))

Figure 8.1: An example reduction sequence of space-efficient contracts.

same result as the first:

Ok, proxy( [𝜅oe, 𝜅oe], λ𝑦.suc(suc(𝑦))) 5

−→ Ok,B#[isEven, isEven] { (λ𝑦.suc(suc(𝑦))) (B#[isOdd, isOdd] { 5 }) }

−→ Ok,B#[isEven, isEven] { (λ𝑦.suc(suc(𝑦))) 5 }

−→∗ Ok,B#[isEven, isEven] { 7 }

−→ Err(ℓE), 7

The space-efficient contracts in this chapter aim at removing redundant checks. To discover

redundancy, the space-efficient contracts change their syntax. For example, let 𝜅′oe be the short-

hand of [isOdd] →/se[isEven], the above function would have been written as

proxy
(︁
𝜅′oe→/se𝜅′oe, λℎ.ℎ

)︁
.

Instead of annotating a list of contracts, any boundary (and similarly any proxy) is always an-

notated with one space-efficient contract. Following the syntax changes, the leaves of contracts

now contain lists of flat predicates to track all needed checks. The reduction sequence in Fig-

ure 8.1 shows how space-efficient contracts are enforced. In step (★) in the figure, the contract



Chapter 8. Space-Efficient Contracts 131

𝒜se :≡ (𝐴, 𝑠)
𝐴 ::= se𝜅

𝑠 ∈ Status ::= Ok | Err(ℓ)

se𝜅 ::= unit/se | [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)] | se𝜅1 ×/se se𝜅2 | se𝜅1 +/se se𝜅2
| box/se se𝜅 | se𝜅𝑎→/se se𝜅𝑟 | 𝑡 | 𝜇/se 𝑡 .se𝜅

Figure 8.2: Syntax of the space-efficient annotation language,𝒜se

Δ :≡ {𝑡1, . . . , 𝑡𝑛} Δ ⊢se se𝜅 : SECtc𝜏

Δ ⊢se unit/se : SECtc unit
𝑥1 : nat ⊢ 𝑒1 : nat . . . 𝑥𝑚 : nat ⊢ 𝑒𝑚 : nat
Δ ⊢se [flatℓ(𝑥1. 𝑒1), . . . , flatℓ(𝑥𝑚 . 𝑒𝑚)] : SECtc nat

Δ ⊢se se𝜅1 : SECtc𝜏1 Δ ⊢se se𝜅2 : SECtc𝜏2
Δ ⊢se se𝜅1 ×/se se𝜅2 : SECtc (𝜏1 × 𝜏2)

Δ ⊢se se𝜅1 : SECtc𝜏1 Δ ⊢se se𝜅2 : SECtc𝜏2
Δ ⊢se se𝜅1 +/se se𝜅2 : SECtc (𝜏1 + 𝜏2)

Δ ⊢se se𝜅 : SECtc𝜏
Δ ⊢se box/se se𝜅 : SECtc (Box𝜏)

𝑡 ∈ Δ
Δ ⊢se 𝑡 : SECtc 𝑡

Δ ⊢se se𝜅𝑎 : SECtc𝜏𝑎 Δ ⊢se se𝜅𝑟 : SECtc𝜏𝑟
Δ ⊢se se𝜅𝑎→/se se𝜅𝑟 : SECtc (𝜏𝑎 → 𝜏𝑟 )

Δ, 𝑡 ⊢se se𝜅 : SECtc𝜏
Δ ⊢se 𝜇/se 𝑡 .se𝜅 : SECtc (𝜇𝑡 .𝜏)

Figure 8.3: The typing rules of contracts

on the boundary (colored blue) is merged into the contract on the proxy (colored brown) using

a metafunction join. The operation join(𝜅′oe, 𝜅′oe) traverses the given contracts, appends the lists

of predicates in the leaves, and removes any duplication from the appended predicate lists. As a

result, the contract on the proxy around λ𝑦.suc(suc(𝑦)) in the final step only contains one copy

of the predicates in its domain and range.

8.2 Syntax andTransition Steps of Space-EfficientContracts

Figure 8.2 presents the syntax of the space-efficient annotation language, 𝒜se :≡ (𝐴, 𝑠). In its

syntax, an annotation𝐴 is just a contract se𝜅 where the metavariable se𝜅 ranges over space-efficient

contracts. The global state 𝑠 is either Ok or Err(ℓ), which is the same as the contract annotation

language𝒜ctc from Chapter 6.



Chapter 8. Space-Efficient Contracts 132

The syntax of space-efficient contract se𝜅 has one constructor for each type. For the nat type,

the space-efficient contract se𝜅 is a list of predicates over the input. For other types, the construc-

tors of se𝜅 follow the recursive definition of the corresponding types. For example, a space-efficient

contract for pairs of type 𝜏1 × 𝜏2 is se𝜅1 ×/se se𝜅2 for some se𝜅1 : SECtc𝜏1 and se𝜅2 : SECtc𝜏2 where

SECtc𝜏 denotes the type of space-efficient contracts for values of type 𝜏 . For consistency, the

names of the constructors of the space-efficient contracts have the suffix “/se".

Next, Lemmas 8.1 and 8.3 and Proposition 8.2 present the Substitution lemmas for space-

efficient contracts

Lemma 8.1 (Renaming). Let Δ :≡ {𝑡1, . . . , 𝑡𝑛} and Δ′ :≡ {𝑡 ′1, . . . , 𝑡 ′𝑚} be given. Assume that there is

a sequence 1 ≤ 𝑎𝑖 ≤ 𝑚 for 𝑖 = 1 . . . 𝑛. If Δ ⊢se se𝜅 : SECtc𝜏 then Δ′ ⊢se se𝜅
[︁
𝑡 ′𝑎1, . . . , 𝑡

′
𝑎𝑛
/ 𝑡1, . . . , 𝑡𝑛

]︁
:

SECtc
(︁
𝜏
[︁
𝑡 ′𝑎1, . . . , 𝑡

′
𝑎𝑛
/ 𝑡1, . . . , 𝑡𝑛

]︁ )︁
.

Proposition 8.2. Assume that Δ′ ⊢se 𝜅𝑖 : SECtc𝜏𝑖 for 𝑖 = 1 . . . 𝑛 and let any 𝑡0 ∉ Δ′ be given. There

is a sequence Δ′′ ⊢se se𝜅𝑖 : SECtc𝜏𝑖 for 𝑖 = 0 . . . 𝑛 where Δ′′ :≡Δ′, 𝑡0 and se𝜅0 :≡ 𝑡0.

Lemma 8.3 (Substitution). Let Δ :≡ {𝑡1, . . . , 𝑡𝑛} and some Δ′ be given. Assume that Δ′ ⊢se se𝜅𝑖 :

SECtc𝜏𝑖 for 𝑖 = 1 . . . 𝑛. If Δ ⊢se se𝜅 : SECtc𝜏 then

Δ′ ⊢se se𝜅 [𝜅1, . . . , 𝜅𝑛 / 𝑡1, . . . , 𝑡𝑛] : SECtc (𝜏 [𝜏1, . . . , 𝜏𝑛 / 𝑡1, . . . , 𝑡𝑛])

Figure 8.4 displays the transition steps, 𝒯s, of the space-efficient contracts. In its definition,

λm[𝒜se;𝒯s] relies on a decidable predicate isStronger that takes two flat contracts and determines

whether the first flat contract subsumes the second. Specifically, for any 𝑒, 𝑒′ that have only one

free variable 𝑥 , if isStronger (𝑒, 𝑒′) is true then it should be the case that for all 𝑛, if 𝑒 [𝑛 /𝑥] termi-

nates with a positive integer, 𝑒′[𝑛 /𝑥] also terminates with a positive integer. If isStronger (𝑒, 𝑒′)

is false, the decision procedure makes no claims about the relationship between the flat con-

tracts and this is always allowed, unless 𝑒 and 𝑒′ are the same term. When 𝑒 and 𝑒′ are the

same, isStronger (𝑒, 𝑒′) must be true. This decision procedure, and the interpretation of its re-

sults, matches the Racket contract system’s contract-stronger? operation, except that the Racket

implementation always returns true when the predicates have closures at the same location in



Chapter 8. Space-Efficient Contracts 133

[R-Cross-Unit] Ok,B#unit/se { () } −→m Ok, ()
[R-Cross-Nat] Ok,B#[flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)] { 𝑛 } −→m 𝑠′, 𝑛

where (Ok, 𝑠′) ∈ checkCtcs∅, get, put ( [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], 𝑛)
[R-Cross-Cons] Ok,B#(se𝜅1 ×/se se𝜅2) { ⟨𝑣1, 𝑣2⟩ } −→m Ok, ⟨B#se𝜅1 {𝑣1} , B#se𝜅2 {𝑣2} ⟩
[R-Cross-Inl] Ok,B#(se𝜅1 +/se se𝜅2) { inl(𝑣) } −→m Ok, inl(B#se𝜅1 {𝑣})
[R-Cross-Inr] Ok,B#(se𝜅1 +/se se𝜅2) { inr(𝑣) } −→m Ok, inr(B#se𝜅2 {𝑣})

[R-Cross-Roll] Ok,B#(𝜇/se 𝑡 .se𝜅) { roll𝜏 (𝑣) } −→m Ok, roll𝜏 (B# (se𝜅 [(𝜇/se 𝑡 .se𝜅) / 𝑡]) {𝑣})
[R-Cross-Box] Ok,B#se𝜅 { box(𝑣) } −→m Ok, proxy(se𝜅, box(𝑣))
[R-Cross-Lam] Ok,B#se𝜅 { λ𝑥 .𝑒 } −→m Ok, proxy(se𝜅, λ𝑥 .𝑒)

[R-Proxy-Unbox] Ok, unbox(proxy(box/se se𝜅, box(𝑒))) −→m

Ok,B#se𝜅 { unbox(box(𝑒)) }
[R-Proxy-β] Ok, proxy(se𝜅𝑎→/se se𝜅𝑟 , λ𝑥 .𝑒) 𝑣 −→m Ok,B#se𝜅𝑟 { (λ𝑥 .𝑒) (B#se𝜅𝑎 {𝑣}) }

[R-Merge-Box] Ok,B#se𝜅1 { proxy(se𝜅2, box(𝑒)) } −→m Ok, proxy(se𝜅, box(𝑒))
where se𝜅 :≡ evalTick⟦✓✓✓ join(se𝜅2, se𝜅1) ⟧

[R-Merge-Lam] Ok,B#se𝜅1 { proxy(se𝜅2, λ𝑥 .𝑒) } −→m Ok, proxy(se𝜅, λ𝑥 .𝑒)
where se𝜅 :≡ evalTick⟦✓✓✓ join(se𝜅2, se𝜅1) ⟧

Figure 8.4: The transition steps,𝒯s, of space-efficient contracts

memory, rather than comparing their bodies.

The reduction rules𝒯s are similar to𝒯c𝑖 . For example, the [R-Cross-Nat] invokes the checkCtcs

metafunction from Figure 6.5 on page 92 to check the list of predicates annotated on the boundary.

The checkCtcs metafunction computes the the transition of the global states, (Ok, 𝑠′), and the [R-

Cross-Nat] updates the configuration accordingly. The subscript that 𝒯s supplies to checkCtcs

is an empty relation, ∅, which effectively disallows any nested contract checks during the eval-

uation of the predicates. This simplifies the proofs but still allows custom predicates to be used,

except that the custom predicates cannot contain other contracts.

The other [R-Cross] rules decompose and distribute pieces of the space-efficient contracts

in the conventional manner. In the [R-Cross-Cons] rule, the contract se𝜅1 ×/se se𝜅2 on ⟨𝑣1, 𝑣2⟩ is

broken down into se𝜅1 and se𝜅2 on 𝑣1 and 𝑣2. Similarly, the [R-Cross-Inl] and [R-Cross-Inr] rules

break down se𝜅1 +/se se𝜅2 and annotate either se𝜅1 or se𝜅2 on the new boundary. The [R-Cross-Roll]



Chapter 8. Space-Efficient Contracts 134

Tick : U →U A definition of (the meta-level) type Tick𝐴 produces a value of
type 𝐴 while tracking the total number of ticks.

✓✓✓ : Tick𝐴→ Tick𝐴 The ✓✓✓ operation increments the tick by one.

evalTick : Tick𝐴→ 𝐴 The evalTick function executes a Tick computation and extracts
the final result.

execTick : Tick𝐴→ N The execTick function executes a Tick computation and returns
the total tick count.

Figure 8.5: The operation of the Tick monad in the meta-language

rule expands the recursive contract. Finally, the [R-Cross-Box] and [R-Cross-Lam] rules attach

the given contract to the new proxy.

Next, the [R-Proxy-Unbox] rule extracts the contract se𝜅 of the stored value from the contract

box/se se𝜅 and pushes the unbox operation into the boundary. Following the same pattern, the [R-

Proxy-β] rule extracts the contracts se𝜅𝑎 and se𝜅𝑟 from the arrow contract se𝜅𝑎→/se se𝜅𝑟 , and puts

them separately on the boundaries around the argument and the result of the function application.

Last, the [R-Merge] rules are what make space-efficient contracts different from the ordinary

contracts in Chapter 6. When a proxy reaches a boundary, these rules merge the space-efficient

contract annotated on the boundary with the contract annotated on the proxy using the join

metafunction. Figures 8.6 and 8.7 display the definitions of join, joinFlats, and drop which work

with each other to remove redundant predicates from the list of predicates in the leaves.

Figure 8.6 shows the signature of join and the two auxiliary functions that handle the actual

removal of the duplication. All three of join, joinFlats, and drop are written in monadic style

using the Tick monad displayed from Figure 8.5. The Tick monad is adapted from Danielsson

[2008]’s Thunk monad and it comes an internal tick counter together with three operations: the

✓✓✓ operation increments the internal counter by 1; evalTick executes the computation and returns

the final result; execTick returns the count of the ticks (✓✓✓) that a computation uses. The functions

generally work like their purely functional variants except that the definitions automatically track

the total number of ✓✓✓ operations, which represents the count of primitive operations that the

functions need. For example, evalTick⟦✓✓✓ join(se𝜅2, se𝜅1) ⟧ computes the merging result of se𝜅2 and



Chapter 8. Space-Efficient Contracts 135

join : SECtc𝜏 → SECtc𝜏 → Tick (SECtc𝜏)
join(se𝜅, se𝜅′) ≡ . . . (in Figure 8.7)

drop : List (SECtc nat) → Expr nat→ Tick (List (SECtc nat))
drop( [], 𝑒) ≡ ✓✓✓ return []
drop( [flatℓ(𝑥 . 𝑒′), 𝜅2, . . . , 𝜅𝑚], 𝑒) ≡ do

b← ✓✓✓ isStronger (𝑒, 𝑒′)
if 𝑏

then ✓✓✓ drop( [𝜅2, . . . , 𝜅𝑚], 𝑒)
else do collapsedPreds← ✓✓✓ drop( [𝜅2, . . . , 𝜅𝑚], 𝑒)

✓✓✓ return flatℓ(𝑥 . 𝑒′) :: collapsedPreds

joinFlats : List (SECtc nat) → List (SECtc nat) → Tick (List (SECtc nat))
joinFlats( [], [𝜅1, . . . , 𝜅𝑚]) ≡ ✓✓✓ return [𝜅1, . . . , 𝜅𝑚]
joinFlats( [flatℓ ′(𝑥 . 𝑒), 𝜅′2, . . . , 𝜅′𝑘], [𝜅1, . . . , 𝜅𝑚]) ≡ do

mergedPreds← ✓✓✓ joinFlats( [𝜅′2, . . . , 𝜅′𝑘], [𝜅1, . . . , 𝜅𝑚])
collapsedPreds← ✓✓✓ drop(mergedPreds, 𝑒)
✓✓✓ return flatℓ

′(𝑥 . 𝑒) :: collapsedPreds

Figure 8.6: The joinFlats function that removes redundant predicates.

se𝜅1 in rule [R-Merge-Box] and rule [R-Merge-Lam], and execTick⟦✓✓✓ join(se𝜅2, se𝜅1) ⟧ returns the

number of primitive operations needed by join.

The join metafunction is adapted from Greenberg [2016]’s work. Since it simply traverses

the given inputs and calls joinFlats when reaching the leaves, I shall focus on the definitions of

joinFlats first. Specifically, joinFlats takes two lists of flat contracts and, for each in the first list,

calls drop on the result of recursion to filter out the predicates that isStronger reports as redundant.

Finally, Figure 8.7 gives the definition of the join metafunction. It takes two space-efficient

contracts, and returns a space-efficient contract that exhibits the same contract-checking behav-

ior as checking the two input contracts in order. Since space-efficient contracts are typed in my

framework, join only needs to consider merging contracts that have the same constructor. Specif-

ically, the first clause join(𝑡, 𝑡) in Figure 8.7 handles the variable case of space-efficient contracts,

not matching arbitrary equal inputs. As one would expect, join simply traverses its inputs and

calls joinFlats upon reaching the nat type case.



Chapter 8. Space-Efficient Contracts 136

join : SECtc𝜏 → SECtc𝜏 → Tick (SECtc𝜏)
join(𝑡, 𝑡) ≡ ✓✓✓ return 𝑡

join(unit/se, unit/se) ≡ ✓✓✓ return unit/se
join( [𝜅′1, . . . , 𝜅′𝑘], [𝜅1, . . . , 𝜅𝑚]) ≡ ✓✓✓ joinFlats( [𝜅′1, . . . , 𝜅′𝑘], [𝜅1, . . . , 𝜅𝑚])
join((se𝜅1 ×/se se𝜅3), (se𝜅2 ×/se se𝜅4)) ≡ do se𝜅𝑙 ← ✓✓✓ join(se𝜅1, se𝜅2)

se𝜅𝑟 ← ✓✓✓ join(se𝜅3, se𝜅4)
✓✓✓ return se𝜅𝑙 ×/se se𝜅𝑟

join((se𝜅1 +/se se𝜅3), (se𝜅2 +/se se𝜅4)) ≡ do se𝜅𝑙 ← ✓✓✓ join(se𝜅1, se𝜅2)
se𝜅𝑟 ← ✓✓✓ join(se𝜅3, se𝜅4)
✓✓✓ return se𝜅𝑙 +/se se𝜅𝑟

join(box/se se𝜅1, box/se se𝜅2) ≡ do se𝜅 ← ✓✓✓ join(se𝜅1, se𝜅2)
✓✓✓ return box/se se𝜅

join((se𝜅1→/se se𝜅3), (se𝜅2→/se se𝜅4)) ≡ do se𝜅𝑎 ← ✓✓✓ join(se𝜅2, se𝜅1)
se𝜅𝑟 ← ✓✓✓ join(se𝜅3, se𝜅4)
return se𝜅𝑎→/se se𝜅𝑟

join((𝜇/se 𝑡 .se𝜅1), (𝜇/se 𝑡 .se𝜅2)) ≡ do se𝜅 ← ✓✓✓ join(se𝜅1, se𝜅2)
✓✓✓ return 𝜇/se 𝑡 .se𝜅

Figure 8.7: The join function that merges space-efficient contracts.

8.3 Interlude: Size Parameters of Space-Efficient Contracts

Since the space and time complexity of λm[𝒜se;𝒯s] depends on the height of contracts and the

length of predicates in the leaves of contracts, I need to introduce several auxiliary definitions for

bounding the height and the length of predicates of a contract. Moreover, the complexity results

only hold in the absence of recursive contracts, so another judgement is needed. In this section,

I give the definition of the helper judgements.

Capturing Non-recursive Contracts. Figure 8.8 defines the judgement NonRec that captures

non-recursive contracts. Concretely, NonRec(se𝜅) holds if and only if there are no recursive con-

tracts (and thus no variables) anywhere in se𝜅.

The Height of Space-Efficient Contracts. Figure 8.9 defines the MaxHt judgement that cap-

tures all contracts whose height is smaller than or equal to the given bound. That is, the judge-

ment MaxHt(se𝜅, ℎ) holds if and only if the height of se𝜅 is at most ℎ. It can be related to the



Chapter 8. Space-Efficient Contracts 137

NonRec(se𝜅)

NonRec(unit/se) NonRec( [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)])
NonRec(se𝜅1) NonRec(se𝜅2)

NonRec(se𝜅1 ×/se se𝜅2)

NonRec(se𝜅1) NonRec(se𝜅2)
NonRec(se𝜅1 +/se se𝜅2)

NonRec(se𝜅)
NonRec(box/se se𝜅)

NonRec(se𝜅𝑎) NonRec(se𝜅𝑟 )
NonRec(se𝜅𝑎→/se se𝜅𝑟 )

Figure 8.8: Identifying non-recursive contracts.

MaxHt(se𝜅, ℎ) where se𝜅 : SECtc𝜏 and ℎ : N

MaxHt(𝑡, ℎ) MaxHt(unit/se, ℎ) MaxHt( [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], ℎ)

MaxHt(se𝜅1, ℎ) MaxHt(se𝜅2, ℎ)
MaxHt(se𝜅1 ×/se se𝜅2, 1 + ℎ)

MaxHt(se𝜅1, ℎ) MaxHt(se𝜅2, ℎ)
MaxHt(se𝜅1 +/se se𝜅2, 1 + ℎ)

MaxHt(se𝜅, ℎ)
MaxHt(box/se se𝜅, 1 + ℎ)

MaxHt(se𝜅𝑎, ℎ) MaxHt(se𝜅𝑟 , ℎ)
MaxHt(se𝜅𝑎→/se se𝜅𝑟 , 1 + ℎ)

MaxHt(se𝜅, ℎ)
MaxHt((𝜇/se 𝑡 . se𝜅), 1 + ℎ)

Figure 8.9: The height of space-efficient contracts.

conventional definition of the height(·) function over contracts. Specifically, given the definition

height : SECtc𝜏 → N
height(𝑡) ≡ 0
height(unit/se) ≡ 0
height

(︁
[flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)]

)︁
≡ 0

height(se𝜅1 ×/se se𝜅2) ≡ 1 +max (height(se𝜅1) , height(se𝜅2))
height(se𝜅1 +/se se𝜅2) ≡ 1 +max (height(se𝜅1) , height(se𝜅2))
height(box/se se𝜅) ≡ 1 + height(se𝜅)
height(se𝜅𝑎→/se se𝜅𝑟 ) ≡ 1 +max (height(se𝜅𝑎) , height(se𝜅𝑟 ))
height(𝜇/se 𝑡 .se𝜅) ≡ 1 + height(se𝜅)

it is the case that MaxHt(se𝜅, height(se𝜅)) holds for any se𝜅 and, conversely, if MaxHt(se𝜅, ℎ)

for some ℎ then height(se𝜅) ≤ ℎ.

When there are no recursive contracts, I can prove that the height of contracts in a program

is non-increasing. Formally, if 𝐻 is the height of the tallest contract in an initial program, I can

define an interpretation Iht that bounds the height of all contracts by 𝐻 .



Chapter 8. Space-Efficient Contracts 138

AllFlats(𝐽 , se𝜅) where 𝐽 : List (Expr nat) → U and se𝜅 : SECtc𝜏

𝐽 ( [𝑒1, . . . , 𝑒𝑚])
AllFlats(𝐽 , [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)]) AllFlats(𝐽 , 𝑡) AllFlats(𝐽 , unit/se)

AllFlats(𝐽 , se𝜅1) AllFlats(𝐽 , se𝜅2)
AllFlats(𝐽 , se𝜅1 ×/se se𝜅2)

AllFlats(𝐽 , se𝜅1) AllFlats(𝐽 , se𝜅2)
AllFlats(𝐽 , se𝜅1 +/se se𝜅2)

AllFlats(𝐽 , se𝜅)
AllFlats(𝐽 , box/se se𝜅)

AllFlats(𝐽 , se𝜅𝑎) AllFlats(𝐽 , se𝜅𝑟 )
AllFlats(𝐽 , se𝜅𝑎→/se se𝜅𝑟 )

AllFlats(𝐽 , se𝜅)
AllFlats(𝐽 , (𝜇/se 𝑡 . se𝜅))

NonEmpty(xs) where xs : List𝐶 UniqSub(xs, ys) where xs ys : List𝐶

NonEmpty(𝑥 ::𝑥𝑠)
xs ++ xs𝑐 = zs zs↭ ys

UniqSub(xs, ys)

Figure 8.10: Constraining the list of predicates in space-efficient contracts.

Definition 8.4. The annotation interpretation Iht :≡ (Sht, ≼ht, B, P) is defined as

Sht(𝑠) :≡ ⊤
𝑠 ≼ht 𝑠

′ :≡ ⊤
B⟦ se𝜅, 𝑒 ⟧ :≡ NonRec(se𝜅) ∧MaxHt(se𝜅, 𝐻 )
P⟦ se𝜅, 𝑒𝑚 ⟧ :≡ B⟦ se𝜅, 𝑒𝑚 ⟧

Theorem 8.5. The interpretation Iht is monotonic and sound.

Bounding Lengths of Predicates in Space-Efficient Contracts. To bound the lengths of the

list of flat predicates in a contract, I introduce AllFlats(𝐽 , se𝜅) in Figure 8.10, a judgement which

takes another judgement 𝐽 and applies it to all leaves of a contract. That is, AllFlats(𝐽 , se𝜅) holds

if and only if 𝐽 ( [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)]) holds for all list of predicates in se𝜅. For example,

NonEmpty(xs) asserts that the given list is non-empty, hence AllFlats(NonEmpty, se𝜅) means that

all leaves of se𝜅 contain at least one predicate. As another example, UniqSub(xs, ys) takes two

lists and asserts that xs contains only the distinct elements of ys. In its definition, xs𝑐 and ys are

existentially quantified, and zs↭ ys means that zs is a permutation of ys. Essentially, UniqSub

is formalized by making sure that xs is a prefix of a permutation of ys. The UniqSub judgement

is particularly useful for proving space efficiency.



Chapter 8. Space-Efficient Contracts 139

8.4 Space Efficiency

With the help of the judgements for bounding the height and the length of predicates introduced

in Section 8.3, I can present the proof of space efficiency for the instantiation λm[𝒜se;𝒯s]. Let

size(·) be the function that computes the size of a contract defined as follows:

size : SECtc𝜏 → N
size(𝑡) ≡ 1
size(unit/se) ≡ 1
size

(︁
[flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)]

)︁
≡ 𝑚

size(se𝜅1 ×/se se𝜅2) ≡ 1 + size(se𝜅1) + size(se𝜅2)
size(se𝜅1 +/se se𝜅2) ≡ 1 + size(se𝜅1) + size(se𝜅2)
size(box/se se𝜅) ≡ 1 + size(se𝜅)
size(se𝜅𝑎→/se se𝜅𝑟 ) ≡ 1 + size(se𝜅𝑎) + size(se𝜅𝑟 )
size(𝜇/se 𝑡 .se𝜅) ≡ 1 + size(se𝜅)

Then, with the indexed interpretation Isize𝐶 I shall prove that, if 𝐻 is the height of the tallest

contract in the initial program, and that K is similarly the set of all distinct predicates, the size

of all contracts are always bounded by 𝑂 ( |K | · 2𝐻 ).

Definition 8.6. The indexed interpretation Isize𝐶 :≡ (N, {◁𝐶,𝐴}𝐴, S, ≼, B, P) is defined as

𝑚 ◁𝐶,𝐴𝑚
′ :≡ 𝐶 =𝑚 ∧𝐶 =𝑚′

S(𝑠) :≡ ⊤
𝑠 ≼ 𝑠′ :≡ ⊤
B⟦ se𝜅𝐶,𝐶, 𝑒 ⟧ :≡ NonRec(se𝜅) ∧

AllFlats(UniqSub(−,K), se𝜅) ∧MaxHt(se𝜅, 𝐻 ) ∧
size(se𝜅) ≤ 𝐶 · 2𝐻 · |K |

P⟦ se𝜅𝐶,𝐶, 𝑒𝑚 ⟧ :≡ B⟦ se𝜅𝐶,𝐶, 𝑒𝑚 ⟧
Theorem 8.7. There exists 𝑐0 > 0 such that the indexed interpretation Isize𝑐0 is monotonic and

sound.

8.5 The Time Complexity of Space-Efficient Contracts

Tracking Run-time Cost of Contracts. Figure 8.11 displays the instantiation λm[𝒜ccs;𝒯ccs]

that I use for proving time complexity bounds for space-efficient contracts. To reason about time



Chapter 8. Space-Efficient Contracts 140

𝐴 ::= se𝜅

Status ::= Ok | Err(ℓ)
𝑠 ::= ⟨st, 𝑐,𝑤, 𝑘⟩

st ∈ Status 𝑐,𝑤, 𝑘 ∈ N

[R-Cross-Inl] ⟨Ok, 𝑐,𝑤, 𝑘⟩,B# (se𝜅1 +/se se𝜅2) { inl(𝑣) } −→m

⟨Ok, 𝑐,𝑤, 𝑘 + 1⟩, inl(B#se𝜅1 {𝑣})

[R-Proxy-β] ⟨Ok, 𝑐,𝑤, 𝑘⟩, proxy(se𝜅𝑎→/se se𝜅𝑟 , λ𝑥 .𝑒) 𝑣 −→m

⟨Ok, 𝑐,𝑤, 𝑘 + 1⟩,B#se𝜅𝑟 { (λ𝑥 .𝑒) (B#se𝜅𝑎 {𝑣}) }

[R-Merge-Lam] ⟨Ok, 𝑐,𝑤, 𝑘⟩,B#se𝜅1 { proxy(se𝜅2, λ𝑥 .𝑒) } −→m

⟨Ok, 𝑐,𝑤 +𝑤join, 𝑘 + 1⟩, proxy(se𝜅, λ𝑥 .𝑒)
where se𝜅 :≡ evalTick⟦✓✓✓ join(se𝜅2, se𝜅1) ⟧

𝑤join :≡ execTick⟦✓✓✓ join(se𝜅2, se𝜅1) ⟧

[R-Cross-Nat] ⟨Ok, 𝑐,𝑤, 𝑘⟩,B#[flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)] { 𝑛 } −→m

⟨st′, 𝑐′ +𝑚,𝑤 ′, 𝑘′ + 1⟩, 𝑛
where (⟨Ok, 𝑐,𝑤, 𝑘⟩, ⟨st′, 𝑐′,𝑤 ′, 𝑘′⟩) ∈

checkCtcs∅, get, put ( [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], 𝑛)

get (⟨st, 𝑐,𝑤, 𝑘⟩) :≡ 𝑠

put (⟨st, 𝑐,𝑤, 𝑘⟩, st′) :≡ ⟨st′, 𝑐,𝑤, 𝑘⟩

The definition of the annotation language (𝒜ccs,𝒯ccs) that counts contract checks and the prim-
itive operations join uses where 𝒜ccs :≡ (𝐴, 𝑠).

Figure 8.11: The annotation language (𝒜ccs,𝒯ccs) that tracks various run-time costs.

complexity, λm[𝒜ccs;𝒯ccs] extends λm[𝒜se;𝒯s] with three counters in the global states for tracking

run time cost: 𝑐 tracks the number of flat contract checks, 𝑤 represents how many primitive

operations join has performed, and 𝑘 counts the total number of monitor-related reduction steps.

For each rule in the transition steps, 𝒯ccs increments 𝑘 by 1. In rule [R-Cross-Nat], 𝒯ccs

adds𝑚 to the counter 𝑐 since the rule checks𝑚 more flat contracts. In rule [R-Merge-Box] and

[R-Merge-Lam], in addition to merging the two contracts with evalTick⟦✓✓✓ join(se𝜅2, se𝜅1) ⟧, the

two rules call the metafunction execTick⟦✓✓✓ join(se𝜅2, se𝜅1) ⟧ to calculate the number of primitive

operations needed for computing join(se𝜅2, se𝜅1) and keep the sum in the counter𝑤 . Here, I place

the tick operation (✓✓✓) following Danielsson [2008]’s convention (or, as Charguéraud and Pottier

[2019] argue, placing a tick operation at the entry of every function is another reasonable option).



Chapter 8. Space-Efficient Contracts 141

Bounding the Number of (Flat) Contract Checks. To show that adding contracts does not

incur exponential slowdown in theory, it is necessary to prove that the contract system does not

introduce an enormous amount of contract checks. Fortunately, this is actually a consequence

of space efficiency: since λm[𝒜se;𝒯s] removes duplicate predicates from all contracts appearing

in the program, every leaf of any contract can store at most |K | distinct predicates in the list.

Therefore, each boundary of type nat needs to check no more than |K | predicates, which is

merely a constant.

Proving this fact in the framework through the instantiation λm[𝒜ccs;𝒯ccs] is straightforward.

Since the monitor calculus checks the whole list of predicates in one monitor-related reduction

step, I only need to define the interpretation Ichkbnd that holds the invariant 𝑐 ≤ 𝑘 · |K |:

Definition 8.8. The annotation interpretation Ichkbnd :≡ (Schk, ≼chk, B, P) is defined as

Schk(⟨st, 𝑐,𝑤, 𝑘⟩) :≡ 𝑐 ≤ 𝑘 · |K |
⟨st, 𝑐,𝑤, 𝑘⟩ ≼chk ⟨st′, 𝑐′,𝑤 ′, 𝑘′⟩ :≡ ⊤
B⟦ se𝜅, 𝑒 ⟧ :≡ AllFlats(UniqSub(−,K), se𝜅)
P⟦ se𝜅, 𝑒𝑚 ⟧ :≡ B⟦ se𝜅, 𝑒𝑚 ⟧

Theorem 8.9. Ichkbnd is monotonic and sound.

Bounding the Cost of join. Another non-trivial piece of the cost of space-efficient contracts is

the time needed for merging two contracts—the essential part for maintaining space efficiency.

To make the calculation of the cost of join simpler, I follow Guéneau et al. [2018] and Guéneau

[2019] to work with multivariate asymptotic complexity.

Theorem 8.10. The time complexity of drop(xs, 𝑒) is 𝑂 (length(xs)).

Theorem 8.11. The time complexity of joinFlats(xs, 𝑦𝑠) is 𝑂
(︁
(length(xs) + length(ys))2

)︁
.

Theorem 8.12. Assume that MaxHt(se𝜅2, 𝐻 ), AllFlats(lengthIn(1,𝑈 ,−), se𝜅2),MaxHt(se𝜅1, 𝐻 ),

AllFlats(lengthIn(1,𝑈 ,−), se𝜅1), and 1 ≤ 𝑈 where lengthIn(𝐿,𝑈 , xs) holds if and only if

𝐿 ≤ length(xs) ≤ 𝑈 . Then, the time complexity of join(se𝜅2, se𝜅1) is

𝑂

(︂
𝑈 2 · 2𝐻

)︂
.



Chapter 8. Space-Efficient Contracts 142

Theorem 8.12 bounds the time complexity of join(se𝜅2, se𝜅1) in 𝑂 (𝑈 2 · 2ℎ) where 𝑈 represents

the upper bound of the length of the lists of predicates in se𝜅2,
se𝜅1, and 𝐻 is the upper bound

of the height of se𝜅2,
se𝜅1. This suggests the following interpretation for the aggregate cost for

maintaining space efficiency:

Definition 8.13. The annotation interpretation Isebnd𝐶 :≡ (S𝐶, ≼, B, P) is defined as

S𝐶 (⟨st, 𝑐,𝑤, 𝑘⟩) :≡ 𝑤 ≤ 𝐶 · 𝑘 · |K |2 · 2𝐻

⟨st, 𝑐,𝑤, 𝑘⟩ ≼ ⟨st′, 𝑐′,𝑤 ′, 𝑘′⟩ :≡ ⊤
B⟦ se𝜅, 𝑒 ⟧ :≡ NonRec(se𝜅) ∧

AllFlats(NonEmpty, se𝜅) ∧
AllFlats(UniqSub(−,K), se𝜅) ∧
MaxHt(se𝜅, 𝐻 )

P⟦ se𝜅, 𝑒𝑚 ⟧ :≡ B⟦ se𝜅, 𝑒𝑚 ⟧

In Isebnd𝐶 , 𝐻 is again the height of the tallest contract in the initial program, and K denotes

the set of all distinct predicates. The interpretation Isebnd𝐶 morally asserts the cost for merging

contracts,𝑤 , is bounded by𝑂 (𝑘 · |K |2 ·2𝐻 ), which is again linear in 𝑘 . In summary, space-efficient

contracts only slow down programs by a constant factor in theory.

Theorem 8.14. There exists 𝑐0 > 0 such that the interpretation Isebnd𝑐0 is monotonic and sound.

Note. As Howell [2008] noted, the multivariate big O notation does not immediately satisfy com-

mon properties needed for the compositional analysis of algorithm complexity. Thus, I follow

Guéneau [2019]’s approach in the actual proof. Using the big O notation in Theorem 8.14, how-

ever, introduces additional constraints in the interpretation Isebnd since the time complexity re-

sults hold only for sufficiently large inputs. Fortunately, the conditions AllFlats(NonEmpty, se𝜅)

for all se𝜅 and that |K | ≥ 1 are sufficient for applying Theorem 8.12 in the proof of Theorem 8.14.

In general, however, the size lower bounds may need to be generalized for an alternative proof.



Chapter 8. Space-Efficient Contracts 143

8.6 Equivalence to Findler and Felleisen [2002]’s Contracts

Since space-efficient contracts remove checks at run time, we need to ensure that the remaining

checks are sufficient to detect contract violations correctly. In this section, I prove that space-

efficient contracts behave the same as Findler and Felleisen [2002]’s contract system using the

monitor calculus and the proof framework developed in Chapter 5.

To prove the equivalence, I follow the ideas from Pottier and Simonet [2002, 2003]’s non-

interference proof and create (𝒜scctc,𝒯sc), an annotation language that runs two contract systems

from λm[𝒜ctc;𝒯c1] and λm[𝒜se;𝒯s] simultaneously. As the monitor calculus separates monitor-

related rules from program-related rules, the two contract systems, λm[𝒜ctc;𝒯c1] and λm[𝒜se;𝒯s],

are completely encapsulated in the annotations and the global states of λm[𝒜scctc;𝒯sc]. Conse-

quently, their equivalence boils down to proving that the global state of λm[𝒜scctc;𝒯sc] always

has two equal components.

The equivalence of the two contract systems is established by instantiating the proof frame-

work from Sections 5.2 and 5.3 with an annotation interpretation named Isim that characterizes

global states with two equal Status components. Then, after proving that Isim is both monotonic

and sound, the proof framework leads to the conclusion that the Status components of the global

state are always equal.

The remainder of this section details the proof outlined above. In Section 8.6.1, I present the

instantiation λm[𝒜scctc;𝒯sc]. Then, Section 8.6.2 briefly reviews the proof framework of the moni-

tor calculus. Sections 8.6.3 and 8.6.4 introduce the simulation relation, ∼, and prove its properties

in preparation for establishing the monotonicity and soundness of Isim. Finally, Section 8.6.5

assembles all the pieces of the proof.

8.6.1 Syntax of the Combined Annotation Language

The top of Figure 8.12 displays the formal syntax of 𝒜scctc. Its annotations pair a space-efficient

contract with a list of ordinary contracts, and its global state keeps two distinct copies of contract-



Chapter 8. Space-Efficient Contracts 144

𝒜scctc :≡ (𝐴, 𝑠) 𝐴se ::= se𝜅

𝐴 ::= ⟨𝐴se, 𝐴sctc⟩ 𝐴sctc ::= [𝜅1, . . . , 𝜅𝑚]
𝑠 ::= ⟨st, st′⟩ Status ∋ st ::= Ok | Err(ℓ)

[R-Cross-Inl] ⟨Ok,Ok⟩,B#⟨(se𝜅1 +/se se𝜅2) , [
(︁
𝜅1 +/c𝜅′1

)︁
, . . . ,

(︁
𝜅𝑚 +/c𝜅′𝑚

)︁
]⟩ { inl(𝑣) }

⟨Ok,Ok⟩, inl(B#⟨se𝜅1, [𝜅1, . . . , 𝜅𝑚]⟩ {𝑣})

[R-Cross-Roll] ⟨Ok,Ok⟩,B#⟨(𝜇/se 𝑡 .se𝜅) , [(𝜇/c 𝑡 .𝜅1), . . . , (𝜇/c 𝑡 .𝜅𝑚)]⟩ { roll𝜏 (𝑣) }
⟨Ok,Ok⟩, roll𝜏 (B#⟨(se𝜅 [(𝜇/se 𝑡 .se𝜅) / 𝑡]) , [𝜅′1, . . . , 𝜅′𝑚]⟩ {𝑣})

where 𝜅′1 :≡ 𝜅1 [(𝜇/c 𝑡 .𝜅1) / 𝑡]
...

𝜅′𝑚 :≡ 𝜅𝑚 [(𝜇/c 𝑡 .𝜅𝑚) / 𝑡]

[R-Proxy-β] ⟨Ok,Ok⟩, proxy
(︁
⟨se𝜅𝑎→/se se𝜅𝑟 , [(𝜅1→/c𝜅′1), . . . , (𝜅𝑚→/c𝜅′𝑚)]⟩, λ𝑥 .𝑒

)︁
𝑣

−→m ⟨Ok,Ok⟩,B#⟨se𝜅𝑟 , [𝜅′1, . . . , 𝜅′𝑚]⟩ { (λ𝑥 .𝑒) (B#⟨se𝜅𝑎, [𝜅𝑚, . . . , 𝜅1]⟩ {𝑣}) }

[R-Merge-Box] ⟨Ok,Ok⟩,B#⟨se𝜅1, [𝜅1, . . . , 𝜅𝑙 ]⟩
{︁
proxy

(︁
⟨se𝜅2, [𝜅′1, . . . , 𝜅′𝑚]⟩, box(𝑒)

)︁ }︁
−→m ⟨Ok,Ok⟩, proxy

(︁
⟨se𝜅, [𝜅′1, . . . , 𝜅′𝑚, 𝜅1, . . . , 𝜅𝑙 ]⟩, box(𝑒)

)︁
where se𝜅 :≡ evalTick⟦✓✓✓ join(se𝜅2, se𝜅1) ⟧

[R-Merge-Lam] ⟨Ok,Ok⟩,B#⟨se𝜅1, [𝜅1, . . . , 𝜅𝑙 ]⟩
{︁
proxy

(︁
⟨se𝜅2, [𝜅′1, . . . , 𝜅′𝑚]⟩, λ𝑥 .𝑒

)︁ }︁
−→m ⟨Ok,Ok⟩, proxy

(︁
⟨se𝜅, [𝜅′1, . . . , 𝜅′𝑚, 𝜅1, . . . , 𝜅𝑙 ]⟩, λ𝑥 .𝑒

)︁
where se𝜅 :≡ evalTick⟦✓✓✓ join(se𝜅2, se𝜅1) ⟧

[R-Cross-Nat] ⟨Ok,Ok⟩,B#⟨[flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑘(𝑥 . 𝑒𝑘)], [𝜅1, . . . , 𝜅𝑚]⟩ { 𝑛 } −→m 𝑠′′, 𝑛

where (⟨Ok,Ok⟩, 𝑠′) ∈ checkCtcs∅, get1, put1 ( [flat
ℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑘(𝑥 . 𝑒𝑘)], 𝑛)

(𝑠′, 𝑠′′) ∈ checkCtcs∅, get2, put2 ( [𝜅1, . . . , 𝜅𝑚], 𝑛)
get1(⟨st1, st2⟩) :≡ st1 put1(⟨st1, st2⟩, st′1) :≡ ⟨st′1, st2⟩
get2(⟨st1, st2⟩) :≡ st2 put2(⟨st1, st2⟩, st′2) :≡ ⟨st1, st′2⟩

The annotation language (𝒜scctc,𝒯sc) pairs space-efficient contracts, (𝒜se,𝒯s), with Findler and
Felleisen [2002]’s contracts, (𝒜ctc,𝒯c1).

Figure 8.12: The annotation language for proving the equivalence.



Chapter 8. Space-Efficient Contracts 145

checking status. The bottom of Figure 8.12 displays the selected rules of the transition steps of

𝒯sc. As one would expect, the transition steps defined in the figure apply the rules from both 𝒯s

from Figure 8.4 in page 133 and 𝒯c1 from Figure 6.4 in page 90 to propagate the contracts and

separately manage the global states.

The monitor-related reduction relation 𝒯sc conceptually runs space-efficient contracts and

ordinary contracts in parallel. For example, the [R-Cross-Inl] rule illustrates how the space-

efficient contract se𝜅1 +/se se𝜅2 and the ordinary contracts [(𝜅1 +/c𝜅′1), . . . , (𝜅𝑚 +/c𝜅′𝑚)] are separately

propagated from the old boundary around inl(𝑣) to the new boundary around 𝑣 .

The [R-Proxy-β] rule is similar in spirit. In the rule, the space-efficient contract se𝜅𝑎→/se se𝜅𝑟

is decomposed and distributed to the two new boundaries in the second line. The contracts

[(𝜅1→/c𝜅′1), . . . , (𝜅𝑚→/c𝜅′𝑚)] are similarly decomposed and distributed to the new boundaries.

For ordinary contracts, the domain sub-contracts 𝜅1, . . . , 𝜅𝑚 are reversed before being attached to

the argument (𝑣) to maintain the correct contract-checking order (cf. Section 6.2).

Next, the [R-Merge-Box] and [R-Merge-Lam] rules joins the space-efficient contracts se𝜅1

and se𝜅2 using the join metafunction just like what 𝒯se does in page 133. At the same time, the

[R-Merge-Lam] rule concatenating ordinary contracts [𝜅1, . . . , 𝜅𝑙 ] and [𝜅′1, . . . , 𝜅′𝑚] just like what

𝒯c1 does in page 90.

Finally, the [R-Cross-Nat] rule enforces the (flat) space-efficient contract and ordinary con-

tracts. The rule makes two sequential calls to the checkCtcs metafunction from Figure 6.5 in page

92 to check the two lists of predicates. For the first call, rule [R-Cross-Nat] uses get1 and put1 to

access the space-efficient component in the global status. The second call is similar except that

rule [R-Cross-Nat] uses get2 and put2.

8.6.2 Overview of the Equivalence Proof

To prove that λm[𝒜se;𝒯s] and λm[𝒜ctc;𝒯c1] always produce the same contract-checking results, I

define the interpretation Isim, which asks that the global state of λm[𝒜scctc;𝒯sc] always contains

equal components. As 𝒯sc updates the global states in rule [R-Cross-Nat] with two calls to



Chapter 8. Space-Efficient Contracts 146

𝑝 ::= + | −

(−𝑝) :≡
{︃
−, if 𝑝 = +
+, if 𝑝 = −

signedReverse(+, [𝜅1, . . . , 𝜅𝑚]) :≡ [𝜅1, . . . , 𝜅𝑚]
signedReverse(−, [𝜅1, . . . , 𝜅𝑚]) :≡ [𝜅𝑚, . . . , 𝜅1]

𝛿 (𝑡) = 𝑝

𝛿 ⊢𝑝 𝑡 signed
𝛿, 𝑡 : 𝑝 ⊢𝑝 se𝜅 signed
𝛿 ⊢𝑝 (𝜇/se 𝑡 .se𝜅) signed

𝛿 ⊢−𝑝 se𝜅𝑎 signed 𝛿 ⊢𝑝 se𝜅𝑟 signed
𝛿 ⊢𝑝 (se𝜅𝑎→/se se𝜅𝑟 ) signed

𝛿 ⊢𝑝 unit/se signed 𝛿 ⊢𝑝 [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)] signed
𝛿 ⊢𝑝 se𝜅 signed

𝛿 ⊢𝑝 (box/se se𝜅) signed

𝛿 ⊢𝑝 se𝜅1 signed 𝛿 ⊢𝑝 se𝜅2 signed
𝛿 ⊢𝑝 (se𝜅1 ×/se se𝜅2) signed

𝛿 ⊢𝑝 se𝜅1 signed 𝛿 ⊢𝑝 se𝜅2 signed
𝛿 ⊢𝑝 (se𝜅1 +/se se𝜅2) signed

Figure 8.13: The covariance judgement for space-efficient contracts.

checkCtcs, I introduce a simulation ∼ over the annotations to make sure that the two lists of

predicates that𝒯sc passes to checkCtcs produce identical results.

I shall give the definition of ∼ later. Instead, let me explain how ∼ is involved in the equiv-

alence proof. First, for any related contracts, i.e. se𝜅 ∼ [𝜅1, . . . , 𝜅𝑚], checkCtcs produces identical

contract checking results when se𝜅 and [𝜅1, . . . , 𝜅𝑚] are contracts over natural numbers (where, in

this case, se𝜅 is also a list of predicates by the typing rules). Second, se𝜅 ∼ [𝜅1, . . . , 𝜅𝑚] is preserved

by monitor-related reductions, and thus leading to the conclusion that λm[𝒜scctc;𝒯sc] always con-

tain global states of equal components, i.e. λm[𝒜se;𝒯s] and λm[𝒜ctc;𝒯c1] are equivalent.

The interpretation Isim integrates ∼ in two places. First, it defines the partial order on the

global states generated by ⟨Ok,Ok⟩ ≼ ⟨Err(ℓ), Err(ℓ)⟩. Thus, when Isim is monotonic, the

framework guarantees that the global state of λm[𝒜scctc;𝒯sc] has equal components. Second, Isim

uses ∼ as the invariant attached by the B and P functions. Thus, Isim ⊨ 𝑒 holds if and only if

all pairs of contracts in the annotations in 𝑒 are related by ∼. As a result, the preservation of ∼

by −→m is, by definition, the soundness of Isim. In other words, the equivalence proof still lies

within the framework developed in Chapter 5.

A Note on Recursive Contracts. There is one caveat, however: ∼ is preserved by −→m only



Chapter 8. Space-Efficient Contracts 147

Γϰ ⊢ [] ∼cl []
Γϰ, 𝑒 ⊢ [𝜅2, . . . , 𝜅𝑘] ∼cl [𝜅′2, . . . , 𝜅′𝑚] [Clp-Keep]

Γϰ ⊢ [flatℓ(𝑥 . 𝑒), 𝜅2, . . . , 𝜅𝑘] ∼cl [flatℓ(𝑥 . 𝑒), 𝜅′2, . . . , 𝜅′𝑚]

𝑒∗ ∈ Γϰ 𝑒∗ ≼ 𝑒 Γϰ ⊢ [𝜅1, . . . , 𝜅𝑘] ∼cl [𝜅′2, . . . , 𝜅′𝑚] [Clp-Drop]
Γϰ ⊢ [𝜅1, . . . , 𝜅𝑘] ∼cl [flatℓ(𝑥 . 𝑒), 𝜅′2, . . . , 𝜅′𝑚]

Figure 8.14: The simulation relation of flat predicates.

when all recursive contracts appearing in the program are covariant. This is the same phe-

nomenon as blame consistency from Section 7.2 where a contravariant recursive contract can

produce an incorrect blame. Thus, I add the constraint ⊢+ se𝜅 signed to the interpretation Isim just

like to how the blame consistency theorem restricts recursive contracts.

For completeness, I present the definition of 𝛿 ⊢𝑝 se𝜅 signed for recursive contracts and an

auxiliary function signedReverse(𝑝, [𝜅1, . . . , 𝜅𝑚]) in Figure 8.13. The definitions are similar to

their counterparts in Section 7.2 and are used only for the proof.

Proposition 8.15. If 𝛿 ⊢𝑝 se𝜅 signed then −𝛿 ⊢−𝑝 se𝜅 signed where (−𝛿) (𝑥) :≡ −𝛿 (𝑥).

Lemma 8.16 (Renaming). Let 𝛿 :≡ {𝑡1 : 𝑝1, . . . , 𝑡𝑛 : 𝑝𝑛} and 𝛿′ :≡ {𝑡 ′1 : 𝑝′1, . . . , 𝑡 ′𝑚 : 𝑝′𝑚} be given.

Assume that there is a sequence 1 ≤ 𝑎𝑖 ≤ 𝑚 such that 𝑝𝑖 = 𝑝′𝑎𝑖 for 𝑖 = 1 . . . 𝑛. I 𝛿 ⊢𝑝 se𝜅 signed then

𝛿′ ⊢𝑝 se𝜅
[︁
𝑡 ′𝑎1, . . . , 𝑡

′
𝑎𝑛
/ 𝑡1, . . . , 𝑡𝑛

]︁
signed.

Proposition 8.17. Let 𝛿′ ⊢𝑝𝑖 se𝜅𝑖 signed for 𝑖 = 1 . . . 𝑛 be given. Then, for any fresh variable 𝑡0 : 𝑝0,

there is a sequence 𝛿′′ ⊢𝑝𝑖 se𝜅𝑖 signed for 𝑖 = 0 . . . 𝑛 where 𝛿′′ :≡𝛿, 𝑡0 : 𝑝0 and 𝜅0 :≡ 𝑡0.

Lemma 8.18 (Substitution). Let 𝛿 :≡ {𝑡1 : 𝑝1, . . . , 𝑡𝑛 : 𝑝𝑛} be given. If 𝛿′ ⊢𝑝𝑖 se𝜅𝑖 signed for

1 ≤ 𝑖 ≤ 𝑛 and 𝛿 ⊢𝑝 se𝜅 signed then 𝛿′ ⊢𝑝 se𝜅 [se𝜅1, . . . , se𝜅𝑛 / 𝑡1, . . . , 𝑡𝑛] signed.

8.6.3 Maintaining Equal Contract Checking Status

The base case of the ∼ relation delegates the work to the ∼cl relation. That is, ∼cl captures equiv-

alent space-efficient contracts and ordinary contracts at the nat type, and the next section uses

∼cl to define the full relation over contracts of all types, ∼.

Figure 8.14 displays the definition of ∼cl. To help distinguish the contracts, I color space-



Chapter 8. Space-Efficient Contracts 148

𝑡 ∼ [𝑡, . . . , 𝑡]
⊢ [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑘(𝑥 . 𝑒𝑘)] ∼cl [𝜅1, . . . , 𝜅𝑚]
[flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑘(𝑥 . 𝑒𝑘)] ∼ [𝜅1, . . . , 𝜅𝑚]

unit/se ∼ [unit/c, . . . , unit/c]
se𝜅𝑎 ∼ [𝜅𝑚, . . . , 𝜅1] se𝜅𝑟 ∼ [𝜅′1, . . . , 𝜅′𝑚]

(se𝜅𝑎→/se se𝜅𝑟 ) ∼ [(𝜅1→/c𝜅′1), . . . , (𝜅𝑚→/c𝜅′𝑚)]
se𝜅1 ∼ [𝜅1, . . . , 𝜅𝑚] se𝜅2 ∼ [𝜅′1, . . . , 𝜅′𝑚]
(se𝜅1 ×/se se𝜅2) ∼ [(𝜅1 ×/c𝜅′1), . . . , (𝜅𝑚 ×/c𝜅′𝑚)]

se𝜅1 ∼ [𝜅1, . . . , 𝜅𝑚] se𝜅2 ∼ [𝜅′1, . . . , 𝜅′𝑚]
(se𝜅1 +/se se𝜅2) ∼ [(𝜅1 +/c𝜅′1), . . . , (𝜅𝑚 +/c𝜅′𝑚)]

se𝜅 ∼ [𝜅1, . . . , 𝜅𝑚]
box/se se𝜅 ∼ [box/c𝜅1, . . . , box/c𝜅𝑚]

se𝜅 ∼ [𝜅1, . . . , 𝜅𝑚]
(𝜇/se 𝑡 .se𝜅) ∼ [(𝜇/c 𝑡 .𝜅1), . . . , (𝜇/c 𝑡 .𝜅𝑚)]

Figure 8.15: The simulation relation of all contracts.

efficient contracts blue and ordinary contracts brown. As Figure 8.14, shows ∼cl is a ternary

relation. The first part is a context, Γϰ, which is responsible for tracking the set of predicates that

∼cl has walked through when recurring into the tail of the list. The second part is a redundancy-

free list of predicates. The last part of ∼cl is the list of all predicates.

During recursion, rule [Clp-Drop] can drop a predicate 𝑒 from the second part if the context

contains a stronger predicate 𝑒∗. In this case, removing 𝑒 has no effect as 𝑒∗ subsumes the contract

checking result of 𝑒 . Otherwise, rule [Clp-Keep] keeps 𝑒 in both the second and the third parts.

When scanning the tail of the list, rule [Clp-Keep] also adds 𝑒 to the context.

Lemma 8.19 is the key lemma for proving the equivalence of two contract systems. Specif-

ically, it states that when a space-efficient contract and an ordinary contract are related at base

types (i.e. related lists of flat predicates), the checking result of will be equivalent:

Lemma8.19. Assume (⟨Ok,Ok⟩, ⟨st′,Ok⟩) ∈ checkCtcs∅, get1, put1 ( [flat
ℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑘(𝑥 . 𝑒𝑘)], 𝑛)

and that (⟨st′,Ok⟩, 𝑠′′) ∈ checkCtcs∅, get2, put2 ( [𝜅1, . . . , 𝜅𝑚], 𝑛). If, it is the case that

Γϰ ⊢ [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑘(𝑥 . 𝑒𝑘)] ∼cl [𝜅1, . . . , 𝜅𝑚]

and (⟨st′,Ok⟩, ⟨st′,Ok⟩) ∈ checkPred∅ , get1, put1 (flat
ℓ∗(𝑥 . 𝑒∗), 𝑛) for all 𝑒∗ ∈ Γϰ, there exists st′′ ∈

Status such that 𝑠′′ = ⟨st′′, st′′⟩.



Chapter 8. Space-Efficient Contracts 149

8.6.4 Preservation of the Simulation Relation

Figure 8.15 shows the definition of ∼. In most cases, ∼ is defined by replicating the actions of the

transition steps, 𝒯sc, except that for the nat type ∼ uses ∼cl from the previous section to ensure

that space-efficient contracts only removes redundant predicates.

To understand how∼ captures the transition steps𝒯sc in its definition, consider the reduction

𝒜scctc ⊢ 𝑠, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→ 𝑠′,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 {𝑣}) }

where 𝐴 is the annotation ⟨se𝜅𝑎→/se se𝜅𝑟 , [𝜅1→/c𝜅′1, . . . , 𝜅𝑚→/c𝜅′𝑚]⟩. By the definition of𝒯sc from

Figure 8.12 in page 144, 𝐴𝑟 and 𝐴𝑎 equal:

𝐴𝑟 :≡ ⟨se𝜅𝑟 , [𝜅′1, . . . , 𝜅′𝑚]⟩
𝐴𝑎 :≡ ⟨se𝜅𝑎, [𝜅𝑚, 𝜅𝑚−1 . . . , 𝜅1]⟩

Comparing the annotations 𝐴, 𝐴𝑟 , and 𝐴𝑎 to the definition of ∼, it can be easily seen that

when the contracts in 𝐴 are related by ∼, so are the contracts in 𝐴𝑎 and 𝐴𝑟 . Thus, most rules in

the definition of ∼ are straightforward, as is the preservation proof.

The [R-Merge-Box] and [R-Merge-Lam] rules are where real work kicks in because𝒯sc calls

join(·, ·) tomerge two space-efficient contracts. In Lemmas 8.20 to 8.22, I prove that the [R-Merge]

rules preserve the simulation relation. Concretely, in Figure 8.12, the term on the left-hand side

of the [R-Merge] rules is

B#⟨se𝜅1, [𝜅1, . . . , 𝜅𝑙 ]⟩
{︁
proxy

(︁
⟨se𝜅2, [𝜅′1, . . . , 𝜅′𝑚]⟩, 𝑒𝑚

)︁ }︁
,

which reduces to the term

proxy
(︁
⟨join(se𝜅2, se𝜅1), [𝜅′1, . . . , 𝜅′𝑚, 𝜅1, . . . , 𝜅𝑙 ]⟩, 𝑒𝑚

)︁
on the right-hand side. To prove that the reduction step preserves ∼, I need to demonstrate that
se𝜅1 ∼ [𝜅1, . . . , 𝜅𝑙 ] and se𝜅2 ∼ [𝜅′1, . . . , 𝜅′𝑚] implies join(se𝜅2, se𝜅1) ∼ [𝜅′1, . . . , 𝜅′𝑚, 𝜅1, . . . , 𝜅𝑙 ]. This

breaks down into the following lemmas about drop, joinFlats, and join. To ease the presentation,

I shall omit the references to evalTick and ✓✓✓ in the statements of the lemmas.

Lemma 8.20. If 𝑒 ∈ Γϰ and Γϰ ⊢ [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑘(𝑥 . 𝑒𝑘)] ∼cl [𝜅1, . . . , 𝜅𝑚] then



Chapter 8. Space-Efficient Contracts 150

Γϰ ⊢ drop( [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑘(𝑥 . 𝑒𝑘)], 𝑒) ∼cl [𝜅1, . . . , 𝜅𝑚]

Lemma 8.21. If Γϰ ⊢ [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑘(𝑥 . 𝑒𝑘)] ∼cl [𝜅1, . . . , 𝜅𝑚] and

⊢ [flatℓ ′1(𝑥 . 𝑒′1), . . . , flat
ℓ ′
ℎ(𝑥 . 𝑒′

ℎ
)] ∼cl [𝜅′1, . . . , 𝜅′𝑙 ] then

Γϰ ⊢ joinFlats( [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑘(𝑥 . 𝑒𝑘)], [flatℓ
′
1(𝑥 . 𝑒′1), . . . , flat

ℓ ′
ℎ(𝑥 . 𝑒′

ℎ
)]) ∼cl

[𝜅1, . . . , 𝜅𝑚, 𝜅′1, . . . , 𝜅′𝑙 ]

Lemma8.22. If se𝜅1 ∼ [𝜅1, . . . , 𝜅𝑙 ] and se𝜅2 ∼ [𝜅′1, . . . , 𝜅′𝑚] then join(se𝜅2, se𝜅1) ∼ [𝜅′1, . . . , 𝜅′𝑚, 𝜅1, . . . , 𝜅𝑙 ].

The preservation of the simulation relation for the [R-Cross-Roll] rule is more intricate.

Recall that in the [R-Cross-Roll] rule from Figure 8.12, the term on the left-hand side is

B#⟨(𝜇/se 𝑡 .se𝜅) , [(𝜇/c 𝑡 .𝜅1), . . . , (𝜇/c 𝑡 .𝜅𝑚)]⟩ { roll𝜏 (𝑣) } ,

and the term on the right-hand side is

roll𝜏 (B#⟨(se𝜅 [(𝜇/se 𝑡 .se𝜅) / 𝑡]) , [(𝜅1 [(𝜇/c 𝑡 .𝜅1) / 𝑡]) , . . . , (𝜅𝑚 [(𝜇/c 𝑡 .𝜅𝑚) / 𝑡])]⟩ {𝑣})

Therefore, for the simulation relation to be preserved by the reduction, it has to be shown that

𝜇/se 𝑡 .se𝜅 ∼ [(𝜇/c 𝑡 .𝜅1) , . . . , (𝜇/c 𝑡 .𝜅𝑚)]

would imply

se𝜅 [(𝜇/se 𝑡 .se𝜅) / 𝑡] ∼ [(𝜅1 [(𝜇/c 𝑡 .𝜅1) / 𝑡]) , . . . , (𝜅𝑚 [(𝜇/c 𝑡 .𝜅𝑚) / 𝑡])] .

In other words, the preservation with respect to the [R-Cross-Roll] rule requires the proof that

the substitution respects the simulation relation.

As previously noted, only recursive contracts that are covariant preserves the simulation re-

lation. Proposition 8.23 formally states the preservation lemma for the [R-Cross-Roll] rule, with

the necessary condition that the given space-efficient contract is covariant.

Proposition 8.23. If𝛿 ⊢+ se𝜅 signed and 𝜇/se 𝑡 .se𝜅 ∼ [(𝜇/c 𝑡 .𝜅1) , . . . , (𝜇/c 𝑡 .𝜅𝑚)] then se𝜅 [(𝜇/se 𝑡 .se𝜅) / 𝑡] ∼

[(𝜅1 [(𝜇/c 𝑡 .𝜅1) / 𝑡]) , . . . , (𝜅𝑚 [(𝜇/c 𝑡 .𝜅𝑚) / 𝑡])].

Proposition 8.23 is a direct corollary of the Substitution lemma for the simulation relation.

Lemmas 8.24 and 8.26 and Proposition 8.25 together prove the Substitution lemma for the simu-



Chapter 8. Space-Efficient Contracts 151

lation relation.

Lemma 8.24 (Renaming). Let Δ :≡ {𝑡1, . . . , 𝑡𝑛} and Δ′ :≡ {𝑡 ′1, . . . , 𝑡 ′𝑚} be given. Assume that there

is a sequence 1 ≤ 𝑎𝑖 ≤ 𝑚 for 𝑖 = 1 . . . 𝑛. If se𝜅 ∼ [𝜅1, . . . , 𝜅𝑚] where Δ ⊢se se𝜅 : SECtc𝜏 and

Δ ⊢se 𝜅𝑖 : SECtc𝜏 for 𝑖 = 1 . . . 𝑛 then

se𝜅
[︁
𝑡 ′𝑎1, . . . , 𝑡

′
𝑎𝑛
/ 𝑡1, . . . , 𝑡𝑛

]︁
∼ [

(︁
𝜅1

[︁
𝑡 ′𝑎1, . . . , 𝑡

′
𝑎𝑛
/ 𝑡1, . . . , 𝑡𝑛

]︁ )︁
, . . . ,

(︁
𝜅𝑚

[︁
𝑡 ′𝑎1, . . . , 𝑡

′
𝑎𝑛
/ 𝑡1, . . . , 𝑡𝑛

]︁ )︁
] .

Proposition 8.25. Let se𝜅𝑖 ∼ signedReverse(𝑝𝑖, [𝜅𝑖,1, . . . , 𝜅𝑖,𝑚]) for 𝑖 = 1 . . . 𝑛 be given. For any fresh

variable 𝑡0 : 𝑝0, there is a sequence se𝜅𝑖 ∼ signedReverse(𝑝𝑖, [𝜅𝑖,1, . . . , 𝜅𝑖,𝑚]) for 𝑖 = 0 . . . 𝑛 where

se𝜅0 :≡ 𝑡0 and 𝜅0, 𝑗 :≡ 𝑡0 for 𝑗 = 0 . . .𝑚.

Lemma 8.26 (Substitution). Let 𝛿 :≡ {𝑡1 : 𝑝1, . . . , 𝑡𝑛 : 𝑝𝑛} and 𝛿′ be given. Assume that 𝛿 ⊢𝑝

se𝜅 signed and se𝜅 ∼ signedReverse(𝑝, [𝜅1, . . . , 𝜅𝑛]). If for all 1 ≤ 𝑖 ≤ 𝑛, 𝛿′ ⊢𝑝𝑖 se𝜅𝑖 signed and

se𝜅𝑖 ∼ signedReverse(𝑝𝑖, [𝜅′𝑖,1, . . . , 𝜅′𝑖,𝑚]) then

se𝜅 [se𝜅1, . . . , se𝜅𝑛 / 𝑡1, . . . , 𝑡𝑛] ∼ signedReverse(𝑝, [
(︂
𝜅1

[︁
𝜅′1,1, . . . , 𝜅

′
1,𝑚 / 𝑡1, . . . , 𝑡𝑛

]︁ )︂
, . . . ,(︂

𝜅𝑛
[︁
𝜅′𝑛,1, . . . , 𝜅

′
𝑛,𝑚 / 𝑡1, . . . , 𝑡𝑛

]︁ )︂
]).

8.6.5 Completing the Equivalence Proof

To finish the equivalence proof, I present the interpretation Isim. The properties needed for prov-

ing its monotonicity and soundness are covered earlier, so the rest is easy. Of course, similar to

blame consistency, Isim includes the judgement ⊢+ se𝜅 signed in the B function to make sure all

recursive contracts appearing in the program are covariant.

Definition 8.27. The annotation interpretation Isim :≡ (Ssim, ≼sim, B, P) is defined as

Ssim(⟨st, st′⟩) ⇐⇒ (st = st′)
𝑠 ≼sim 𝑠′ :≡ (𝑠 = 𝑠′) ∨ (∃ℓ . (𝑠 = ⟨Ok,Ok⟩) ∧ (𝑠′ = ⟨Err(ℓ), Err(ℓ)⟩))
B⟦ ⟨se𝜅, [𝜅1, . . . , 𝜅𝑚]⟩, 𝑒 ⟧ :≡ (I⊥ ⊨ 𝜅1) ∧ · · · ∧ (I⊥ ⊨ 𝜅𝑚) ∧

(⊢+ se𝜅 signed) ∧ (se𝜅 ∼ [𝜅1, . . . , 𝜅𝑚])
P⟦𝐴, 𝑒𝑚 ⟧ :≡ B⟦𝐴, 𝑒𝑚 ⟧

Theorem 8.28. Isim is monotonic.

Proof. For the [R-Cross-Nat] rule, by Lemma 8.19. For other rules, the global states remain



Chapter 8. Space-Efficient Contracts 152

identical. □

Theorem 8.29. Isim is sound.

Proof. For the [R-Merge-Box] and [R-Merge-Lam] rules, by Lemma 8.22. For the [R-Cross-

Roll] rule, by Proposition 8.23 (which in turn uses the Substitution lemma). All other cases are

straightforward. □

Putting everything together, it follows from the proof framework of the monitor calculus

(Theorem 5.19) that the two Status components in the global state are always equal. In other

words, space-efficient contracts and ordinary contracts always produce equal checking results.



153

Chapter 9

Conclusion

Every researcher with an interest in the metatheory of contract systems has experienced the

banality of proving their properties. Whether the target is correct blame or the correctness of

space-efficient contracts, the only creative step in the proof is constructing an invariant of eval-

uation that implies the target property. After that, and despite the variability of properties, the

proofs devolve into tedious inductive arguments and painful case analyses that repeat endlessly

across contract systems and properties. The central offering of my dissertation is how to separate

the creative from the routine; researchers should focus on the information needed for distilling

the target property to an interpretation of the annotations — given a few facts about the inter-

pretation, the rest can be abstracted away.

While my dissertation provides evidence in favor of its transition-system-based framework,

it also points out next steps for realizing its vision in full. First, Chapter 7 utilizes the frame-

work to prove the preservation of several interpretations. While this captures the correct blame

property, a more satisfying result would be capturing the compete monitoring property, which

needs a separate proof of progress that currently lives outside my framework. However, since

homomorphisms reflect transitions, some form of progress property should be transferable across

transition systems. Second, the dissertation just scratches the surface of structured information

in global states. Beyond recording information about different events, such as different oper-



Chapter 9. Conclusion 154

ations, systematically structured global states open the way for supporting expressive, stateful

contracts [Dimoulas et al. 2016; Moore et al. 2016; Moy and Felleisen 2023; Moy et al. 2024]. Third,

the framework does not easily accommodate the addition of new language features, a common

activity in the literature of contract systems. Currently, such extensions require reproving the

monitor calculus metatheory even though they are typically orthogonal. Therefore, in principle,

they should be as amenable to proof reuse as the monitor calculus’s composite instantiations are.



155

References

Amal Ahmed, Dustin Jamner, JeremyG. Siek, and PhilipWadler. 2017. Theorems for Free for Free:
Parametricity, with and without Types. Proceedings of the ACM on Programming Languages
(PACMPL) 1, ICFP, Article 39 (Aug 2017), 28 pages. https://doi.org/10.1145/3110283

Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. 2018. A
Type and Scope Safe Universe of Syntaxes with Binding: Their Semantics and Proofs. Proceed-
ings of the ACM on Programming Languages (PACMPL) 2, ICFP, Article 90 (jul 2018), 30 pages.
https://doi.org/10.1145/3236785

Guillaume Allais, James Chapman, Conor McBride, and James McKinna. 2017. Type-and-Scope
Safe Programs and Their Proofs. In Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs (CPP 2017). 195–207. https://doi.org/10.1145/3018610.3018613

EstebanAllende, Johan Fabry, and Éric Tanter. 2013. Cast Insertion Strategies for Gradually-Typed
Objects. In Proceedings of the 9th Symposium on Dynamic Languages (Indianapolis, Indiana,
USA) (DLS ’13). 27–36. https://doi.org/10.1145/2508168.2508171

André Arnold and Ilaria Castellani. 1996. An algebraic characterization of observational
equivalence. Theoretical Computer Science 156, 1 (1996), 289–299. https://doi.org/10.1016/
0304-3975(95)00141-7

André Arnold and Anne Dicky. 1989. An algebraic characterization of transition system
equivalences. Information and Computation 82, 2 (1989), 198–229. https://doi.org/10.1016/
0890-5401(89)90054-0

Matthias Blume and David McAllester. 2004. A Sound (and Complete) Model of Contracts. In
Proceedings of the Ninth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’04). 189–200. https://doi.org/10.1145/1016850.1016876

Samuele Buro and Isabella Mastroeni. 2019. On the Multi-Language Construction. In Program-
ming Languages and Systems (ESOP’19). 293–321. https://doi.org/10.1007/978-3-030-17184-1_
11

Arthur Charguéraud and François Pottier. 2019. Verifying the Correctness and Amortized Com-
plexity of a Union-Find Implementation in Separation Logic with Time Credits. Journal of
Automated Reasoning 62 (2019), 331–365. https://doi.org/10.1007/s10817-017-9431-7

https://doi.org/10.1145/3110283
https://doi.org/10.1145/3236785
https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1145/2508168.2508171
https://doi.org/10.1016/0304-3975(95)00141-7
https://doi.org/10.1016/0304-3975(95)00141-7
https://doi.org/10.1016/0890-5401(89)90054-0
https://doi.org/10.1016/0890-5401(89)90054-0
https://doi.org/10.1145/1016850.1016876
https://doi.org/10.1007/978-3-030-17184-1_11
https://doi.org/10.1007/978-3-030-17184-1_11
https://doi.org/10.1007/s10817-017-9431-7


References 156

E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic Verification of Finite-State Con-
current Systems Using Temporal Logic Specifications. ACM Transactions on Programming Lan-
guages and Systems 8, 2 (apr 1986), 244–263. https://doi.org/10.1145/5397.5399

Nils Anders Danielsson. 2008. Lightweight semiformal time complexity analysis for purely func-
tional data structures. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’08). 133–144. https://doi.org/10.1145/1328438.
1328457

Markus Degen, Peter Thiemann, and Stefan Wehr. 2012. The Interaction of Contracts and Lazi-
ness. In Proceedings of the ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program
Manipulation (PEPM ’12). 97–106. https://doi.org/10.1145/2103746.2103766

Christos Dimoulas and Matthias Felleisen. 2011. On Contract Satisfaction in a Higher-Order
World. ACM Transactions on Programming Languages and Systems 33, 5, Article 16 (Nov 2011),
29 pages. https://doi.org/10.1145/2039346.2039348

Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, andMatthias Felleisen. 2011. Correct
Blame for Contracts: No More Scapegoating. In Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’11). 215–226. https://doi.
org/10.1145/1926385.1926410

Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong. 2014. Declarative Poli-
cies for Capability Control. In 2014 IEEE 27th Computer Security Foundations Symposium. 3–17.
https://doi.org/10.1109/CSF.2014.9

Christos Dimoulas, Max S. New, Robert Bruce Findler, and Matthias Felleisen. 2016. Oh Lord,
Please Don’t Let Contracts Be Misunderstood (Functional Pearl). In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming (ICFP 2016). 117–131. https:
//doi.org/10.1145/2951913.2951930

Christos Dimoulas, Riccardo Pucella, and Matthias Felleisen. 2009. Future Contracts. In Proceed-
ings of the 11th ACM SIGPLAN Conference on Principles and Practice of Declarative Programming
(Coimbra, Portugal) (PPDP ’09). 195–206. https://doi.org/10.1145/1599410.1599435

Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Complete Monitors for
Behavioral Contracts. In Programming Languages and Systems (ESOP ’12). 214–233.

Tim Disney, Cormac Flanagan, and Jay McCarthy. 2011. Temporal Higher-Order Contracts. In
Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming
(ICFP ’11). 176–188. https://doi.org/10.1145/2034773.2034800

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay
McCarthy, and SamTobin-Hochstadt. 2015. The RacketManifesto. In 1st Summit onAdvances in
Programming Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 32), Thomas Ball, Rastislav Bodík, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg
Morriset (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 113–
128. https://doi.org/10.4230/LIPIcs.SNAPL.2015.113

https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/1328438.1328457
https://doi.org/10.1145/1328438.1328457
https://doi.org/10.1145/2103746.2103766
https://doi.org/10.1145/2039346.2039348
https://doi.org/10.1145/1926385.1926410
https://doi.org/10.1145/1926385.1926410
https://doi.org/10.1109/CSF.2014.9
https://doi.org/10.1145/2951913.2951930
https://doi.org/10.1145/2951913.2951930
https://doi.org/10.1145/1599410.1599435
https://doi.org/10.1145/2034773.2034800
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113


References 157

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay
McCarthy, and Sam Tobin-Hochstadt. 2018. A programmable programming language. Com-
mun. ACM 61, 3 (feb 2018), 62–71. https://doi.org/10.1145/3127323

Matthias Felleisen and Daniel P. Friedman. 1987. A reduction semantics for imperative higher-
order languages. In PARLE Parallel Architectures and Languages Europe. 206–223.

Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent St-Amour.
2018. Collapsible Contracts: Fixing a Pathology of Gradual Typing. Proceedings of the ACM
on Programming Languages (PACMPL) 2, OOPSLA, Article 133 (Oct 2018), 27 pages. https:
//doi.org/10.1145/3276503

Robert Bruce Findler and Matthias Blume. 2006. Contracts as pairs of projections. In International
Symposium on Functional and Logic Programming (FLOPS ’06). Springer, 226–241.

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. In
Proceedings of the Seventh ACM SIGPLAN International Conference on Functional Programming
(ICFP ’02). 48–59. https://doi.org/10.1145/581478.581484

Robert Bruce Findler, Shu-yuGuo, andAnne Rogers. 2008. Lazy Contract Checking for Immutable
Data Structures. In Implementation and Application of Functional Languages (IFL ’07). 111–128.

Ronald Garcia. 2013. Calculating threesomes, with blame. In Proceedings of the 18th ACMSIGPLAN
International Conference on Functional Programming (ICFP ’13). 417–428. https://doi.org/10.
1145/2500365.2500603

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting gradual typing. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’16). 429–442. https://doi.org/10.1145/2837614.2837670

Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed. 2024. Gradually Typed Lan-
guages Should Be Vigilant! Proceedings of the ACM on Programming Languages (PACMPL) 8,
OOPSLA1, Article 125 (April 2024), 29 pages. https://doi.org/10.1145/3649842

Abraham Ginzburg. 1968. Algebraic Theory of Automata. Academic Press. https://www.
sciencedirect.com/science/book/9781483200132

Michael Greenberg. 2014. Space-Efficient Manifest Contracts. (2014). https://doi.org/10.48550/
arXiv.1410.2813 arXiv:1410.2813 [cs.PL] Technical Report.

Michael Greenberg. 2015. Space-Efficient Manifest Contracts. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). 181–
194. https://doi.org/10.1145/2676726.2676967

Michael Greenberg. 2016. Space-Efficient Latent Contracts. In Trends in Functional Programming
(TFP). 3–23.

Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. 2010. Contracts Made Manifest.
In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’10). 353–364. https://doi.org/10.1145/1706299.1706341

https://doi.org/10.1145/3127323
https://doi.org/10.1145/3276503
https://doi.org/10.1145/3276503
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/2500365.2500603
https://doi.org/10.1145/2500365.2500603
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/3649842
https://www.sciencedirect.com/science/book/9781483200132
https://www.sciencedirect.com/science/book/9781483200132
https://doi.org/10.48550/arXiv.1410.2813
https://doi.org/10.48550/arXiv.1410.2813
https://doi.org/10.1145/2676726.2676967
https://doi.org/10.1145/1706299.1706341


References 158

Ben Greenman, Christos Dimoulas, and Matthias Felleisen. 2023. Typed–Untyped Interactions:
A Comparative Analysis. ACM Transactions on Programming Languages and Systems 45, 1,
Article 4 (Mar 2023), 54 pages. https://doi.org/10.1145/3579833

Ben Greenman and Matthias Felleisen. 2018. A Spectrum of Type Soundness and Performance.
Proceedings of the ACM on Programming Languages (PACMPL) 2, ICFP, Article 71 (Jul 2018),
32 pages. https://doi.org/10.1145/3236766

Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2019. Complete Monitors for Gradual
Types. Proceedings of the ACM on Programming Languages (PACMPL) 3, OOPSLA, Article 122
(Oct 2019), 29 pages. https://doi.org/10.1145/3360548

Jessica Gronski and Cormac Flanagan. 2007. Unifying Hybrid Types and Contracts. In Trends in
Functional Programming (TFP’07). 54–70.

Armaël Guéneau. 2019. Mechanized verification of the correctness and asymptotic complexity of
programs : the right answer at the right time. Thèse de doctorat. Université Paris Cité. Logic
in Computer Science [cs.LO]. NNT : 2019UNIP7110. tel-03071720. https://theses.hal.science/
tel-03071720.

Armaël Guéneau, Arthur Charguéraud, and François Pottier. 2018. A Fistful of Dollars: For-
malizing Asymptotic Complexity Claims via Deductive Program Verification. In Programming
Languages and Systems (ESOP ’18). 533–560.

Matthew Hennessy and Robin Milner. 1985. Algebraic Laws for Nondeterminism and Concur-
rency. Journal of ACM 32, 1 (jan 1985), 137–161. https://doi.org/10.1145/2455.2460

David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-efficient gradual typing. Higher-
Order and Symbolic Computation 23, 2 (2010), 167–189.

Ralf Hinze, Johan Jeuring, and Andres Löh. 2006. Typed Contracts for Functional Programming.
In Functional and Logic Programming (FLOPS ’06). 208–225.

C. A. R. Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (oct
1969), 576–580. https://doi.org/10.1145/363235.363259

Rodney R Howell. 2008. On Asymptotic Notation With Multiple Variables. Department of Com-
puting and Information Sciences, Kansas State University, Manhattan, KS, USA, Technical Report
(2008). https://people.cs.ksu.edu/~rhowell/asymptotic.pdf

Matthias Keil and Peter Thiemann. 2015. Blame Assignment for Higher-Order Contracts with
Intersection and Union. In Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2015). 375–386. https://doi.org/10.1145/2784731.2784737

Leslie Lamport. 1994. The Temporal Logic of Actions. ACM Transactions on Programming Lan-
guages and Systems 16, 3 (may 1994), 872–923. https://doi.org/10.1145/177492.177726

Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley Longman Publishing Co., Inc.

https://doi.org/10.1145/3579833
https://doi.org/10.1145/3236766
https://doi.org/10.1145/3360548
https://theses.hal.science/tel-03071720
https://theses.hal.science/tel-03071720
https://doi.org/10.1145/2455.2460
https://doi.org/10.1145/363235.363259
https://people.cs.ksu.edu/~rhowell/asymptotic.pdf
https://doi.org/10.1145/2784731.2784737
https://doi.org/10.1145/177492.177726


References 159

Lukas Lazarek, Alexis King, Samanvitha Sundar, Robert Bruce Findler, and Christos Dimoulas.
2019. Does Blame Shifting Work? Proceedings of the ACM on Programming Languages
(PACMPL) 4, POPL, Article 65 (Dec 2019), 29 pages. https://doi.org/10.1145/3371133

Jacob Matthews and Amal Ahmed. 2008. Parametric Polymorphism through Run-Time Sealing
or, Theorems for Low, Low Prices!. In Programming Languages and Systems (ESOP ’08). 16–31.

Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-Language Pro-
grams. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (Nice, France) (POPL ’07). 3–10. https://doi.org/10.1145/1190216.1190220

ConorMcBride. 2005. Type-Preserving Renaming and Substitution. (2005). http://strictlypositive.
org/ren-sub.pdf.

Hernán Melgratti and Luca Padovani. 2017. Chaperone Contracts for Higher-Order Sessions.
Proceedings of the ACM on Programming Languages (PACMPL) 1, ICFP, Article 35 (Aug 2017),
29 pages. https://doi.org/10.1145/3110279

Bertrand Meyer. 1991a. Design by contract. In Advances in Object-Oriented Software Engineering,
Dino Mandrioli and Bertrand Meyer (Eds.). Prentice Hall, 1–50.

Bertrand Meyer. 1991b. Eiffel: The Language. Prentice Hall.

Bertrand Meyer. 1992. Applying “Design by Contract”. Computer 25, 10 (1992), 40–51. https:
//doi.org/10.1109/2.161279

Bertrand Meyer. 2005. Standard Eiffel. (2005). http://se.ethz.ch/~meyer/publications/index_kind.
html#PSTE Draft. Previously published as Meyer [1991b].

Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew Flatt, and Stephen Chong. 2016.
Extensible Access Control with Authorization Contracts. In Proceedings of the 2016 ACM SIG-
PLAN International Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (Amsterdam, Netherlands) (OOPSLA 2016). 214–233. https://doi.org/10.1145/2983990.
2984021

Cameron Moy, Christos Dimoulas, and Matthias Felleisen. 2024. Effectful Software Contracts.
Proceedings of the ACM on Programming Languages (PACMPL) 8, POPL, Article 88 (Jan 2024),
28 pages. https://doi.org/10.1145/3632930

Cameron Moy and Matthias Felleisen. 2023. Trace contracts. Journal of Functional Programming
33 (2023), e14. https://doi.org/10.1017/S0956796823000096

Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual type theory. Proceedings of the
ACM on Programming Languages (PACMPL) 3, POPL, Article 15 (Jan. 2019), 31 pages. https:
//doi.org/10.1145/3290328

David L. Parnas. 1972. A Technique for Software Module Specification with Examples. Commun.
ACM 15, 5 (may 1972), 330–336. https://doi.org/10.1145/355602.361309

https://doi.org/10.1145/3371133
https://doi.org/10.1145/1190216.1190220
http://strictlypositive.org/ren-sub.pdf
http://strictlypositive.org/ren-sub.pdf
https://doi.org/10.1145/3110279
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
http://se.ethz.ch/~meyer/publications/index_kind.html#PSTE
http://se.ethz.ch/~meyer/publications/index_kind.html#PSTE
https://doi.org/10.1145/2983990.2984021
https://doi.org/10.1145/2983990.2984021
https://doi.org/10.1145/3632930
https://doi.org/10.1017/S0956796823000096
https://doi.org/10.1145/3290328
https://doi.org/10.1145/3290328
https://doi.org/10.1145/355602.361309


References 160

Daniel Patterson. 2022. Interoperability Through Realizability: Expressing High-Level Abstractions
using Low-Level Code. Ph. D. Dissertation. Northeastern University. https://dbp.io/pubs/2022/
dbp-dissertation.pdf

Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977). 46–57. https://doi.org/10.1109/SFCS.1977.32

François Pottier and Vincent Simonet. 2002. Information flow inference for ML. In Proceedings
of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’02). 319–330. https://doi.org/10.1145/503272.503302

François Pottier and Vincent Simonet. 2003. Information flow inference forML. ACMTransactions
on Programming Languages and Systems 25, 1 (Jan. 2003), 117–158. https://doi.org/10.1145/
596980.596983

Davide Sangiorgi. 2009. On the Origins of Bisimulation and Coinduction. ACM Transactions on
Programming Languages and Systems 31, 4, Article 15 (may 2009), 41 pages. https://doi.org/10.
1145/1516507.1516510

Taro Sekiyama and Atsushi Igarashi. 2017. Stateful Manifest Contracts. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). 530–544.
https://doi.org/10.1145/3009837.3009875

Jeremy Siek, Ronald Garcia, and Walid Taha. 2009. Exploring the Design Space of Higher-Order
Casts. In Programming Languages and Systems (ESOP ’09). 17–31.

Jeremy Siek, Peter Thiemann, and Philip Wadler. 2015a. Blame and coercion: together again for
the first time. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’15). 425–435. https://doi.org/10.1145/2737924.2737968

Jeremy Siek, Peter Thiemann, and Philip Wadler. 2021. Blame and coercion: Together again
for the first time. Journal of Functional Programming 31 (2021), e20. https://doi.org/10.1017/
S0956796821000101

Jeremy G. Siek and Tianyu Chen. 2021. Parameterized cast calculi and reusable meta-theory
for gradually typed lambda calculi. Journal of Functional Programming 31 (2021), e30. https:
//doi.org/10.1017/S0956796821000241

Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional languages. In Scheme and
Functional Programming 2006. 12 pages. https://doi.org/10.1145/1163566.1163568 University
of Chicago Technical Report TR-2006-06 http://scheme2006.cs.uchicago.edu/13-siek.pdf.

Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In ECOOP 2007 – Object-
Oriented Programming. 2–27.

Jeremy G. Siek and Sam Tobin-Hochstadt. 2016. The Recursive Union of Some Gradual Types. In
A List of Successes That Can Change theWorld: Essays Dedicated to PhilipWadler on the Occasion
of His 60th Birthday. 388–410. https://doi.org/10.1007/978-3-319-30936-1_21

https://dbp.io/pubs/2022/dbp-dissertation.pdf
https://dbp.io/pubs/2022/dbp-dissertation.pdf
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/503272.503302
https://doi.org/10.1145/596980.596983
https://doi.org/10.1145/596980.596983
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1145/3009837.3009875
https://doi.org/10.1145/2737924.2737968
https://doi.org/10.1017/S0956796821000101
https://doi.org/10.1017/S0956796821000101
https://doi.org/10.1017/S0956796821000241
https://doi.org/10.1017/S0956796821000241
https://doi.org/10.1145/1163566.1163568
http://scheme2006.cs.uchicago.edu/13-siek.pdf
https://doi.org/10.1007/978-3-319-30936-1_21


References 161

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015b. Refined
Criteria for Gradual Typing. In 1st Summit on Advances in Programming Languages (SNAPL
2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 32). 274–293. https://doi.
org/10.4230/LIPIcs.SNAPL.2015.274

Jeremy G. Siek and Philip Wadler. 2010. Threesomes, with and without Blame. In Proceedings of
the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Madrid, Spain) (POPL ’10). 365–376. https://doi.org/10.1145/1706299.1706342

Joseph Sifakis. 1983. Property preserving homomorphisms of transition systems. In Logics of
Programs (Lecture Notes in Computer Science). 458–473.

T. Stephen Strickland, Christos Dimoulas, Asumu Takikawa, and Matthias Felleisen. 2013. Con-
tracts for First-Class Classes. ACM Transactions on Programming Languages and Systems 35, 3,
Article 11 (Nov 2013), 58 pages. https://doi.org/10.1145/2518189

T. Stephen Strickland and Matthias Felleisen. 2009. Contracts for First-Class Modules. In Pro-
ceedings of the 5th Symposium on Dynamic Languages (Orlando, Florida, USA) (DLS ’09). 27–38.
https://doi.org/10.1145/1640134.1640140

Cameron Swords. 2019. A Unified Characterization of Runtime Verification Systems as Patterns of
Communication. Ph. D. Dissertation. Indiana University. http://cswords.com/paper/cswords.
thesis.pdf

Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. 2015. Expressing Contract Monitors as
Patterns of Communication. In Proceedings of the 20th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2015). 387–399. https://doi.org/10.1145/2784731.2784742

Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. 2018. An extended account of contract
monitoring strategies as patterns of communication. Journal of Functional Programming 28
(2018), e4. https://doi.org/10.1017/S0956796818000047

Asumu Takikawa, Daniel Feltey, Earl Dean, Matthew Flatt, Robert Bruce Findler, Sam Tobin-
Hochstadt, and Matthias Felleisen. 2015. Towards Practical Gradual Typing. In European Con-
ference on Object-Oriented Programming (ECOOP). https://doi.org/10.4230/LIPIcs.ECOOP.2015.
4

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen.
2016. Is Sound Gradual Typing Dead?. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’16). 456–468. https://doi.org/10.
1145/2837614.2837630

Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias
Felleisen. 2012. Gradual Typing for First-Class Classes. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications (Tucson, Ari-
zona, USA) (OOPSLA ’12). 793–810. https://doi.org/10.1145/2384616.2384674

https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1145/2518189
https://doi.org/10.1145/1640134.1640140
http://cswords.com/paper/cswords.thesis.pdf
http://cswords.com/paper/cswords.thesis.pdf
https://doi.org/10.1145/2784731.2784742
https://doi.org/10.1017/S0956796818000047
https://doi.org/10.4230/LIPIcs.ECOOP.2015.4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.4
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/2384616.2384674


References 162

AsumuTakikawa, T. Stephen Strickland, and SamTobin-Hochstadt. 2013. ConstrainingDelimited
Control with Contracts. In Programming Languages and Systems (ESOP ’13), Matthias Felleisen
and Philippa Gardner (Eds.). 229–248.

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage migration: from scripts to pro-
grams. In Dynamic Languages Symposium (DLS ’06). 964–974. https://doi.org/10.1145/1176617.
1176755

Jesse A. Tov and Riccardo Pucella. 2010. Stateful Contracts for Affine Types. In Programming
Languages and Systems (ESOP ’10). 550–569.

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study.

Johan van Benthem and Jan Bergstra. 1994. Logic of transition systems. Journal of Logic, Language
and Information 3, 4 (01 Dec 1994), 247–283. https://doi.org/10.1007/BF01160018

Johan van Benthem, Jan van Eijck, and Vera Stebletsova. 1994. Modal Logic, Transition Systems
and Processes. Journal of Logic and Computation 4, 5 (10 1994), 811–855. https://doi.org/10.
1093/logcom/4.5.811

Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime:
Open-World Soundness and Collaborative Blame for Gradual Type Systems. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France)
(POPL 2017). 762–774. https://doi.org/10.1145/3009837.3009849

Philip Wadler. 2015. A Complement to Blame. In 1st Summit on Advances in Programming Lan-
guages (SNAPL 2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 32). 309–320.
https://doi.org/10.4230/LIPIcs.SNAPL.2015.309

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In Pro-
gramming Languages and Systems (ESOP ’09). 1–16.

JackWilliams, J. Garrett Morris, and Philip Wadler. 2018. The Root Cause of Blame: Contracts for
Intersection and Union Types. Proceedings of the ACM on Programming Languages (PACMPL)
2, OOPSLA, Article 134 (Oct 2018), 29 pages. https://doi.org/10.1145/3276504

Dana N. Xu, Simon Peyton Jones, and Koen Claessen. 2009. Static Contract Checking for Haskell.
In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (Savannah, GA, USA) (POPL ’09). 41–52. https://doi.org/10.1145/1480881.
1480889

https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1176617.1176755
https://homotopytypetheory.org/book
https://doi.org/10.1007/BF01160018
https://doi.org/10.1093/logcom/4.5.811
https://doi.org/10.1093/logcom/4.5.811
https://doi.org/10.1145/3009837.3009849
https://doi.org/10.4230/LIPIcs.SNAPL.2015.309
https://doi.org/10.1145/3276504
https://doi.org/10.1145/1480881.1480889
https://doi.org/10.1145/1480881.1480889

	Abstract
	Glossary of Notations
	Table of Contents
	List of Figures
	I Introduction
	The Problem with Metatheory Reuse
	Proxies in Finder-Felleisen Higher-Order Contracts
	Contracts as Transition Systems
	Reusable Metatheory
	Thesis Statement
	Acknowledgements
	Related Work

	The Monitor Calculus: A Parameterized Contract Calculus
	Intercepting Monitor-Related Events
	A Unified Representation of Contracts and Proof Invariants
	Building Composite Instantiations

	Proving Properties of Contract Systems via Transition Systems
	A Quick Recap of Transition Systems
	From the Monitor Calculus to Transition Systems
	Reusing Metatheories for Composite Languages
	A Class of Homomorphisms for the Monitor Calculus


	II A Transition-System View of Contract Systems
	The Monitor Calculus, Formally
	Syntax and Operational Semantics
	The Language of Annotations
	Rule Templates
	Languages of Annotations
	Examples

	Projections of Annotation Languages

	The Transition-System Representation of Contract Systems
	Relating Calculus Instantiations to Transition Systems
	Interpretation of Annotation Languages
	Soundness of the Interpretations
	Reusing Metatheories by Composing Homomorphisms


	III Applications to Contract Metatheories
	Findler-Felleisen Contract System and the Non-masking Property
	The Syntax of Contracts
	The Contract Checking Transition Steps
	The Satisfaction Relation of Contracts
	Monotonicity

	The Correct Blame of Contracts
	The Blame Annotation Language
	Blame Consistency
	The Ownership Annotation Language
	Indexed Interpretations and Single-Owner Policy
	Capturing Monitoring Strategies in the Framework
	Correct Blame and Single-Owner Policy

	Space-Efficient Contracts
	Space-Efficient Contracts in Action
	Syntax and Transition Steps of Space-Efficient Contracts
	Interlude: Size Parameters of Space-Efficient Contracts
	Space Efficiency
	The Time Complexity of Space-Efficient Contracts
	Equivalence to ff:icfp-contract's Contracts
	Syntax of the Combined Annotation Language
	Overview of the Equivalence Proof
	Maintaining Equal Contract Checking Status
	Preservation of the Simulation Relation
	Completing the Equivalence Proof



	Conclusion
	Conclusion
	References


